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detA =
∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n)

and

perA =
∑
σ∈Sn

a1σ(1) · · · anσ(n),

here A = (aij) ∈ Mn(C), Sn denotes the set of all permutations of

the set {1, 2, . . . , n}. The value sgn(σ) ∈ {−1, 1} is the signum of the

permutation σ.



per is a combinatorial invariant:

per(PAQ) = perA

for all permutation matrices P,Q



Some applications of permanent

Derangements problem

In how many ways can a dance be arranged for n married couples, so

that no husband dances with his own wife?



Some applications of permanent

Derangements problem

In how many ways can a dance be arranged for n married couples, so

that no husband dances with his own wife?

Dn = per

(
0 1 ... 1
1 0 . . . ...... . . . . . . 1
1 ... 1 0

)
= per(Jn − In) = n! ·

n∑
k=0

(−1)k

k!



Ménage problem or problème des ménages

In how many ways can n married couples be placed at a round table, so

that men and women sit in alternate places and no husband sit on either

side of his wife?



Ménage problem or problème des ménages

In how many ways can n married couples be placed at a round table, so

that men and women sit in alternate places and no husband sit on either

side of his wife?

Un = per

 0 0 1 ... 1 1
1 0 0 . . . ... ...
1 1 0 . . . 1 1... ... . . . . . . . . . 1
1 1 ... 1 0 0
0 1 1 ... 1 0

 = per(Jn − In − Pn)

Pn is a permutation matrix of (1, 2)(2, 3) · · · (n− 1, n)(n, 1).



Ménage problem or problème des ménages

In how many ways can n married couples be placed at a round table, so

that men and women sit in alternate places and no husband sit on either

side of his wife?

Sequence number A059375 in on-line encyclopedia of integer sequences

The first terms:

12, 96, 3120, 115200, 5836320, 382072320, 31488549120, . . .



Ménage problem or problème des ménages

Formulated in 1891 by Édouard Lucas and independently, a few years

earlier, by Peter Guthrie Tait in connection with knot theory

Touchard (1934) derived the formula

Un = 2 · n!

n∑
k=0

(−1)k
2n

2n− k

(
2n− k
k

)
(n− k)!



Latin squares

S is a set, |S| = n usually, S = {1, 2, . . . , n}

A Latin rectangle on S is an r × s matrix A with aij ∈ S, aij 6= ail,

and aij 6= akj.

n× n Latin rectangle is a Latin square.



Latin squares

S is a set, |S| = n usually, S = {1, 2, . . . , n}

A Latin rectangle on S is an r × s matrix A: aij ∈ S, aij 6= ail, and

aij 6= akj.

n× n Latin rectangle is a Latin square.

Problems: 1. To find the number L(n, n) of Latin squares on S

2. To find the number L(r, n) of r × n Latin rectangles on S



Known facts

1. L(1, n) = 1

2. L(2, n) = n! ·Dn

3. L(3, n) = n! ·
bn/2c∑
k=0

CknDn−kDkUn−2k

Λkn is the set of (0,1)-matrices with k 1 in each row and column.

m(k, n) and M(k, n) are lower and upper bounds for permanent in Λkn.

Then

n!Dn

r−1∏
t=2

m(n− t, n) ≤ L(r, n) ≤ n!Dn

r−1∏
t=2

M(n− t, n)



Domino tiling

Consider m× n rectangular chessboard and 2× 1 dominoes.

A tiling is a placement of dominoes that covers all the cells of the board

perfectly.

Tiling Non-tiling



1. If there exists a tiling if we consider a usual chess-board with one

corner-cell deleted?
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1. If there exists a tiling if we consider a usual chess-board with one

corner-cell deleted?

NO. The total number of cells is odd.

2. If there exists a tiling if we consider a usual chess-board with two

opposite corner-cells deleted?

NO. Both deleted cells are of the same color, but domino covers two cells

of different colors



Problems:

1. Existence of tilings.

2. If there are tilings, how many are them?



Problems:

1. For which m,n do there ∃ tilings?

2. If there are tilings, how many are them?

Theorem. Tiling exist ⇔ m,n are NOT both odd (i.e. mn is even).



Example.



Example.

T (2, n) = T (2, n− 1) + T (2, n− 2)

T (3, 2n) = 4T (3, 2n− 2)− T (3, 2n− 4)



Example.

T (2, n) = T (2, n− 1) + T (2, n− 2)

T (3, 2n) = 4T (3, 2n− 2)− T (3, 2n− 4)

Difficult recurrent formulas...



Perfect matching in a graph is a selection of edges that covers each vertex

exactly once.

tilings ←→ perfect matchings in underlying grid graph

Chessboard coloring =⇒ bipartite graph

Bipartite graph =⇒ adjacency matrix A

The number of tilings = number of perfect matchings = per(A)



The number of tilings: Temperley & Fisher (1961) and Kasteleyn (1961)

m∏
j=1

n∏
k=1

(
4 cos2 πj

m + 1
+ 4 cos2 πk

n + 1

)1
4

equivalent to

dm2 e∏
j=1

dn2e∏
k=1

(
4 cos2 πj

m + 1
+ 4 cos2 πk

n + 1

)
.

If m or n is 2: the sequence reduces to the Fibonacci sequence (sequence

A000045 in OEIS) (Klarner & Pollack 1980)
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Applications of permanent:

Counting function for combinatorial problems

DNA identification

Probability

Quantum field theory

Ferro-magnetism

Coding theory

Makes everybody happy



det per

Geometry Oriented volume Combinatorial geometry

Algebra λ1 · · ·λn Bounds

Complexity O(n3) ∼ (n− 1) · (2n − 1)



Ryser’s formula

per(A) =

n−1∑
t=0

(−1)t
∑

X∈Λn−t

n∏
i=1

ri(X)

ri(X) =
t∑

j=1
xij — ith row sum

Λn−t — the set of all n× (n− t) submatrices of A



How many tilings ?

To compute permanent is HARD!

Even if the entries are just 0, 1, computing the permanent is ]P -complete.



The quantity of transformations preserving a given matrix invariant pro-

vide a “measure” of its complexity

Theorem 1 [ Frobenius, 1896]

T : Mn(C)→Mn(C)

— linear, bijective
det(T (A)) = detA ∀A ∈Mn(C)

⇓
∃P,Q ∈ GLn(C), det(PQ) = 1 :

T (A) = PAQ ∀A ∈Mn(C) or T (A) = PAtQ ∀A ∈Mn(C)



Theorem 2 [Marcus, May] Linear transformation T is permanent pre-

server iff

T (A) = P1D1AD2P2 ∀A ∈Mn(F), or

T (A) = P1D1A
tD2P2 ∀A ∈Mn(F)

here Di are invertible diagonal matrices, i = 1, 2

Pi are permutation matrices, i = 1, 2



Polya, 1913 observed:

n = 2:

det

 a b

c d

 = per

 a b

−c d





Problem 1. Polya, 1913. Does ∃ a uniform way of affixing ± to the

entries of A = (aij) ∈Mn(F): per(aij) = det(±aij)?

n = 2:

 a b

c d

 7→
 a b

−c d



Szegö, 1914. n > 2: NO.



Why NOT ?

n = 3: consider J3 =
(

1 1 1
1 1 1
1 1 1

)
.

Then per J3 = 6 but

det


±1 ±1 ±1

±1 ±1 ±1

±1 ±1 ±1

 < 6

since each −1 is in two summands, so all 6 summands can not be positive.



What about SUBSETS of Mn?

Sometimes the conversion is possible:

1.


a b 0

c d e

f g h

 7→


a b 0

−c d e

f −g h


2. A: aij = 0 if j − i ≥ 2 (Hessenberg matrices)

A 7→ Ã = (ãij): ãij =


−aij, if j − i = 1

aij, otherwise



3. A is Jacobi (3-diagonal) matrix.

A 7→ Â = (âij):

âst =


i ast, if s 6= t

ass, if s=t



Problem 2. Under what conditions does there exist a transformation

Φ : Mn(F)→Mm(F) satisfying

perA = det Φ(A)?

Here a transformation Φ on Mn(F) is called a converter.



Are there linear transformations of this type ?
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Theorem (Marcus, Minc, 1961). There is no bijective linear transfor-

mation Φ : Mn(F) → Mn(F), n > 2 satisfying perA = det Φ(A) ∀

A ∈Mn(F).

Proof: based on linear algebra.



Are there linear transformations of this type ?

Theorem (Marcus, Minc, 1961). There is no bijective linear transfor-

mation Φ : Mn(F) → Mn(F), n > 2 satisfying perA = det Φ(A) ∀

A ∈Mn(F).

Proof: based on linear algebra.

Theorem (J. von zur Gathen, 1987). Let F be infinite, char(F) 6= 2.

There is no bijective affine transformation Φ : Mn(F)→Mn(F), n > 2

satisfying perA = det Φ(A) ∀ A ∈Mn(F).

Proof: based on algebraic geomery.
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Example. There are non-bijective non-linear converters Φ : Mn(F) →

Mm(F) of per and det:

Φ : A 7→

 1 1
2(detA− perA)

1 1
2(detA + perA)

⊕ Idm−2 .

Hence, perA = det Φ(A) and detA = per Φ(A).



Example. There are bijective non-linear converters of per and det over

infinite fields:

For any F and any λ, µ ∈ F

card {A ∈Mn(F)| detA = µ, perA = λ} =

= cardF

= card {A ∈Mn(F)| detA = λ, perA = µ},

thus partial bijections exist, and hence the bijection exists.



WHAT HAPPENS OVER FINITE FIELDS ?

Theorem. [Dolinar, Guterman, Kuzma, Orel] For any n ≥ 3 there

exists q0 = q0(n) such that for any finite field F, chF 6= 2, |F| ≥

q0 there are NO bijective maps Φ : Mn(F)→Mn(F) satisfying

perA = det Φ(A). (1)

If n = 3 the conclusion holds for any finite field with chF 6= 2.



|Dn| = |Mn| − |GLn|

⇓

if n ≥ 4

|Dn| = qn
2
−

n∏
k=1

(qn − qk−1) = qn
2−1 + qn

2−2 + O(qn
2−5)



|Dn| = qn
2
−

n∏
k=1

(qn − qk−1) = qn
2−1 + qn

2−2 + 0 + 0 + O(qn
2−5)

Ln = qn
2−1 − qn

2−2 + O(qn
2−3) (n ≥ 4),

Un = qn
2−1 + 0 + O(qn

2−3) (n ≥ 4).

Ln ≤ Pn ≤ Un < Dn



|Pn| ≤ Un<|Dn| if q is sufficiently large (q ≥ q0).

Un = qn
2−1 + O(qn

2−3)

|Dn| = qn
2−1 + qn

2−2 + O(qn
2−5)

n 3 4 5 6 7 8 9 10 11

q0 3 43 79 121 167 223 289 367 449

n 12 13 14 15 16 17 18 19 20

q0 541 641 751 877 997 1151 1279 1433 1597



Probability

[P. Erdös, A. Rényi] What is the probability of the permanent of a given

matrix to be equal to 0?

Theorem. Let F be a finite field, chF 6= 2. ∀ λ ∈ F

P (perA = λ) =
1

q
+ O(

1

q2
).



Let us consider tensor of permanent of A ∈ Mk,n, k ≤ n which is

defined by

T
i1,...,in−k
A =


per(A(|i1, . . . , in−k)), if all i1, . . . , in−k are different

0, otherwise.

Examples:

1. k = n. Then TA = perA.

2. k = 1, A = (a1, . . . , an). Then T
1,...,i−1,i+1,...,n
A = ai.



Properties:

1. A ∈M1,n is a vector. Then TA ≡ 0 if and only if A ≡ 0.

2. For any A it holds TA is symmetric.



Definition. The convolution of TB, B ∈Mk,n and x ∈ Fnq is

(TB ◦ x)i1,...,in−k−1 =
n∑
j=1

T i1,...,in−k−1,j · xj of the valency (n− k− 1).

Lemma. Let a ∈ Fnq , A ∈Mk,n, k < n, B = ( aA ). Then TB = TA ◦ a.

Corollary. For A ∈Mn(Fq) formed by the rows a1, . . . , an.

per(A) = TA = T( a1
a2...
an

) = T( a2
a3...
an

) ◦ a1 =
(
T( a3...

an

) ◦ a2

)
◦ a1 =

= . . . = (...(Tan ◦ an−1) ◦ an−2 . . .) ◦ a1



Lemma. Let A ∈Mk×n(Fq) and TA 6≡ 0. Then there are at least qn−qk

different vectors x ∈ Fnq such that R = TA ◦ x 6≡ 0.

Lemma. Let a = (1, . . . , 1) ∈ Fnq , n ≥ 3. Then the number of vectors

x ∈ Fnq such that R = Ta ◦ x 6= 0 is equal to qn − 1 > qn − q.



Theorem (Budrevich, Guterman). Let F be a finite field, chF 6= 2.

∀ n ≥ 3 the number of zeros of per is less

than the number of zeros of det.



Theorem (Budrevich, Guterman). Let F be a finite field, chF 6= 2.

∀ n ≥ 3 the number of zeros of per is less

than the number of zeros of det.

Theorem (Budrevich, Guterman). Let F be a finite field, chF 6= 2.

∀ n ≥ 3 there is NO bijective map T : Mn(F)→Mn(F) satisfying

perA = detT (A).



Problem 3 (Polya). Given a (0,1)-matrix A ∈ Mn(F), does ∃ B, ob-

tained by changing some of the +1 entries of A into −1, so that

perA = detB?



The following problems are equivalent to the problem above:

1. Even cycle: A digraph. Does it have no directed circuits of even length?

2. Sign solvability: When does a real square matrix have the property

that every real matrix with the same sign pattern is non-singular?

. . . . . . . . .

There are more than 30 equivalent problems of this kind, see [ W. Mc-

Cuaig, The Electronic Journal of Combinatorics 11 (2004), R79].



Let Mn be the set of all n × n {0, 1} matrices over R — any ring of

characteristic 0.

Sn ⊆Mn — subset of symmetric matrices.

v(A) is the number of 1 of A. NB: v(A) =
∑

all entries of A.

X ◦ A denote the Schur (entrywise) product of two matrices.



Definition.

A ∈Mn is convertible if ∃ X ∈Mn(±1):

perA = det(X ◦ A) .

A ∈ Sn is symmetrically convertible, if ∃ X ∈ Sn(±1):

perA = det(X ◦ A) .

A ∈ Sn is symmetrically weakly-convertible, if ∃ X ∈ Sn(±1):

perA = | det(X ◦ A)| .



OBSERVATION

A ∈ Sn is symmetrically weakly-convertible.

Then A is convertible.

Multiply a row of A with −1.



Can a matrix with arbitrary number of units be convertible ?

Theorem. [Gibson, 1971] Let A ∈ Mn be a convertible matrix with

perA > 0.

Then v(A) ≤ Ωn :=
n2 + 3n− 2

2
.

The equality holds ⇔ ∃ permutation matrices P,Q: A = PTnQ.



Here Gibson matrix Tn = (tij) ∈Mn is tij =


0, if 1 ≤ i < j < n

1, if i ≥ j or j = n

.

Also Gn = (gij) : gij =


0, if i + j ≤ n− 1

1, if i + j > n− 1

Note that Gn = TnQn for Qn = Q(σ) s.t.

σ = (1, n− 1)(2, n− 2), . . . , (bn/2c, b(n + 1)/2c),

here bxc is the largest integer ≤ x.

T5 =

(
1 0 0 0 1
1 1 0 0 1
1 1 1 0 1
1 1 1 1 1
1 1 1 1 1

)
G5 =

(
0 0 0 1 1
0 0 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 1 1

)



The following results are from [Dolinar, Guterman, Kuzma]

Theorem. n ≥ 3, A ∈ Sn, perA > 0, A is convertible.

Then v(A) ≤ Ωn =
n2 + 3n− 2

2
.

Let v(A) = Ωn then A is convertible ⇔ A = PGnP
t for some permu-

tation matrix P .



Symmetric convertibility of matrices with maximal number of units ?

Theorem (Dolinar, Guterman, Kuzma). n ≥ 3, A ∈ Sn, perA > 0,

v(A) = Ωn = n2+3n−2
2 and A is convertible. Then

n 6= 2 (mod 4) =⇒ A is symmetrically convertible.

n = 2 (mod 4) =⇒ A is symmetrically weakly-convertible, but not

symmetrically convertible.



Can we find ωn s.t. ∀ A: v(A) < ωn ⇒ A is convertible ?

ωn = n + 5

Theorem. [Little, 1972, Graph Theory approach] n ≥ 2, A ∈Mn,

v(A) ≤ n + 5 ⇒ A is convertible.



Is n + 5 a really magic number ?

Theorem (Dolinar, Guterman, Kuzma). n ≥ 3, A ∈Mn, v(A) = n+6.

Then A is not convertible ⇔ ∃ permutation matrices P,Q: PAQ =

Idn−3⊕J3, where J3 =
(

1 1 1
1 1 1
1 1 1

)
.



What is about Sn ?

Theorem. [Dolinar, Guterman, Kuzma]

1. n ≥ 2, A ∈ Sn, v(A) ≤ n + 5 ⇒ A is symmetrically weakly-

convertible.

2. n ≥ 3, v(A) = n+ 6. Then A is not convertible ⇔ ∃ permutation

matrices P,Q: PAQ = Idn−3⊕J3.

3. A is convertible, v(A) = n + 6, ⇒ A is symmetrically weakly-

convertible.



What happens in between ωn and Ωn ?

Theorem. [Dolinar, Guterman, Kuzma] Let r ∈ Z: ωn ≤ r ≤ Ωn.

Then

1. ∃ A ∈ Sn: symmetrically weakly-convertible, per(A) 6= 0, v(A) = r

2. ∃ B ∈ Sn: not convertible, v(B) = r



For fully indecomposable matrices lower bound can be improved.



For fully indecomposable matrices lower bound can be improved.

A ∈Mn is decomposable, if ∃ a permutation matrix P ∈Mn such that

A = P

B 0

C D

P t, where B,D are square.

If A is not decomposable, it is called indecomposable.



A ∈Mn is partially decomposable if ∃ permutation matrices P,Q ∈Mn

such that

A = P

B 0

C D

Q,

where B,D are square.

If A is no partially decomposable, it is fully indecomposable.

Note, O is decomposable and partially decomposable.



Lemma.

• If A ∈Mn is decomposable, then A is partially decomposable.

• If A ∈Mn is fully indecomposable, then A is indecomposable.

Example.

A =

0 1

1 1

 ∈M2

is indecomposable, but partially decomposable with P =

0 1

1 0

 , Q = I .



For fully indecomposable matrices lower bound can be improved.

Theorem (Budrevich, Dolinar, Guterman, Kuzma). Let A ∈ Mn be

fully indecomposable, v(A) ≤ 2n + 2. Then A is convertible.



Example. Let A =
(

1 1 1
1 1 1
1 1 1

)
. Then A is fully indecomposable, non-

convertible, and v(A) = 9 = 2 · 3 + 3.

Example. Let

A =


0 1 1 1 0 0 ... 0
0 1 1 1 0 0 ... 0
0 1 1 1 0 0 ... 0
0 0 0 0 1 0 ... 0... . . . . . . ...
0 0 ... ... ... 0 1 0
0 0 ... ... ... ... 0 1
1 0 ... ... ... ... 0 0


Then A is not fully indecomposable, indecomposable, not convertible, and

v(A) = n + 6.
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Important trivial observation:

Zeros are better than ones since they are stable under the sign operation!


