Computer Science ›› 2019, Vol. 46 ›› Issue (10): 299-306.doi: 10.11896/jsjkx.180901750
• Graphics,Image & Pattern Recognition • Previous Articles Next Articles
WANG Hong-nian1, SU Han1,2, LONG Gang1, WANG Yan-fei1, YIN Kuan1
CLC Number:
[1]FAN Z,LING S,JIN X,et al.From handcrafted to learned representations for human action recognition:A survey[J].Image and Vision Computing,2016,55(P2):42-52. [2]ZOU J Y.Research on abnormal activity recognition in parking[D].Chengdu:Sichuan Normal University,2014.(in Chinese) 邹佳运.停车场异常行为识别方法研究[D].成都:四川师范大学,2014. [3]ZIVKOVIC Z,VAN DER HEIJDEN F.Efficient adaptive density estimation per image pixel for the task of background subtraction[J].Pattern Recognition Letters,2006,27(7):773-780. [4]KIM K,CHALIDABHONGSE T H,HARWOOD D,et al.Real-time foreground-background segmentation using codebook model[J].Real-time Imaging,2005,11(3):172-185. [5]BARNICH O,VAN DROOGENBROECK M.ViBe:A universal background subtraction algorithm for video sequences[J].IEEE Transactions on Image processing,2011,20(6):1709-1724. [6]ZHANG D X,DAI K R.Adaptive Target Extraction and Trac-king Method for Complex Image Sequences[J].Chinese Journal of Electronics,1994,22(10):46-53.(in Chinese) 张天序,戴可荣.复杂图象序列的自适应目标提取和跟踪方法[J].电子学报,1994,22(10):46-53. [7]BOBICK A F,DAVIS J W.The recognition of human movement using temporal templates[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(3):257-267. [8]WANG Y,HUANG K,TAN T.Human activity recognition based on r transform[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2007:1-8. [9]CHEN H S,CHEN H T,CHEN Y W,et al.Human action reco-gnition using star skeleton[C]//Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks.ACM,2006:171-178. [10]SOUVENIR R,BABBS J.Learning the viewpoint manifold for action recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2008:1-7. [11]GORELICK L,BLANK M,SHECHTMAN E,et al.Actions as space-time shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(12):2247-2253. [12]ERFANI S M,RAJASEGARAR S,KARUNASEKERA S,et al.High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning[J].Pattern Recognition,2016,58(C):121-134. [13]LIU C,XU W S,WU Q D.Spatiotemporal Convolutional Neural Networks and its Application in Action Recognition[J].Computer Science,2015,42(7):245-249.(in Chinese) 刘琮,许维胜,吴启迪.时空域深度卷积神经网络及其在行为识别上的应用[J].计算机科学,2015,42(7):245-249. [14]TRAN D,BOURDEV L,FERGUS R,et al.Learning spatiotemporal features with 3d convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2015:4489-4497. [15]TRAN D,WANG H,TORRESANI L,et al.A Closer Look at Spatiotemporal Convolutions for Action Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2018:6450-6459. [16]SULTANI W,CHEN C,SHAH M.Real-world Anomaly Detection in Surveillance Videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2018:6479-6488. [17]RAVANBAKHSH M,NABI M,SANGINETO E,et al.Abnormal event detection in videos using generative adversarial nets[C]//IEEE International Conference on Image Processing.IEEE,2017:1577-1581. [18]KAR A,RAI N,SIKKA K,et al.Adascan:Adaptive scan pooling in deep convolutional neural networks for human action reco-gnition in videos[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2017:3376-3385. [19]GAO X.Research on abnormal behavior ofpedestrians in video surveillance [D].Chengdu:University of Electronic Science and Technology,2018.(in Chinese) 高翔.视频监控中行人异常行为分析研究[D].成都:电子科技大学,2018. [20]WANG H N,SU H.STAR:A Concise Deep Learning Framework for Citywide Human Mobility Prediction [C]//IEEE International Conference on Mobile Data Management.IEEE,2019:304-309. [21]KEOGH E J,PAZZANI M J.Derivative dynamic time warping[C]//Proceedings of the 2001 SIAM International Conference on Data Mining.Philadelphia:SIAM,2001:1-11. [22]SU H,HUANG F G.A Method of Gait Recognition UsingSpatio-Temporal Analysis[J].Pattern Recognition & Artificial Intelligence,2007,20(2):281-286.(in Chinese) 苏菡,黄凤岗.一种基于时空分析的步态识别方法[J].模式识别与人工智能,2007,20(2):281-286. [23]RATLIFF L J,BURDEN S A,SASTRY S S.Characterization and computation of localnash equilibria in continuous games[C]//Communication,Control,and Computing (Allerton).IEEE,2013:917-924. [24]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial nets[C]//Advances in neural information processing systems.New York:Curran Associates,2014:2672-2680. [25]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [26]ZHANG X R,JU X Z,SONG P,et al.Feature Fusion Based on DBN for Cross-Corpus Speech Emotion Recognition[J].Signal Processing,2017,33(5):649-660.(in Chinese) 张昕然,巨晓正,宋鹏,等.用于跨库语音情感识别的 DBN 特征融合方法[J].信号处理,2017,33(5):649-660. [27]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. |
[1] | XU Guo-ning, CHEN Yi-peng, CHEN Yi-ming, CHEN Jin-yin, WEN Hao. Data Debiasing Method Based on Constrained Optimized Generative Adversarial Networks [J]. Computer Science, 2022, 49(6A): 184-190. |
[2] | XU Hui, KANG Jin-meng, ZHANG Jia-wan. Digital Mural Inpainting Method Based on Feature Perception [J]. Computer Science, 2022, 49(6): 217-223. |
[3] | DOU Zhi, WANG Ning, WANG Shi-jie, WANG Zhi-hui, LI Hao-jie. Sketch Colorization Method with Drawing Prior [J]. Computer Science, 2022, 49(4): 195-202. |
[4] | GAO Zhi-yu, WANG Tian-jing, WANG Yue, SHEN Hang, BAI Guang-wei. Traffic Prediction Method for 5G Network Based on Generative Adversarial Network [J]. Computer Science, 2022, 49(4): 321-328. |
[5] | LI Si-quan, WAN Yong-jing, JIANG Cui-ling. Multiple Fundamental Frequency Estimation Algorithm Based on Generative Adversarial Networks for Image Removal [J]. Computer Science, 2022, 49(3): 179-184. |
[6] | TAN Xin-yue, HE Xiao-hai, WANG Zheng-yong, LUO Xiao-dong, QING Lin-bo. Text-to-Image Generation Technology Based on Transformer Cross Attention [J]. Computer Science, 2022, 49(2): 107-115. |
[7] | ZHANG Wei-qi, TANG Yi-feng, LI Lin-yan, HU Fu-yuan. Image Stream From Paragraph Method Based on Scene Graph [J]. Computer Science, 2022, 49(1): 233-240. |
[8] | LIN Zhen-xian, ZHANG Meng-kai, WU Cheng-mao, ZHENG Xing-ning. Face Image Inpainting with Generative Adversarial Network [J]. Computer Science, 2021, 48(9): 174-180. |
[9] | XU Tao, TIAN Chong-yang, LIU Cai-hua. Deep Learning for Abnormal Crowd Behavior Detection:A Review [J]. Computer Science, 2021, 48(9): 125-134. |
[10] | PAN Xiao-qin, LU Tian-liang, DU Yan-hui, TONG Xin. Overview of Speech Synthesis and Voice Conversion Technology Based on Deep Learning [J]. Computer Science, 2021, 48(8): 200-208. |
[11] | YE Hong-liang, ZHU Wan-ning, HONG Lei. Music Style Transfer Method with Human Voice Based on CQT and Mel-spectrum [J]. Computer Science, 2021, 48(6A): 326-330. |
[12] | LIU Meng-yang, WU Li-juan, LIANG Hui, DUAN Xu-lei, LIU Shang-qing, GAO Yi-bo. A Kind of High-precision LSTM-FC Atmospheric Contaminant Concentrations Forecasting Model [J]. Computer Science, 2021, 48(6A): 184-189. |
[13] | WANG Jian-ming, LI Xiang-feng, YE Lei, ZUO Dun-wen, ZHANG Li-ping. Medical Image Deblur Using Generative Adversarial Networks with Channel Attention [J]. Computer Science, 2021, 48(6A): 101-106. |
[14] | HU Yu-jie, CHANG Jian-hui, ZHANG Jian. Image Synthesis with Semantic Region Style Constraint [J]. Computer Science, 2021, 48(2): 134-141. |
[15] | YU Xiao-ming, HUANG Hua. Research on Application of Improved GAN Network in Generating Short Video [J]. Computer Science, 2021, 48(11A): 625-629. |
|