Computer Science ›› 2019, Vol. 46 ›› Issue (11A): 442-445.
• Information Security • Previous Articles Next Articles
CHEN Sheng, ZHU Guo-sheng, QI Xiao-yun, LEI Long-fei, WU Shan-chao, WU Meng-yu
CLC Number:
[1]NGUYEN D T,JUNG J E.Real-time event detection for online behavioral analysis of big social data[J].Future Generation Computer Systems,2017,66:137-145. [2]JIA Z,SHEN C,YI X,et al.Big-data analysis of multi-source logs for anomaly detection on network-based system[C]∥2017 13th IEEE Conference on Automation Science and Engineering (CASE).IEEE,2017:1136-1141. [3]HABEEB R A A,NASARUDDIN F,GANI A,et al.Real-time big data processing for anomaly detection:A Survey[J].International Journal of Information Management,2018. [4]HAMED T,ERNST J B,KREMER S C.A survey and taxonomy of classifiers of intrusion detection systems[M]∥Computer and network security essentials.Springer,Cham,2018:21-39. [5]BINKLEY J R,Singh S.An Algorithm for Anomaly-based Botnet Detection[J].SRUTI,2006,6:7-7. [6]GARCIA-TEODORO P,DIAZ-VERDEJO J,MACIÁ-FERNÁ-NDEZ G,et al.Anomaly-based network intrusion detection:Techniques,systems and challenges[J].computers & security,2009,28(1/2):18-28. [7]ZHU M,YE K,XU C Z.Network Anomaly Detection and Identification Based on Deep Learning Methods[C]∥International Conference on Cloud Computing.Springer,Cham,2018:219-234. [8]BUCZAK A L,GUVEN E.A survey of data mining and ma-chine learning methods for cyber security intrusion detection[J].IEEE Communications Surveys & Tutorials,2016,18(2):1153-1176. [9]宋海涛,韦大伟,汤光明,等.基于模式挖掘的用户行为异常检测算法[J].小型微型计算机系统,2016,37(2):221-226. [10]赵刚,姚兴仁.基于用户画像的异常行为检测模型[J].信息网络安全,2017(7):18-24. [11]丁珊.基于深度学习的入侵检测关键技术研究[D].北京:北京交通大学,2018. [12]QIAO Y,XING Z,FADLULLAH Z M,et al.CharacterizingFlow,Application,and User Behavior in Mobile Networks:A Framework for Mobile Big Data[J].IEEE Wireless Communications,2018,25(1):40-49. [13]ALTHOFF T,JINDAL P,LESKOVEC J.Online actions with offline impact:How online social networks influence online and offline user behavior[C]∥Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.ACM,2017:537-546. [14]MILLER D J,WANG Y,KESIDIS G.Anomaly detection of attacks (ADA) on DNN classifiers at test time[C]∥2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP).IEEE,2018:1-6. [15]AMARASINGHE K,KENNEY K,MANIC M.Toward ex-plainable deep neural network based anomaly detection[C]∥2018 11th International Conference on Human System Interaction (HSI).IEEE,2018:311-317. [16]KWON D,KIM H,KIM J,et al.A survey of deep learning-based network anomaly detection[J].Cluster Computing,2017:1-13. [17]LÓPEZ A U,MATEO F,NAVíO-MARCO J,et al.Analysis of Computer User Behavior,Security Incidents and Fraud Using Self-Organizing Maps[J].Computers & Security,2019. [18]The Bro Network Security Monitor[OL].http://www.bro.org. [19]ALJAWARNEH S,ALDWAIRI M,YASSEIN M B.Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model[J].Journal of Computational Science,2018,25:152-160. [20]HE H,GARCIA E A.Learning from imbalanced data[J].IEEE Transactions on Knowledge and Data Engineering,2009,21(9):1263-1284. |
[1] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[2] | YANG Ya-hong, WANG Hai-rui. DDoS Attack Detection Method in SDN Environment Based on Renyi Entropy and BiGRU Algorithm [J]. Computer Science, 2022, 49(6A): 555-561. |
[3] | ZHANG Ji-lin, SHAO Yu-cao, REN Yong-jian, YUAN Jun-feng, WAN Jian, ZHOU Li. Dynamic Customization Model of Business Processes Supporting Multi-tenant [J]. Computer Science, 2022, 49(6A): 705-713. |
[4] | Ran WANG, Jiang-tian NIE, Yang ZHANG, Kun ZHU. Clustering-based Demand Response for Intelligent Energy Management in 6G-enabled Smart Grids [J]. Computer Science, 2022, 49(6): 44-54. |
[5] | WEI Hui, CHEN Ze-mao, ZHANG Li-qiang. Anomaly Detection Framework of System Call Trace Based on Sequence and Frequency Patterns [J]. Computer Science, 2022, 49(6): 350-355. |
[6] | JIAO Xiang, WEI Xiang-lin, XUE Yu, WANG Chao, DUAN Qiang. Automatic Modulation Recognition Based on Deep Learning [J]. Computer Science, 2022, 49(5): 266-278. |
[7] | GAO Jie, LIU Sha, HUANG Ze-qiang, ZHENG Tian-yu, LIU Xin, QI Feng-bin. Deep Neural Network Operator Acceleration Library Optimization Based on Domestic Many-core Processor [J]. Computer Science, 2022, 49(5): 355-362. |
[8] | FAN Hong-jie, LI Xue-dong, YE Song-tao. Aided Disease Diagnosis Method for EMR Semantic Analysis [J]. Computer Science, 2022, 49(1): 153-158. |
[9] | ZHOU Xin, LIU Shuo-di, PAN Wei, CHEN Yuan-yuan. Vehicle Color Recognition in Natural Traffic Scene [J]. Computer Science, 2021, 48(6A): 15-20. |
[10] | DOU Shuai, LI Zi-yang, ZHU Jia-jia, LI Xiao-hui, LI Xue-song, MI Lin, YANG Guang, LI Chuan-rong. Design and Implementation of Scientific Experiment Management System Based on jBPM [J]. Computer Science, 2021, 48(6A): 658-663. |
[11] | XIANG Chang-sheng, CHEN Zhi-gang. Chaotic Prediction Model of Network Traffic for Massive Data [J]. Computer Science, 2021, 48(5): 289-293. |
[12] | DU Shao-hua, WAN Huai-yu, WU Zhi-hao, LIN You-fang. Customs Commodity HS Code Classification Integrating Text Sequence and Graph Information [J]. Computer Science, 2021, 48(4): 97-103. |
[13] | LIU Dong, WANG Ye-fei, LIN Jian-ping, MA Hai-chuan, YANG Run-yu. Advances in End-to-End Optimized Image Compression Technologies [J]. Computer Science, 2021, 48(3): 1-8. |
[14] | PAN Yu, ZOU Jun-hua, WANG Shuai-hui, HU Gu-yu, PAN Zhi-song. Deep Community Detection Algorithm Based on Network Representation Learning [J]. Computer Science, 2021, 48(11A): 198-203. |
[15] | MA Lin, WANG Yun-xiao, ZHAO Li-na, HAN Xing-wang, NI Jin-chao, ZHANG Jie. Network Intrusion Detection System Based on Multi-model Ensemble [J]. Computer Science, 2021, 48(11A): 592-596. |
|