
A semi-automatic system for conceptual annotation, its application to resource
construction and evaluation

W.J. Black1, J. McNaught1, G.P. Zarri2, A. Persidis3, A. Brasher4, L. Gilardoni5, E. Bertino6,
G. Semeraro7, P. Leo8

1Department of Language Engineering, UMIST, Manchester, UK
{bill,jock}@ccl.umist.ac.uk

2Centre National de la Recherche Scientifique, Paris, France
3ASSETT–Biovista, Athens, Greece
4Pira International, Leatherhead, UK

5QUINARY SpA, Milano, Italy.
6Dipartimento di Scienze dell’Informazione, Università degli Studi, Milano, Italy

7Dipartimento di Informatica, Università di Bari, Italy
8Java Technology Center, IBM Semea Sud, Bari, Italy

http://concerto.ccl.umist.ac.uk/

Abstract
The CONCERTO project, primarily concerned with the annotation of texts for their conceptual content, combines automatic linguistic
analysis with manual annotation to ensure the accuracy of fact extraction, and to encode content in a rich knowledge representation
framework. The system provides annotation tools, automatic multi-level linguistic analysis modules, a partial parsing formalism with
a more user friendly language than standard regular expression languages, XML-based document management, and a powerful
knowledge representation and query facility. We describe the architecture and functionality of the system, and how it can be adapted
for a range of resource construction tasks, and how the system can be configured to compute statistics on the accuracy of its automatic
analysis components.

1. Background
The work described here is being carried out in the

framework of the CONCERTO project (Esprit P29159,
finishing in September 2000). Concerto is concerned
with the conceptual indexing, querying and retrieval of
digital documents (Bertino et al., 1999), i.e. textual
documents stored in any kind of digital repository, from
the WWW to digital libraries to corpora. The core
activities of the project are to set up a full knowledge
engineering software environment (KESE) to enable the
computer-aided conceptual annotation of documents
and to further enable intelligent information retrieval
via these annotations. The computer-aided nature of the
design of CONCERTO means that it is equally applicable
to the construction and management of corpora, and it is
this aspect of the potential of the system that we
describe here.

CONCERTO can offer strong support to the
organisation wishing to engage in conceptual corpus
annotation. We fully exploit the possibilities of
metadata as a vehicle to carry the conceptual
annotations for a document. We do much more than
simply tag documents with consistent classifications:
this is accomplished in an early stage of CONCERTO, by
the BSEE module. We further enrich documents by
tagging them semi-automatically with metadata
conceptual annotations that represent chunks of
meaning relevant to the annotator. The result is a store
of document-based knowledge that can be flexibly
queried to return precise answers to queries, and that
can be used for other knowledge-based purposes, in
addition.

CONCERTO is primarily concerned with the
evolution from information retrieval to fact retrieval and
knowledge acquisition from textual sources. This is
approached through the construction of an advanced

prototype Knowledge Engineering Software Environ-
ment (KESE). The heart of the environment is a
knowledge base management system in which narrative
knowledge is expressed in a knowledge representation
language (Zarri, 1992), super-imposed as annotations
on the textual sources of that knowledge. The system
allows knowledge-based retrieval of asserted and
derived facts, supported by the evidence of the textual
data from which it was derived.

The CONCERTO KESE provides a flexible
architecture, in which it is possible to cater for a wide
variety of document management tasks, including
linguistic corpus management. Although that was not its
primary objective, it is one of the ways in which it will
be exploited by some of the partners. This is made
possible by two key aspects of the design of the
CONCERTO KESE. The first is that, recognizing the
limitations of robust linguistic analysis, the system was
always intended to rely on manual intervention to
complete the annotation of textual data for storage in its
conceptual knowledge base. The second is that the
knowledge base management system is designed to
cater for XML-encoded document annotations, in which
the conceptual content of documents can be captured
and queried. The two commercial pilot applications are
primarily concerned with the semantic content of the
documents, but within the project, linguistic analysis at
lower levels precedes semantic annotation, and such
annotations can also be stored in the system’s
repositories.

2. The CONCERTO Knowledge Engineering
Software Environment

In the CONCERTO project, we are developing a new
approach to the construction and management of
knowledge repositories, based on textual annotation. In
other words, a marriage of knowledge base

management, document management, IR and language
engineering technologies. In a traditional knowledge
base, terminology and assertions are expressed in a
formal knowledge representation language, which
allows inferences to be drawn. In the CONCERTO
knowledge engineering software environment (KESE),
such knowledge is represented as annotations to the
textual sources from which the knowledge is acquired.

We do not aspire to translate all the meaning of the texts
to a knowledge representation language, only that
which is relevant to the annotator's needs. The
knowledge acquisition process in the CONCERTO
KESE is semi-automatic, where the final authority for
the annotations placed in the repository rests with the
human annotator.

Concept
Repository

Template
Repository

Conceptual
Annotation
Repository

Document
Repository

Concept
Manager

Template
Manager

Knowledge
Manager

Inference
Engine

XML Document
Translator

Document
Acquisition
Interface

Conceptual
Annotation
Builder
Interface

Query
Environment
Interface

Concept
Ontology
Interface

Template
Ontology
Interface

BSE & Extraction
Mapping to
Ontology

Abstracts
Web Pages

(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

Interfaces

Acquisition
& Preprocessing

Knowledge
Management

Repositories

(20)

Conceptual Annotation
Editors & General Users

Knowledge
Administrators

(18)

(19)

Figure 1 The Concerto system architecture

Attempting fully automatic knowledge acquisition
from text is beyond the state of the art, as the results of
MUC (1998) will testify. However, because such
processes can deliver accuracy ((precision + recall)/2)
over 90 percent for name extraction, and 80 percent for
simple template filling, it is considered worthwhile to
aid the annotator by pre-analyzing the text and
proposing partially-filled annotations. The functionality
of the generic KESE is shown in Figure 1. It includes
the following processes:

1. Document capture and normalization to XML
markup (Simpson, 1999).

2. Automatic low-level linguistic processing to
identify names: companies, people, products,
trade names, etc., to identify simple
relationships between them and actions
undertaken by them.

3. A process of conceptual annotation building,
done interactively, in which a trained user
corrects and augments the system's annotations.
The interface aids this user in building
representations which map natural language
terms, names and phrases used in the text to
object and template instances in the knowledge
representation language NKRL (Zarri, 1997).

4. A knowledge management facility in which
annotations expressed in NKRL are both stored
as part of an XML document representation and
indexed to support queries.

5. Facilities for querying the annotation
knowledge base, and for generating reports and
enhanced text to meet the users' requirements.

2.1. Document management
The XML Document Translator (XMLdt) is a

Concerto KESE module used to encode, in a uniform

way, the documents input to the system. In the pilot
application, two types of document are treated: abstracts
of technical papers and Web pages containing company
news and profiles.

Where a corpus is concerned, definition and creation
of suitable XML Document Type Definitions (DTDs),
would be required for the modelling of those kinds of
documents that the Concerto KESE should manipulate.
That is, the XMLdt module could be used to prepare an
intial collection of documents in order to convert them
to a common corpus format, or it could be used to
process a corpus collection already in some format.

The XMLdt module inputs documents from the
Document Acquisition Interface (DAI), outputting
corresponding XML documents. These are sent via the
DAI module to the Knowledge Manager (KM) for
storage in the Conceptual Annotation repository.

2.2. Automatic text processing
Three components contribute to the construction of

conceptual annotations in the CONCERTO KESE. The
Basic Semantic Element Extraction (BSEE) module
carries out linguistic processing to identify named
entities and relationships between such entities as
expressed directly in the text. The Ontology Mapper
associates names, terms and partially filled templates
with the classes and templates in the main KESE
repositories, and the Conceptual Annotation Builder
Interface (CABI) enlists the help of a user to complete
the partial analysis achieved by the automatic analysis
components. The BSEE and Ontology Mapper modules
were originally developed within the scope of the
FACILE project (Ciravegna et al., 1999), but their
adaptation to CONCERTO requirements and the CABI
module are new in CONCERTO.

2.2.1. Basic Semantic Elements Extractor
The BSEE module's purpose is to extract and tag

basic semantic elements in a text, automatically. The
BSEE module has been shown in blind tests to be
capable of an accuracy (precision and recall) of over 90
percent at correctly tagging names in news text. We
expect to be able to attain similar levels of accuracy in
the CONCERTO applications, but 90% is not 100%, so
the module's output needs to be checked by the CABI
user after the tags are mapped to the CONCERTO
ontology. We expect nonetheless that, despite the need
for verifying results, the system will contribute to faster
annotation than could be achieved in a purely manual
system.

The BSEE module uses a modular language
engineering solution to the problem of named-entity
recognition, and extends the concept to the extraction of
other basic semantic elements of relevance to the
application domain. The strategy adopted is as follows:

The input text is tokenised (split into individual
words, numbers, punctuation marks, and other
symbols).

The tokenised text is morphologically analyzed and
tagged, using components under licence from InXight.

Words and phrases are looked up in a database of
known names, part names and headwords of phrases
designating domain terms.

Finally, the NE Analyser (Black, Rinaldi and
Mowatt 1988), using context-sensitive regular

expression rules, augmented by Prolog-style unification
of variables, builds up syntactic and semantic structural
representations, and also finds instances of co-reference
between names.

The FACILE project was mainly concerned with
financial news (and has been successfully deployed in
the marketplace), however the system and resources are
not domain specific. Extensions to the resources are
required only if new types of entities have to be
captured. Thus, we have extended it in conjunction with
our user partners to handle the entities of interest in
printing and publishing, and biotechnology. The
architecture itself is language-neutral and resources
have been developed for four European languages.
Recent extensions include a Java-based client that
allows access to the system via a conventional web
browser (Rinaldi and Black, 1999).

2.2.2. Ontology Mapper
The Ontology Mapper is developed from the

QClassifier module, developed by Quinary for the
FACILE system. Its task there was to use the
terminology in the text to classify the topic of a text
according to a fine-grained hierarchical ontology. In
the CONCERTO project, the coverage is different, but
also its usage is moer extensive. An ontology browser is
an integral component of the annotation interface (see
below) that permits users to compose conceptually more
complete annotations than the BSEE module can make,
and correct erroneous annotations. Although the
conceptual annotations made in the pilot applications
only call for selective fact extraction from input texts,
this is not a restriction imposed by the system
architecture. The linkage to ontology means that those
text spans that are analyzed have their content words
conceptually disambiguated, hence the OM combined
with its annotator interface provides the generic
functionality needed for intelligent lexical semantic
tagging.

2.2.3. Conceptual Annotation Builder

Figure 2 CABI annotation interface

The Conceptual Annotation Builder (CAB), and its
associated user interface CABI, allow the user to
construct, using the results of the BSEE and OM as raw
material, annotations representing the semantic content
of text fragments. Annotators may work from scratch, if
they prefer, although the results of the foregoing two
modules make the process much more efficient.

The first prototype of the CABI annotation tool, is
illustrated in Figure 2. The text pane shown to the left
is a styled document that has already been automatically
analyzed at a variety of levels by the BSEE and OM
modules, but where the user can revise and extend the
annotations. In the panel to the top right, there are
instances of the objects as found either by automatic
analysis or by manual annotation. This component is the
template editor.

This early version used the ready-made Java
JTreeViewer to present and edit representations of
structured objects, with attributes and values shown as
sub-trees. Work is ongoing at implementing a more
ergonomic template viewer and editor that can do the
same job more efficiently, and with a more natural
presentation.

To the bottom right is a knowledge-base browser
that can be accessed to select and apply annotations that
the automatic analysis has not produced, or has
produced in error. The knowledge base browser is
focused on concepts instantiated by items extracted
from the text, but also enables the annotator to search
for missed items. Similarly, the template editor is
focused on templates triggered in the text, with slots
pre-filled with arguments picked up by automatic
'template relation' extraction.

2.3. Knowledge representation and NKRL
Conceptual annotations have been introduced for

describing in some depth the context of documents and
in general of multimedia objects (Catarci et al., 1997;
Hoppe et al., 1996; Levy et al., 1996; Kirk, 1996;
Welty, 1994). Unfortunately, most of the proposed
approaches, often based on description logic, have
several limitations in terms of description of complex
events. They are often not adequate to describe the
actions, facts, events, states, etc., that relate the real or
intended behaviour of some actors, typical of any
industrial and economic context. The Narrative
Knowledge Representation Language (NKRL) we use
as the basic language for indexing digital documents
overcomes most of these limitations (Zarri. 1995; Zarri,
1997).

NKRL has been extensively described in the
literature (see, e.g., Zarri (1992), Zarri (1995), Zarri
(1997) and Zarri & Gilardoni (1996). It is a high-level
knowledge representation language endowed with
particular features which make it highly suitable for
representing descriptive meanings like those proper to
conceptual annotations. The core of NKRL consists of a
set of general representation tools that are structured
into four integrated components, that we discuss here in
pairwise fashion:

2.3.1. Definitional and enumerative components
The definitional component of NKRL supplies the

tools for representing the important notions (concepts)
of a given domain; in NKRL, a concept is, therefore, a

definitional data structure associated with a symbolic
label like physical_entity, human_being, city_, etc.
NKRL concepts are placed in a generalisation and
specialisation hierarchy called, for historical reasons,
H_CLASS(es), corresponding to the usual ontology of
terms. The enumerative component of NKRL represents
instances (lucy_, wardrobe_1, taxi_53, paris_) of the
concepts of the H_CLASS. In NKRL, their formal
representations take the name of individuals.

Concepts and individuals are represented as frame-
based structures composed of an object identifier (OID)
and of a set of characteristic features (slots) (Zarri,
1997). In the overall architecture, general concepts that
belong to the upper levels of H_CLASS are represented
in a catalogue and are assumed invariant across
domains.

2.3.2. Descriptive and factual components
The event types in a domain, are represented using

the descriptive and factual components. The descriptive
component produces the formal representations
(predicative templates) of general classes of narrative
events, like ‘move a generic object’, ‘formulate a need’,
‘be present somewhere’. In contrast to the binary
structures used for concepts and individuals, templates
have a threefold format where the central piece is a
predicate, i.e., a named relation that exists among one or
more arguments introduced by means of roles. The
format of a predicative template is the following:

(Pi (R1 a1) (R2 a2) ... (Rn an))
In the above expression, Pi denotes the symbolic

label identifying the template (class of events); Rk,
k=1,...,n, denote generic roles; and ak, k=1,...,n, denote the
arguments associated with the roles. The predicates
belong to the set {BEHAVE, EXIST, EXPERIENCE, MOVE, OWN,
PRODUCE, RECEIVE}, and the roles to the set {SUBJ(ect),
OBJ(ect), SOURCE, DEST(ination), MODAL(ity), TOPIC,
CONTEXT}. Templates are structured into an inheritance
hierarchy, H_TEMP(lates), which corresponds, therefore,
to a taxonomy (ontology) of events. Instances
(predicative occurrences) of the predicative templates,
belong in the factual component. Predicative
occurrences can be combined together, through the use
of operators such as COORD, to form more complex
annotations, called binding occurrences, the arguments
of which can be either predicative or binding
occurrences. The basic templates number more than
150, pertaining mainly to a (very broad)
socioeconomic-political context where the main
characters are human beings or social bodies. The basic
templates can be specialized to derive templates for
different applications.

Typically, each document is assigned a single
conceptual annotation, representing the external
binding occurrence associated with it.

As an example of a NKRL conceptual annotation,
consider the following fragment: “On June 9, 1998,
America Online announced it has finalised the
acquisition of Mirabilis, an Israeli software house, for
$287M cash. Mirabilis makes ICQ, an Internet tool
enabling users to communicate with one another in real
time”. The conceptual annotation constructed from this
text is shown in figure 3. The annotation is composed of
a binding occurrence, c1, and three predicative
occurrences, i.e., instances of basic templates included

in the catalogue. The second-order binding structure c1
analyzes the content into two main parts: an occurrence
c2 relating the message, c4, transmitted by America
Online (completive construction); and an occurrence,
c3, describing ICQ. c3 and c4 are both instances of
basic NKRL templates pertaining to the PRODUCE
branch of the hierarchy of events. The presence of a
temporal modulator, obs(erve), leads to an
interpretation of c3 as the description of a situation that,
at this particular date, is observed to exist. A location
attribute (a list that contains here only one element) is
associated with the SUBJ(ect) arguments in c2, c3 and
c4. The arguments introduced by the OBJ(ect) and
MODAL(ity) roles include some SPECIF(ication) lists,
used to represent properties that can be asserted about
the first element e1, of the list. See Zarri (1997) for
additional details.

c1) (COORD c2 c3)
c2) MOVE SUBJ america_online: (usa_)

OBJ #c4
date-1: before-9-june-98
date-2:

c4) PRODUCE SUBJ america_online: (usa_)
OBJ (SPECIF purchase_1 final_(SPECIF mirabilis_

 (SPECIF software_house israeli_)))
MODAL (SPECIF cash_transaction_1 usa_dollar

 (SPECIF amount_ (SPECIF million_ 287)))
 date-1: before-9-june-98

date-2:
c3) PRODUCE SUBJ mirabilis_: (israeli_)

OBJ (SPECIF icq_ (SPECIF internet_tool (SPECIF

communication_tool on_line)))
[obs]
date-1: 9-june-98
date-2:

Figure 3: An example of a NKRL conceptual
annotation

Conceptual annotations can be queried using search
patterns, which are NKRL structures that can match, by
filtering or unification, assertions in the conceptual
annotation repository. Figure 4 shows an example
NKRL search pattern meaning: “Who has recently
acquired an Israeli software house, and according to
which modalities?” that unifies with occurrence c4 in
figure 3.

((?w IS-OCCURRENCE
:pred. PRODUCE
:SUBJ ?x
:OBJ (SPECIF purchase_ (SPECIF ?y (SPECIF

 software_house israeli_)))
:MODAL ?z)
(1_may_98, 31_july_98)
((?x IS-A (:OR human_being social_body))

(?y IS-A company_)
(?z IS-A general_sale_purchase_procedures)))

Figure 4: A simple NKRLsearch pattern

In figure 4, the two dates constitute the search
interval associated with the search pattern: this interval
is used to limit the search for unification to the slice of
time that it is considered appropriate to explore, see
Zarri (1998). Note that the concept purchase_ behaves
here as an implicit variable.

2.4. Knowledge management
In order to deal with NKRL conceptual annotations,

information related to concept and template ontologies
as well as information about conceptual annotations and
documents is stored in secondary storage in appropriate
repositories. Four repositories are used:

1. Concept Repository, storing concepts and
instances belonging to the H_CLASS.

2. Template Repository, storing templates
belonging to the H_TEMP, together with the
information required to construct predicative
occurrences starting from the considered
templates.

3. Document Repository, storing the documents
from which conceptual annotations have to be
constructed and to which is associated the —

4. Conceptual Annotation Repository, storing
conceptual annotations (in terms of predicative
and binding occurrences) constructed starting
from a set of documents.

Data in different repositories are related together,
each document associated with one conceptual annot-
ation comprising several predicative and binding occur-
rences. Each predicative occurrence instantiates one
template referring to several concepts and instances.

The template, conceptual annotation and document
repositories are also related by the fact that they all
represent textual information: the template text, in the
case of the template repository, the predicative or
binding occurrences in the case of the conceptual
annotation repository, and the documents themselves in
the case of the document repository. To provide a
homogeneous representation of all these types of
information, we use the standard language for data
exchange XML (Bradley, 1998). We represent
templates and occurrences in Resource Description
Format (RDF) (Lassila & Swick, 1999) and documents
in XML. RDF is a proposal for defining and processing
metadata developed by a W3C Working Group. The
model, implemented in XML, makes use of directed
labelled graphs and can be seen as a general tool box for
implementing a specific (semantic) vocabulary, e.g.
NKRL. Recent development of RDF already offers a
basis for representing some of the most complex data
structures present in NKRL (see for example the
construct SPECIF used in figure 3). RDF higher order-
statements can also represent the second-order
structures of NKRL, like binding occurrences.

RDF is used to represent templates in the H_TEMP
ontology, describing all their formal properties. This
information is accessed by the CABI to express its
output in RDF format for storage in the repository.

The repositories have been implemented in IBM’s
DB2 Universal Database, using the DB2 XML
extender, recently released by IBM in beta version.

3. Conceptual annotation of corpora and
the corpus annotator

In the previous section, we have concentrated on
presenting the main components of CONCERTO. A few
remarks have been made about the applicability of parts
of the system to the needs of corpus annotators. We
now turn to this application exclusively.

Corpus linguistics is now recognized as a core part
of any language processing strategy. There is growing
demand for large-scale language resources at many
levels of linguistic description. Consequently, corpus
builders demand tools that will help them carry out
annotation tasks effectively. The CONCERTO system
includes all the key elements needed for corpus
construction, although these were not initially
specialized for that task. These include:

1. Configurable tools for interactive annotation of
text spans, including structured annotations.

2. Facilities for document and corpus management
that scale up to managing large corpora.

3. The use of standard XML representations for
exchange of information between processing
modules and repositories.

4. High performance components for automatic
analysis of texts at lower linguistic levels and
partial user-specifiable analysis at intermediate
and higher levels.

5. The ability to assert and and query complex
annotations.

The "intelligent assistant" approach adopted by
CONCERTO is one that recognizes the importance of
such tasks but also the limitations of current technology,
leaves the human in the driving seat and attempts to
complement human strengths while overcoming human
shortcomings.

3.1. Annotation user interfaces
For several levels of linguistic analysis, texts may be

analyzed into non-overlapping text spans. Figure 2
illustrated this applied to named entities and domain
terms. The Conceptual Annotation Repository
maintains such representations internally, and can
import and export them using XML encoding.

Figure 5 Tag set editing tool

The same type of markup rendering can be used to
represent text elements such as part of speech tags,
sense categories, noun phrase and sentence boundaries,
topic boundaries, etc. Such an annotation interface,
once developed, is easily configured, using the editing
tool depicted in Figure 5, based on the standard Java
Swing Color Chooser.

3.1.1. Building structured annotations
The automatic analysis tools can also fill templates

representing application-significant semantic content,
labeling the semantic relations between extracted names
and terms and predicates. For this sort of annotation,

the highlighting method of visualization is not
sufficient, and a more elaborate interface is required.

The semantic templates constructed using CABI are
typical of a range of structured representations of
linguistic objects. Hierarchical representations have
wide conventional currency, and can represent DAGs as
well as trees, by co-indexing components. The early
prototype of Concerto uses a simple expandable tree
viewer for this kind of annotation. However, an editable
template browser under construction will make editing
easier for the user. This too will be configurable,
allowing the corpus designer to present the template to
both the annotator and end user in a way that hides
unnecessary detail of the representation language used.

The level of automatic assistance that the annotator
is given will depend on the domain specific resources
developed within the system. One such resource that
will be developed by the Knowledge Administrators
(see Figure 1), and equally applicable to a corpus
designer, is a set of user templates. These are
application domain specific templates, which will be
created to represent relationships between concept
instances that are of importance to the application
domain. The aim is to ensure the annotator has to write
as little ‘raw’ NKRL as possible.

The resulting system is one which bears some
similarities to the Alembic Annotator's Workshop (Day,
1999), which is designed to facilitate the creation of
marked-up corpora for the evaluation of information
extraction systems, and to bootstrap the system's
resources using machine learning techniques. In
comparison with Alembic, the CONCERTO KESE is
potentially broader in application, due to the ability to
annotate in a richer knowledge representation language
than MUC-style templates, and in the support of
advanced querying of the text base through its inference
engine.

3.2. Large scale corpus management
It is already commonplace to use either the XML

markup language or a database to manage a corpus. The
CONCERTO KESE does both, and at the same time
enables text fragments to be retrieved which match a
query in conceptual content, providing a much more
powerful corpus research tool than pattern-matching.
Although it is not a requirement in the Concerto pilot
applications to maintain the intermediate level linguistic
annotations of texts, the repository management
modules need no further development to make this
possible.

3.3. Linguistic analysis components
The Concerto architecture is not intended to be a

‘plug and play’ generic linguistic processing framework
like GATE (Cunningham et al 1997), and does not in its
present form support alternative components for
linguistic analysis. The tokenization, tagging and
morphological analysis components are all from
InXight. As well as accurately analyzing the news
domain texts we have tested them on, these tools have
the merit of being extremely fast in operation.

The BSEE analyser (Black, Rinaldi and Mowatt,
1998) uses a pattern matching language that was
originally intended only to tag occurrences of complex
proper names, dates and number expressions, as in the

MUC named entity task. It has turned out to be more
flexible than needed for that level of analysis. Names
are recognized using syntactic, semantic, and
orthographic clues, together with local context. The rule
formalism allows these attributes of each token and
phrase to be tested, and arbitrary attribute values to be
set via the unification of variables. There is also a co-
reference mechanism, which applies to complex names
and repetitions of parts of them. This rule language is
more powerful for corpus pattern searching than regular
expressions in a language like Perl, because of the
ability to deal with several levels of analysis
simultaneously. Syntactic patterns may be identified
basing conditions on the output of the tagger, or
alternatively, semantic patterns may be defined on the
basis of the database of part names and clue phrases
together with orthography. With the linkage to
ontology in the OM, it is also possible to search for
instances of patterns in a given semantic field. Thus, the
system supports two main ways to interrogate corpora:
the conceptual query interface designed for the
demonstrator applications, and the linguistic pattern-
matching language for matches at a surface level.

3.4. Automating evaluation
In using CABI, an annotator starts from analysis by

the automatic linguistic analysis components just
described. Each time a tagged item’s tag is changed by
the user is an error of the automatic analysis system. A
tag removed is spurious, in the terminology used by
MUC, and a tag added is one missed. By simply
counting these changes and the number of items found
automatically, the system can compute its error rate for
every document processed. Similarly, inter-annotator
agreement can be measured by registering the items
annotated before and after a second or subsequent
annotator marks up the same text. In this way, a more
lightweight evaluation of a system’s performance can
be conducted than in formal competitive evaluations.
This is more suited to the needs of projects to undertake
glass-box evaluations of systems under development.

4. Conclusion

The CONCERTO conceptual annotation approach
supports the widely-held corpus annotation view that
something, no matter how partial, is better than nothing.
That is, it allows annotators to rapidly build up partial
conceptual descriptions of core relevant events
associated with a document. It is more suitable for the
annotation of domain specific (sub)corpora than for
general corpora, given the need for domain specific
ontologies and the relative tractability of processing
domain specific text at the conceptual level rather than
general language text. However, many language
technology applications target specific domains, thus
require annotated domain specific corpora. Our
approach is however general in its application to several
annotation purposes, i.e. from the original purpose of
annotating abstracts (Pira) and corporate intelligence
(Biovista) through the spectrum to the large-scale
annotation of domain specific corpora.

Further information on CONCERTO
 1 may be

obtained at: http://concerto.ccl.umist.ac.uk/.

5. References
Bertino, E., Black, B., Brasher, A., Candela, V.,

Catania, B., Deavin, D., Esposito, F., McNaught, J.,
Persidis, A., Rinaldi, F., Semeraro, G. & Zarri, G-P.
(1999) Concerto: Conceptual indexing, querying and
retrieval of digital documents. Proc. ICMCS'99
Special Event “The European Community Day”, June
1999, Florence, Italy, 1106–1109.

Black, W.J., Rinaldi, F. & Mowatt, D. (1998) FACILE:
Description of the NE system used for MUC–7. In
MUC (1998).

Bradley N. (1998) The XML companion. Addison-
Wesley, Reading, Mass.

Catarci, T., Iocchi, L., Nardi, D. & Santucci, G. (1997)
Conceptual views over the Web: Intelligent access to
heterogeneous information. Proc. 4th Knowledge
Representation Meets Databases (KRDB) Workshop.

Ciravegna, F., Lavelli, A., Mana, N., Matiasek, J.,
Gilardoni, L., Mazza, S., Ferraro, M., Black B.,
Rinaldi F. & Mowatt, D. (1999) FACILE: Classifying
texts with pattern matching and IE. Proc. IJCAI'99,
August 3–6, 1999, Stockholm, Sweden. 890–895.

Cunningham, H., Humphreys, K, Wilks, Y and
Gaizauskas, R. Software Infrastructure for Natural
Language Processing. Proceedings of the Fifth
Conference on Applied Natural Language Processing
(ANLP-97), Washington, April 1997.

Davenport, T.H. & Prusak, L. (1998) Working
knowledge: How organizations manage what they
know. Harvard Business School Press, Boston, Mass.

David Day, John Aberdeen, Lynette Hirschman, Robyn
Kozierok, Patricia Robinson and Marc Vilain (1997)
Mixed-Initiative Development of Language
Processing Systems In: Fifth Conference on Applied
Natural Language Processing, 1997, Association for
Computational Linguistics, 31 March -- 3 April,
Washington D.C

Hoppe, T., Kindermann, C., Paulus, K., Tolksdorf, R.,
Buu, E., Heimann, S., Schmiedel, A. & Volle, P.
(1996) The MIHMA Project: A Web information
service based on Description Logics. Proc. WWW5
Workshop AI-based Tools to Help W3 Users, INRIA,
Rocquencourt.
http://www.info.unicaen.fr/~serge/3wia/workshop/

Kirk, T. (1996) Knowledge based access to information
on the World Wide Web. Proc. WWW5 Workshop AI-
based Tools to Help W3 Users, INRIA,
Rocquencourt.
http://www.info.unicaen.fr/~serge/3wia/workshop/.

Lassila, O. & Swick., R. (1999) Resource Description
Framework (RDF) model and syntax specification.
Technical report, W3C.

Levy, A., Rajaraman, A. & Ordille, J. (1996) Querying
heterogeneous information sources using sources
descriptions. Proc. 22nd Int. Conf. on Very Large
Databases. 251–262.

1 We gratefully acknowledge the financial subvention of
the European Union to the Concerto Project (ESPRIT,
No. 29159).

MUC (1998) Proceedings of the 7th Message
Understanding Conference. Fairfax, VA. Available at
http://www.muc.saic.com/proceedings/muc_7_toc.ht
ml#infoextract.

Rinaldi, F & Black, B. (1999) A named entity
extraction system and its Web extensions. Proc.
VEXTAL, 22–24 November 1999, Venice, Italy,
197–202.

Simpson, J.E. (1999) Just XML. Prentice-Hall PTR,
Upper Saddle River, NJ.

W3C (1999) XML Schema. Available at
http://www.w3.org/TR/xmlschema-1.

Welty, C. (1994) Knowledge representation for
intelligent information retrieval. Proc. CAIA–94
Workshop on Intelligent Access to Digital Libraries.

Zarri, G-P (1992) The descriptive component of a
hybrid knowledge representation language. In
Lehmann, F. & Rodin, E.Y (1992) Semantic
Networks in Artificial Intelligence. Pergamon Press,
Oxford.

Zarri, G-P. & Azzam, S. (1997) Building up and
making use of corporate knowledge repositories. In
Plaza, E. & Benjamins, R. (eds) (1997) Knowledge
acquisition, modeling and management. Lecture
Notes in Computer Science 1319. Springer, Berlin.

Zarri, G-P. (1995) Knowledge acquisition from
complex narrative texts using the NKRL technology.

Proc. 9th Banff Knowledge Acquisition for
Knowledge-based Systems Workshop, Calgary.

Zarri, G-P. (1997) NKRL: A knowledge representation
tool for encoding the meaning of complex narrative
texts. Natural Language Engineering 3. Special Issue
on Knowledge Representation for Natural Language
Processing in Implemented Systems. 231–253.

Zarri, G-P. (1998) Representation of temporal
knowledge in events: The formalism, and its potential
for legal narratives. Information & Communications
Technology Law 7. 213–241.

Zarri, G-P. and Gilardoni., L. (1996) Structuring and
retrieval of the complex predicate arguments proper
to the NKRL conceptual language. Proc. Ninth Int.
Symp. on Methodologies for Intelligent Systems,
Zakopane, Poland, 1996. 398–417.

Zarri, G-P., Bertino, E., Black, B., Brasher, A., Candela,
V., Catania, B., Deavin, D., Di Pace, L., Esposito, F.,
Leo, P., McNaught, J., Persidis, A., Rinaldi, F., &
Semeraro.,G. (1999) Concerto: An environment for
the intelligent indexing, querying and retrieval of
digital documents. In Ra�, Z.W. & Skowron, A. (eds)
Foundations of Intelligent Systems. Lecture Notes in
Artificial Intelligence 1609. Springer, Berlin, 226–
234.

