1" /> " /> 1,4" /> 城市空气质量感知方法综述
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2019, Vol. 46 ›› Issue (6A): 35-40.

• 综述研究 • 上一篇    下一篇

城市空气质量感知方法综述

王鹏跃1,2, 郭茂祖1,2, 赵玲玲3, 张昱1,4   

  1. 北京建筑大学电气与信息工程学院 北京1000441;
    建筑大数据智能处理方法研究北京市重点实验室 北京1000442;
    哈尔滨工业大学计算机科学与技术学院 哈尔滨1500013;
    深部岩土力学与地下工程国家重点实验室 北京1000834
  • 出版日期:2019-06-14 发布日期:2019-07-02
  • 通讯作者: 郭茂祖(1966-),男,博士,教授,博士生导师,主要研究方向为机器学习、智慧城市、生物信息学,E-mail:guomaozu@bucea.edu.cn
  • 作者简介:王鹏跃(1996-),女,硕士生,CCF会员,主要研究方向为机器学习、智慧城市;赵玲玲(1980-),女,博士,讲师,主要研究方向为城市计算与智能信息处理;张 昱(1979-),男,博士,副教授,硕士生导师,主要研究方向为大数据、机器学习、智慧城市。
  • 基金资助:
    本文受国家自然科学基金(61502117),北京市教委科技计划重点项目(KZ201810016019),国家重点研发计划(2016YFC0600901),教育部产学研协同育人项目(201801113001),北京建筑大学市属高校基本科研业务费专项资金(X18197,X18198,X18203,X18018),北京建筑大学双塔计划优秀主讲教师(21082718041)资助。

Review on Urban Air Quality Perception Methods

WANG Peng-yue1,2, GUO Mao-zu1,2, ZHAO Ling-ling3, ZHANG Yu1,4   

  1. School of Electrical and Information Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China1;
    Beijing Key Laboratory of Intelligent Processing for Building Big Data,Beijing 100044,China2;
    School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001,China3;
    State Key Laboratory in China for GeoMechanics and Deep Underground Engineering,Beijing 100083,China4
  • Online:2019-06-14 Published:2019-07-02

摘要: 城市空气质量信息对于控制空气污染和保护大众健康都是尤为重要的。城市空气质量感知方法按传感器位置是否发生改变可划分为静态感知方法和动态感知方法两种。其中静态感知方法的数据是基于空气质量监测站、卫星遥感和固定位置的传感器进行采集的。再按成本高低可进一步划分为低成本静态感知和高成本静态感知。动态感知方法按是否以参与者为感知中心划分为参与式方法和非参与式方法。随着感知技术和计算能力的发展,将多源异构的城市数据,如气象数据、交通数据等进行融合,可进一步提高感知的准确性。文中首先对当前空气质量感知方法进行综述,然后分类介绍了各种方法的感知框架和数据处理方法,最后讨论了其面临的问题和挑战。

关键词: 城市感知, 机器学习, 空气污染, 数据采集

Abstract: Urban air quality information is especially important for controlling air pollution and protecting public health.According to whether the sensor position changes,urbanair quality sensing methods can be divided into two methods:static perception methods and dynamic perception methods.The data acquisition of the static sensing method is based on air quality monitoring stations,satellite remote sensing and fixed position sensors.Then,the static sensing method is further divided into low-cost static sensing method and high-cost static sensing method.The dynamic sensing method can be divided into participatory method and non-participating method according to whether the participant is the perceptual center.With the development of sensing technology and computing ability,the fusion of multi-source hete-rogeneous urban data,such as meteorological data and traffic data,can further improve the accuracy of perception.This paper firstly summarized current air quality sensing methods,then classified the sensing framework and data processing methods of various methods,and finally discussed the problems and challenges.

Key words: Air pollution, Data collection, Machine learning, Urban sensing

中图分类号: 

  • TP181
[1]BOLDO E,MEDINA S,TERTRE A L,et al.Apheis:Health impact assessment of long-term exposure to PM2.5 in 23 European cities[J].European Journal of Epidemiology,2006,21(6):449-458.
[2]ZHENGY,CAPRA L,WOLFSON O,et al.Urban Computing:Concepts,Methodologies,and Applications[J].ACM Trans.Intelligent Systems and Technology,2014,5(3):38-55.
[3]ZHENG Y,LIU F,HSIEH H-P.U-Air:When urban air quality inference meets big data [C]∥Proceedings of the 19th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining.New York:ACM,2013:1436-1444.
[4]MAEKIEWICZ M.A review of mathematical models for the atmospheric dispersion of heavy gases.Part I.A classification of models [J].Ecological Chemistry and Engineering S,2012,19(3):297-314.
[5]WANG J F,HU M G,XU C D,et al.Estimation of citywide air pollution in Beijing [J].PLOS ONE,2013,8(1):e53400.
[6]VARDOULAKIS S,FISHER B E.A.,PERICLEOUS K A,et al.Modelling air quality in street canyons:A review [J].Atmospheric Environment,2003,37(2):155-182.
[7]ZHU J Y,ZHANG C,ZHANG H C,et al.pg-Causality:Identifying spatiotemporal causal pathways for air pollutants with urban big data[J].IEEE Transactions on Big Data,2017,6(6):1.
[8]HSIEH H-P,LIU S D,ZHENG Y.Inferring air quality for stationlocation recommendation based on urban big data[C]∥Proceedings of the21th ACM SIGKDD IntConf on Knowledge Discoveryand Data Mining.New York:ACM,2015:437-446.
[9]ZHENG Y,YI X W,LI M,et al.Forecasting fine-grained air quality based on bigdata[C]∥Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2015:2267-2276.
[10]YI X,ZHANG J,WANG Z,et al.Deep distributed fusion network for air quality prediction[C]∥24th ACM SIGKDD International Conference.2018.
[11]LU J,CAO X.PM2.5 pollution in major cities in China:Pollution status,emission sources and control measures[J].Fresenius Environ.Bull,2015,24:1338-1349.
[12]ENGEL-C J A,HOLLOMAN C H,COUTANT B W,et al. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality[J].Atmospheric Environment,2004,38(16):2495-2509.
[13]WANG J,CHRISTOPHER S A.Intercomparison between sa-tellite-derived aerosol optical thickness and PM2.5 mass:Implications for air quality studies [J].Geophysical Research Letters,2003,30(21).
[14]LIU Y,FRANKLIN M,KAHN R,et al.Using aerosol optical thickness to predict ground-level PM2.5concentrations in the St.Louis area:A comparison between MISR and MODIS [J].Remote Sensing of Environment,2007,107(1-2):33-44.
[15]VAN D A,MARTIN RV,PARK R J.Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing [J].Journal of Geophysical Research:Atmospheres banner,2006,111(D21):201-210.
[16]郑卓云,陈良富,郑君瑜,等.高分辨率气溶胶光学厚度在珠三角及香港地区区域颗粒物监测中的应用研究 [J].中国环境科学,2011,31(6):1154-1161.
[17]WANG Z F,CHEN L F,TAN J H,et al.Satellite-based estimation of regional particulate matter(PM) in Beijing using vertical-and-RH correcting method [J].Remote Sensing of Environment,2010,114(1):50-63.
[18]WANG Y,LI J Y,HE J,et al.Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement [J].Aerosol Science and Technology,2015,49(11):1063-1077.
[19]GAO M,CAO J,SETO E.A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an,China [J].Environmental Pollution,2015,199:56-65.
[20]KHADEM M I,SGARCIU V.Dust monitoring systems [C]∥The Sixth International Conference on Systems and Networks Communications(ICSNC 2011).2011:68-71.
[21]LIU Y,MAO X,HE Y,et al.CitySee:not only a wireless sensor network [J].IEEE Network,2013,27(5):42-47.
[22]CHENG Y,LI X,LI Z,et al.AirCloud:a cloud-based air-quality monitoring system for everyone [C]∥Proceedings ofthe 12th ACM Conf on Embedded Network Sensor Systems.New York:ACM,2014:251-265.
[23]TUDOSE D S,PATRASCU T A,VOINESCU A,et al.Mobile sensors in air pollution measurement[C]∥Proceedings of the 8th Positioning Navigation and Communication.Dresden:IEEE,2011:166-170.
[24]DEVARAKONDA S,SEVUSU P,LIU H,et al.Real-time air quality monitoring through mobile sensing in metropolitan areas[C]∥Proceedings of the 2nd ACM SIGKDD Intworkshop on urban computing.New York:ACM,2013:15.
[25]HEDGECOCK W,VOLGYESI P,LEDECZI A,et al.Dissemi-nation and presentation of high resolution air pollution data from mobile sensor nodes[C]∥Proceedingsof the 48th Annual Southeast Regional Conf.New York:ACM,2010:6.
[26]HASENFRATZ D,SAUKH O,WALSER C,et al.Pushing the spatio-temporal resolution limit of urban air pollution maps[C]∥Proceedings of IEEE PerCom’14.Budapest:IEEE,2014:69-77.
[27]FIERZ M,HOULE C,STEIGMEIER P,et al.Design,calibration,and field performance of a miniature diffusion size classifier [J].Aerosol Science and Technology,2011,45(1):1-10.
[28]DONG W,GUAN G Y,CHEN Y,et al.Mosaic:towards city scale sensing with mobile sensor networks[C]∥Proceedings of IEEE ICPADS’21,Melbourne:IEEE,2015:29-36.
[29]GAO Y,DONG W,GUO K,et al.Mosaic:a low-cost mobile sensing system for urban air quality monitoring [C]∥Procee-dings of IEEE INFOCOM’35.San Francisco:IEEE,2016:1-9.
[30]MUSTHAG M,GANESAN D.Labor dynamics in a mobile micro-task market[C]∥Proceedings of the SIGCHI Conf on Human Factors in Computing Systems.New York:ACM,2013:641-650.
[31]CHEN X,WU X,LI X Y,et al.Privacy-preserving high-quality map generation with participatory sensing[C]∥Proceedings of IEEE INFOCOM’14.Toronto:IEEE,2014:2310-2318.
[32]于瑞云,王鹏飞,白志宏,等.参与式感知:以人为中心的智能感知与计算[J].计算机研究与发展,2017,54(3):457-473.
[33]BURKE J,ESTRIN D,HANSEN M,et al.Participatory sensing [C]∥Proceedings of ACM SenSys Workshop on World-Sensor-Web,2006.
[34]ZHUANG Y,LIN F,YOO E H,et al.AirSense:A portable context-sensing device for personal air quality monitoring [C]∥Proceedings of the 2015 Workshop on Pervasive Wireless Healthcare.New York:ACM,2015:17-22.
[35]BUDDE M,BUSSE M,BEIGL M.Investigating the use of commodity dust Sensors for the embedded measurement of particulate matter [C]∥Proceedings of IEEE INSS’9.Antwerp:IEEE,2012:1-4.
[36]BUDDE M,MASRI R E,RIEDEL T,et al.Enabling low-cost particulate matter measurement for participatory sensing scenarios [C]∥Proceedings of the 12th IntConf on MUM’13.New York:ACM,2013:19.
[37]CHEN L J,HO Y H,LEE H C,et al.An open framework for participatory PM2.5 monitoring in smart cities [J].IEEE Access,2017,5:14441-14454.
[38]PODURI S,NIMKAR A,SUKHATME G S.Visibility monitoring using mobile phones[J].Annual Report:Center for Embedded Networked Sensing,2010:125-127.
[39]苗启广,李宇楠.图像去雾霾算法的研究现状与展望[J].计算机科学,2017,44(11):1-8.
[40]HE K M,SUN J,TANG X O.Single image haze removal using dark channel prior[J].IEEE Computer Society,2011,33(12):2341-2353.
[41]BUDDE M,BARBERA P,MASRI RE,et al.Retrofitting smart phones to be used as particulate matter dosimeters [C]∥Proceedings of the 2013 IntSymp on Wearable Computers.New York:ACM,2013:139-140.
[42]LI Y,HUANG J,LUO J.Using user generated online photos to estimate and monitor air pollution in major cities[C]∥Procee-dings of the 7th International Conference on Internet Multimedia Computing and Service.ACM,2015:79.
[43]LIU X Y,SONG Z,NGAI E,et al.PM2.5 monitoring using images from smartphones in participatory sensing[C]∥Proceedings of IEEE INFOCOM,Hong Kong:IEEE,2015:630-635.
[1] 冷典典, 杜鹏, 陈建廷, 向阳.
面向自动化集装箱码头的AGV行驶时间估计
Automated Container Terminal Oriented Travel Time Estimation of AGV
计算机科学, 2022, 49(9): 208-214. https://doi.org/10.11896/jsjkx.210700028
[2] 宁晗阳, 马苗, 杨波, 刘士昌.
密码学智能化研究进展与分析
Research Progress and Analysis on Intelligent Cryptology
计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053
[3] 李瑶, 李涛, 李埼钒, 梁家瑞, Ibegbu Nnamdi JULIAN, 陈俊杰, 郭浩.
基于多尺度的稀疏脑功能超网络构建及多特征融合分类研究
Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network
计算机科学, 2022, 49(8): 257-266. https://doi.org/10.11896/jsjkx.210600094
[4] 张光华, 高天娇, 陈振国, 于乃文.
基于N-Gram静态分析技术的恶意软件分类研究
Study on Malware Classification Based on N-Gram Static Analysis Technology
计算机科学, 2022, 49(8): 336-343. https://doi.org/10.11896/jsjkx.210900203
[5] 何强, 尹震宇, 黄敏, 王兴伟, 王源田, 崔硕, 赵勇.
基于大数据的进化网络影响力分析研究综述
Survey of Influence Analysis of Evolutionary Network Based on Big Data
计算机科学, 2022, 49(8): 1-11. https://doi.org/10.11896/jsjkx.210700240
[6] 陈明鑫, 张钧波, 李天瑞.
联邦学习攻防研究综述
Survey on Attacks and Defenses in Federated Learning
计算机科学, 2022, 49(7): 310-323. https://doi.org/10.11896/jsjkx.211000079
[7] 肖治鸿, 韩晔彤, 邹永攀.
基于多源数据和逻辑推理的行为识别技术研究
Study on Activity Recognition Based on Multi-source Data and Logical Reasoning
计算机科学, 2022, 49(6A): 397-406. https://doi.org/10.11896/jsjkx.210300270
[8] 姚烨, 朱怡安, 钱亮, 贾耀, 张黎翔, 刘瑞亮.
一种基于异质模型融合的 Android 终端恶意软件检测方法
Android Malware Detection Method Based on Heterogeneous Model Fusion
计算机科学, 2022, 49(6A): 508-515. https://doi.org/10.11896/jsjkx.210700103
[9] 王飞, 黄涛, 杨晔.
基于Stacking多模型融合的IGBT器件寿命的机器学习预测算法研究
Study on Machine Learning Algorithms for Life Prediction of IGBT Devices Based on Stacking Multi-model Fusion
计算机科学, 2022, 49(6A): 784-789. https://doi.org/10.11896/jsjkx.210400030
[10] 李亚茹, 张宇来, 王佳晨.
面向超参数估计的贝叶斯优化方法综述
Survey on Bayesian Optimization Methods for Hyper-parameter Tuning
计算机科学, 2022, 49(6A): 86-92. https://doi.org/10.11896/jsjkx.210300208
[11] 赵璐, 袁立明, 郝琨.
多示例学习算法综述
Review of Multi-instance Learning Algorithms
计算机科学, 2022, 49(6A): 93-99. https://doi.org/10.11896/jsjkx.210500047
[12] 许杰, 祝玉坤, 邢春晓.
机器学习在金融资产定价中的应用研究综述
Application of Machine Learning in Financial Asset Pricing:A Review
计算机科学, 2022, 49(6): 276-286. https://doi.org/10.11896/jsjkx.210900127
[13] 李野, 陈松灿.
基于物理信息的神经网络:最新进展与展望
Physics-informed Neural Networks:Recent Advances and Prospects
计算机科学, 2022, 49(4): 254-262. https://doi.org/10.11896/jsjkx.210500158
[14] 么晓明, 丁世昌, 赵涛, 黄宏, 罗家德, 傅晓明.
大数据驱动的社会经济地位分析研究综述
Big Data-driven Based Socioeconomic Status Analysis:A Survey
计算机科学, 2022, 49(4): 80-87. https://doi.org/10.11896/jsjkx.211100014
[15] 章晓庆, 方建生, 肖尊杰, 陈浜, RisaHIGASHITA, 陈婉, 袁进, 刘江.
基于眼前节相干光断层扫描成像的核性白内障分类算法
Classification Algorithm of Nuclear Cataract Based on Anterior Segment Coherence Tomography Image
计算机科学, 2022, 49(3): 204-210. https://doi.org/10.11896/jsjkx.201100085
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!