[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 132-137.

• 智能计算 • 上一篇    下一篇

一种基于信誉机制的科学文献影响力评价方法

冯磊1,2, 冀俊忠1,2, 吴晨生3   

  1. 北京工业大学多媒体与智能软件技术北京市重点实验室 北京1001241
    北京工业大学信息学部 北京1001242
    北京市科学技术情报研究所 北京1000483
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 通讯作者: 冀俊忠(1969-),男,博士,教授,CCF会员,主要研究方向为机器学习、数据挖掘和群智能算法,E-mail:jjz01@bjut.edu.cn
  • 作者简介:冯 磊(1992-),男,硕士生,主要研究方向为复杂网络、数据挖掘;冀俊忠(1969-),男,博士,教授,CCF会员,主要研究方向为机器学习、数据挖掘和群智能算法,E-mail:jjz01@bjut.edu.cn(通信作者);吴晨生(1967-),男,博士,研究员,主要研究方向为科技情报、科学普及。
  • 基金资助:
    本文受国家自然科学基金重点项目(613300194)资助。

New Method for Ranking Scientific Publications with Creditworthiness Mechanism

FENG Lei1,2, JI Jun-zhong1,2, WU Chen-sheng3   

  1. Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology,Beijing University of Technology,Beijing 100124,China1
    Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China2
    Beijing Institute of Science and Technology Information,Beijing 100048,China3
  • Online:2019-02-26 Published:2019-02-26

摘要: 学术影响力评价一直是文献计量学领域的一个研究热点。已有的大多基于数据挖掘的学术影响力评价方法忽略了恶意活动产生的影响,导致评价结果欠佳。为解决这一问题,提出了一种名为ReputeRank的新方法,该方法采用信誉机制来评估引文网络中出版物的有效性。信誉机制包括3个阶段:种子集选择阶段、信誉传播阶段和集成计算阶段。首先,ReputeRank利用SCI期刊分区信息选择引文网络中潜在的好种子和坏种子;然后,根据信誉传播思想,信誉度良好的种子指向的论文通常具有更高的可信度,而信誉度不好的种子指向的论文通常具有较低的可信度,该方法使用TrustRank和Anti-TrustRank评价公式在引文网络中迭代传播信任值和不信任值;最后,根据引文网络中的信任值和不信任值,利用综合集成公式对每篇论文计算评分,并根据评分结果对所有论文降序排列。在KDD cup 2003数据集上的实验结果表明,与3种影响力评价方法PageRank,CountDegree和SPRank相比,ReputeRank能够获得更优的效果。

关键词: 信息传播, 信誉度, 学术影响力评价, 引文网络

Abstract: Evaluating the scientific value of publications has always been a research focus in the field of bibliometrics.However,some mainstream methods based on data mining overlook the influence of malicious activities and result in poor evaluation results.To solve this problem,this paper proposed a new method named ReputeRank,which employs a creditworthiness mechanism to evaluate the effectiveness of publications in the citation network.The creditworthiness mechanism consists of the seeds selection phase,the spread credit phase and the integrated computation phase.First,ReputeRank employs background information on the division of SCI Periodicals to select potential good seeds and bad seeds in the citation network.Then,in light of assumption that good credibility seeds pointing to papers which usually have a higher credible degree while bad credibility seeds pointing to papers which often have a lower credible degree,the method uses TrustRank and Anti-TrustRank evaluation formula to iteratively spread trust values and distrust values over the citation network.Finally,according to the trust and distrust values in the citation network,the method utilizes an integrated equation to comprehensively compute the score value of each paper and arranges all papers in the descen-ding order of the score values.The experimental results on KDD cup 2003 datasets demonstrate that ReputeRank has good performance of effectiveness and robustness compared with PageRank,CountDegree and SPRank.

Key words: Citation network, Credibility, Evaluation of academic influence, Information dissemination

中图分类号: 

  • TP391
[1]ZHI L,QIN K P,CHE L.Two citation-based indicators to measure latent referential value of papers [J].Scientometrics,2016,108(3):1299-1313.
[2]BOYACK K W,BORNER K.Indicator-assisted evaluation and funding of re-search:Visualizing the influence of grants on the number and citation counts of research papers [J].Journal of the Association for Information Science and Technology,2003,54(5):447-461.
[3]BOLLEN J,RODRIQUEZ M A,VAN D S.Journal status [J].Scientometrics,2016,69(3):669-687.
[4]MAZLOUMIIAN A,EOM Y H,HELBING D,et al.How citation boosts promote scientific paradigm shifts and Nobel prizes [J].PLoS ONE,2011,6(5):e18975.
[5]HIRSCH J E.An index to quantify an individual’s scientific research output[J].Proceedings of the National Academy of Scien-ces of the United States of America,2005,102(46):16569-16572.
[6]WALKER D,XIE H,YAN K,et al.Ranking scientific publications using a model of network traffic [J].Journal of Statistical Mechanics:Theory and Experiment,2006,6(6):P06010.
[7]SAYYADI H,GETOOR L.FutureRank:Ranking Scientific Articles by Predicting their Future PageRank[C]∥Siam International Conference on Data Mining.USA,2009:533-544.
[8]SU C,PAN Y,ZHEN Y,et al.PrestigeRank:A new evaluation method for papers and journals [J].Journal of Informetrics,2011,5(1):1-13.
[9]YAO L,WEI T,ZENG A,et al.Ranking scientific publications:the effect of nonlinearity [J].Scientific Reports,2014,4:6663.
[10]JOHN P I.A generalized view of self-citation:Direct,co-author,collaborative,and Coercive induced self-citation [J].Journal of Psychosomatic Research,2015,78(1):7-11.
[11]蓝梦微,李翠平,王绍卿,等.符号社会网络中正负关系预测算法研究综述[J].计算机研究与发展,2015,52(2):410-422.
[12]KRISHNAN V,RAJ R.Web Spam Detection with Anti-Trust-Rank [C]∥Proceedings of the 2nd International Workshop on Adversarial Information Retrieval on the Web.New York:ACM Press,2006:37-40.
[13]ZOLTAN G,HECTOR G M,JAN P.Combating Web Spam with TrustRank[C]∥Proceeding of the 30th VLDB conference.Toronto,Canada,2004:576-587.
[14]ZHANG X C,LIANG W X,ZHU S P,et al.Automatic seed set expansion for trust propagation based anti-spam algorithms [J].Information Sciences,2013,232(5):167-187.
[15]ZHOU J L,ZENG A,FAN Y,et al.Ranking scientific publications with similarity-preferential mechanism[J].Scientometrics,2016,106(2):805-816.
[16]ELENI F,GEORGIOS E.Review of the indirect citations paradigm:theory and practice of the assessment of papers,authors and journals [J].Scientometrics,2014,99(2):261-288.
[17]JOHAN B,HERBERT V D S,ARIC H,et al.A Principal Component Analysis of 39 Scientific Impact Measures [J].PLoS ONE,2009,4(6):e6022.
[18]KDD Cup2003 datasets (Version2003) [DB/OL].http://www.cs.cornell.edu/projects/kddcup/datasets.html.
[19]王振飞,朱静阳,郑志蕴,等.基于R-C模型的微博社区用户影响力分析[J].计算机科学,2017,44(3):254-258.
[1] 畅雅雯, 杨波, 高玥琳, 黄靖云.
基于SEIR的微信公众号信息传播建模与分析
Modeling and Analysis of WeChat Official Account Information Dissemination Based on SEIR
计算机科学, 2022, 49(4): 56-66. https://doi.org/10.11896/jsjkx.210900169
[2] 李家文, 郭炳晖, 杨小博, 郑志明.
基于信息传播的致病基因识别研究
Disease Genes Recognition Based on Information Propagation
计算机科学, 2022, 49(1): 264-270. https://doi.org/10.11896/jsjkx.201100129
[3] 桑春艳, 胥文, 贾朝龙, 文俊浩.
社交网络中基于注意力机制的网络舆情事件演化趋势预测
Prediction of Evolution Trend of Online Public Opinion Events Based on Attention Mechanism in Social Networks
计算机科学, 2021, 48(7): 118-123. https://doi.org/10.11896/jsjkx.200600155
[4] 袁得嵛, 陈世聪, 高见, 王小娟.
基于斯塔克尔伯格博弈的在线社交网络扭曲信息干预算法
Intervention Algorithm for Distorted Information in Online Social Networks Based on Stackelberg Game
计算机科学, 2021, 48(3): 313-319. https://doi.org/10.11896/jsjkx.200400079
[5] 周艺华, 方嘉博, 贾玉欣, 贾立圆, 侍伟敏.
基于PBFT的联盟链共识算法
Consortium Blockchain Consensus Algorithm Based on PBFT
计算机科学, 2021, 48(11): 133-141. https://doi.org/10.11896/jsjkx.201200148
[6] 包峻波, 闫光辉, 李俊成.
结合非完全信息博弈的SIR传播模型
SIR Propagation Model Combing Incomplete Information Game
计算机科学, 2020, 47(6): 230-235. https://doi.org/10.11896/jsjkx.190400164
[7] 宾晟, 孙更新.
基于多关系社交网络的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Multi-relationship Social Network
计算机科学, 2019, 46(12): 56-62. https://doi.org/10.11896/jsjkx.181102189
[8] 胡庆成, 张勇, 邢春晓.
基于有重叠社区划分的社会网络影响最大化方法研究
K-clique Heuristic Algorithm for Influence Maximization in Social Network
计算机科学, 2018, 45(6): 32-35. https://doi.org/10.11896/j.issn.1002-137X.2018.06.005
[9] 张林姿, 贾传亮.
基于拓扑路径的网络演化传播机制研究
Study of Propagation Mechanism in Networks Based on Topological Path
计算机科学, 2018, 45(11A): 308-314.
[10] 王振飞,朱静阳,郑志蕴,宋玉.
基于R-C模型的微博社区用户影响力分析
Analysis of Microblog Community Users’ Influence Based on R-C Model
计算机科学, 2017, 44(3): 254-258. https://doi.org/10.11896/j.issn.1002-137X.2017.03.052
[11] 王振飞,张利莹,张行进,李伦.
面向时间感知的微博传播模型研究
Research on Temporal Perception-oriented Microblog Propagation Model
计算机科学, 2017, 44(2): 275-278. https://doi.org/10.11896/j.issn.1002-137X.2017.02.046
[12] 张学明,黄志球,孙艺.
基于RBAC的隐私访问控制研究
Research on Privacy Access Control Based on RBAC
计算机科学, 2016, 43(1): 166-171. https://doi.org/10.11896/j.issn.1002-137X.2016.01.038
[13] 李立耀,孙鲁敬,杨家海.
社交网络研究综述
Research on Online Social Network
计算机科学, 2015, 42(11): 8-21. https://doi.org/10.11896/j.issn.1002-137X.2015.11.002
[14] 章月阳,刘维.
不确定性PPI网络链接预测
Link Prediction in Uncertain Protein-Protein Interaction Network
计算机科学, 2014, 41(Z11): 399-402.
[15] 何小霞,谭良.
一种支持服务QoS差异度控制的Web服务发现模型
Web Service Discovery Model Supporting Service QoS Difference Degree Control
计算机科学, 2014, 41(8): 202-208. https://doi.org/10.11896/j.issn.1002-137X.2014.08.044
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!