[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 1-11.

• 综述研究 •    下一篇

频繁项集挖掘的研究进展及主流方法

李广璞, 黄妙华   

  1. 武汉理工大学汽车工程学院 武汉430070
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 作者简介:李广璞(1994-),男,硕士,主要研究方向为数据挖掘、电动车,E-mail:18202795261@163.com;黄妙华(1962-),女,博士生,教授,主要研究方向为造型及整车设计、性能模拟与系统分析、电动汽车整车及关键零部件。

Research Progress and Mainstream Methods of Frequent Itemsets Mining

LI Guang-pu, HUANG Miao-hua   

  1. School of Automotive Engineering,Wuhan University of Technology,Wuhan 430070,China
  • Online:2019-02-26 Published:2019-02-26

摘要: 关联分析作为数据挖掘的主要研究模块之一,主要用于发现隐藏在大型数据集中的强关联特征。而多数关联规则挖掘任务可分为频繁模式(频繁项集、频繁序列、频繁子图)的产生和规则的产生。前者发现数据集中满足最小支持度阈值的项集、序列与子图;后者从上一步发现的频繁模式中提取高置信度的规则。频繁项集挖掘是许多数据挖掘任务中的关键问题,也是关联规则挖掘算法的核心。十几年来,学者们致力于提高频繁项集的生成效率,从不同的角度进行改进以提高算法效率,大量的高效可伸缩性算法被提出。文中对频繁项集挖掘进行深入分析,对完全频繁项集、闭频繁项集、极大频繁项集的典型算法进行介绍和评述,最后对频繁项集挖掘算法的研究方向进行简要分析。

关键词: 闭频繁项集挖掘, 关联分析, 极大频繁项集挖掘, 完全频繁项集挖掘

Abstract: As one of the main research modules of data mining,association analysis is mainly used to find strong correlation features hidden in large data sets.The majority of association rule mining tasks can be divided into generation of frequent patterns (frequent itemsets,frequent sequences,frequent subgraphs) and generation of rule.The former finds itemsets,sequences,and subgraphs satisfying the minimum support threshold in the dataset.The latter extracts high confidence rules from the frequent patterns found in the previous step.Frequent itemset mining is a key issue in many data mining tasks,and it is also the core of association rule mining algorithms.For more than a decade,scholars have devoted themselves to improving the efficiency of generating frequent itemsets,improving algorithms from different perspectives,so as to improve the efficiency of algorithms,and a large number of efficient and scalable algorithms have been proposed.This article makes an in-depth analysis of frequent item set mining,introduces and reviews the typical algorithms of complete frequent itemsets,closed frequent itemsets,and maximal frequent itemsets.Finally,the research direction of frequent itemsets mining algorithm was briefly analyzed.

Key words: Correlation analysis, Frequent itemsets mining, Full frequent itemsets mining, Maximum frequent itemsets mining

中图分类号: 

  • TP391
[1]AGRAWAL R,SRIKANT R.Fast Algorithms for Mining Association Rules in Large Databases[C]∥International Con-ference on Very Large Data Bases.Morgan Kaufmann Publi-shers Inc.,1994:487-499.
[2]ZAKI M J.CHARM:An Efficient Algorithm for Closed Itemset Mining[C]∥Siam International Conference on Data Mining.2002:457-473.
[3]BAYARDO R J.Efficiently mining long patterns from databases[C]∥ACM SIGMOD International Conference on Management of Data.ACM,1998:85-93.
[4]陈慧萍,王建东,王煜.频繁项集挖掘的研究与进展[J].计算机仿真,2006,23(4):68-73.
[5]AGARWAL R C,AGGARWAL C C,PRASAD V V V.A Tree Projection Algorithm for Generation of Frequent Item Sets[M].Academic Press,2000.
[6]HAN J,PEI J,YIN Y.Mining frequent patterns without candidate generation[C]∥Acm Sigmod International Conference on Management of Data.2000:1-12.
[7]EL-HAJJ M.Inverted matrix:efficient discovery of frequent items in large datasets in the context of interactive mining[C]∥Acm Sigkdd International Conference on Knowledge Discovery &Data Mining.National Acad Sciences,2003:109-118.
[8]GATUHA G,JIANG T.Smart frequent itemsets mining algorithm based on FP-tree and DIFFset data structures[J].Turkish Journal of Electrical Engineering & Computer Sciences,2017,25:2096-2107.
[9]ZAKI M J.Scalable Algorithms for Association Mining[M].IEEE Educational Activities Department,2000:372-390.
[10]蓝祺花,吴博.频繁项集挖掘算法研究[J].计算机与现代化,2009,2009(3):60-65.
[11]PARK J S,CHEN M S,YU P S.An effective hash-based algorithm for mining association rules[J].ACM SIGMOD Record,1995,24(2):175-186.
[12]SAVASERE A,OMIECINSKI E,NAVATHE S B.An Efficient Algorithm for Mining Association Rules in Large Databases[C]∥International Conference on Very Large Data Bases.Morgan Kaufmann Publishers Inc.,1995:432-444.
[13]陈波,董鹏,邵勇.基于Apriori算法及其改进算法综述[C]∥中国通信学会第五届学术年会.2008.
[14]TOIVONEN H.Sampling Large Databases for Association Rules[C]∥International Conference on Very Large Data Bases.Morgan Kaufmann Publishers Inc.,1996:134-145.
[15]BRIN S,MOTWANI R,ULLMAN J D,et al.Dynamic itemset counting and implication rules for market basket data[C]∥Acm Sigmod International Conference on Management of Data.ACM,1997:255-264.
[16]CHEUNG D W,HAN J,NG V T,et al.Maintenance of disco-vered association rules in large databases:an incremental updating technique[C]∥Twelfth International Conference on Data Engineering.IEEE,1996:106-114.
[17]CHEUNG W L,LEE S D,KAO B.A General Incremental Technique for Maintaining Discovered Association Rules[C]∥International Conference on Database Systems for Advanced Applications.World Scientific Press,1997:185-194.
[18]THOMAS S,BODAGALA S,ALSABTI K,et al.An Efficient Algorithm for the Incremental Updation of Association Rules in Large Databases[C]∥KDD.1997:263-266.
[19]PARK J S,CHEN M S,YU P S.Efficient parallel data mining for association rules[C]∥International Conference on Information and Knowledge Management.ACM,1995:31-36.
[20]AGRAWAL R,SHAFER J C.Parallel Mining of Association Rules[J].IEEE Transactions on Knowledge & Data Enginee-ring,2007,8(6):962-969.
[21]CHEUNG D W,HAN J,NG V T,et al.A fast distributed algorithm for mining association rules[C]∥International Conference on Parallel and Distributed Information Systems.IEEE,1996:31-42.
[23]LI H,ZHANG Y,ZHANG N,et al.A Heuristic Rule Based Approximate Frequent Itemset Mining Algorithm[J].Procedia Computer Science,2016,91:324-333.
[24]ZAKI M J,PARTHASARATHY S,OGIHARA M,et al.Parallel Algorithms for Discovery of Association Rules[J].Data Mi-ning & Knowledge Discovery,1997,1(4):343-373.
[25]HAN E H,KARYPIS G,KUMAR V.Scalable Parallel Data Mining for Association Rules[J].Acm Sigmod Record,1997,26(2):277-288.
[26]CERIN C,GAY J S,MAHEC G L,et al.Efficient data-structures and parallel algorithms for association rules discovery[C]∥Proceedings of the Fifth Mexican International Conference in Computer Science,2004(ENC 2004).IEEE,2004:399-406.
[27]THOMAS W.Parallel mining of association rules using a lattice based approach[C]∥SoutheastCon.IEEE,2009:645-650.
[28]ISHIKAWA H,SHIOYA Y,OMI T,et al.A Peer-to-Peer Approach to Parallel Association Rule Mining[M]∥Knowledge-Based Intelligent Information and Engineering Systems.Berlin:Springer,2004:178-188.
[29]YONG W,ZHE Z,FANG W.A parallel algorithm of association rules based on cloud computing[C]∥International ICST Conference on Communications and Networking in China.IEEE,2014:415-419.
[30]GUPTA E,DONEPUDI H.A sparse memory allocation data structure for sequential and parallel association rule mining[M].Kluwer Academic Publishers,2016.
[31]DANG N,VO B,LE B.Efficient strategies for parallel mining class association rules[J].Expert Systems with Applications,2014,41(10):4716-4729.
[32]ASADPOUR M,SADREDDINI M H,DASTGHAIBYFARD G.Parallel Mining of Association Rules from Gene Expression Databases[C]∥International Conference on Fuzzy Systems and Knowledge Discovery.IEEE,2007:68-73.
[33]YU K M,ZHOU J,HONG T P,et al.A load-balanced distributed parallel mining algorithm[J].Expert Systems with Applications,2010,37(3):2459-2464.
[34]PELÁEZ V C,AUSÍN L,RUIZ M M,et al.Mining Fuzzy Association Rules Based on Parallel Particle Swarm Optimization Algorithm[J].Computer Science,2013,21(2):147-162.
[35]LAN V,ALAGHBAND G.Novel parallel method for mining frequent patterns on multi-core shared memory systems[C]∥International Workshop on Data-Intensive Scalable Computing Systems.2013:49-54.
[36]JIN D,ZIAVRAS S G.A Super-Programming Approach for Mining Association Rules in Parallel on PC Clusters[J].IEEE Transactions on Parallel & Distributed Systems,2004,15(9):783-794.
[37]MANASKASEMSAK N B,BENJAMAS N N,RUNGSAWANG A,et al.Parallel association rule mining based on FI-growth algorithm[C]∥2007 International Conference on Parallel and Distributed Systems.2007:1-8.
[38]EL-HAJJ M,ZAIANE O R.Parallel association rule mining with minimum inter-processor communication[C]∥InternationalWorkshop on Database and Expert Systems Applications.IEEE,2003:519-523.
[39]BURDA M,PAVLISKA V,VALASEK R.Parallel mining of fuzzy association rules on dense data sets[C]∥2014 IEEE International Conference on Fuzzy Systems(FUZZ-IEEE).IEEE,2014:2156-2162.
[40]ABRAHAM S,JOSEPH S.A Coherent Rule Mining Method for Incremental Datasets Based on Plausibility[J].Procedia Technology,2016,24:1292-1299.
[41]LEE C H,LIN C R,CHEN M S.Sliding window filtering:An efficient method for incremental mining on a time-variant database[J].Information Systems,2005,30(3):227-244.
[42]LU J,WANG L,FANG Y,et al.A novel method on incremental mining of spatial co-locations[C]∥International Conference on Big Data and Smart Computing.IEEE,2016:69-76.
[43]LEE W J,LEE S J.A general mining method for incremental updation in large databases[C]∥IEEE International Conference on Systems,Man and Cybernetics.IEEE,2003:1423-1428.
[44]AHMED C F,TANBEER S K,JEONG B S.An Efficient Me-thod for Incremental Mining of Share-Frequent Patterns[C]∥International Asia-Pacific Web Conference.IEEE Computer Society,2010:147-153.
[45]OTEY M E,PARTHASARATHY S,WANG C,et al.Parallel and distributed methods for incremental frequent itemset mining[J].IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society,2004,34(6):2439-2450.
[46]HE H T,ZHANG S L.A New Method for Incremental Updating Frequent Patterns Mining[C]∥International Conference on Innovative Computing,Informatio and Control.IEEE Computer Society,2007:561.
[47]LIN C W,LAN G C,HONG T P.An incremental mining algorithm for high utility itemsets[M].Pergamon Press,2012.
[48]LIN C W,HONG T P,LU W H.The Pre-FUFP algorithm for incremental mining[J].Expert Systems with Applications,2009,36(5):9498-9505.
[49]YAFI E,ALAM A H M A,BISWAS R.Incremental Mining of Shocking Association Patterns[J].International Arab Journal of Information Technology,2011,9(6):504-510.
[50]GHARIB T F,NASSAR H,TAHA M,et al.An efficient algorithm for incremental mining of temporal association rules[J].Data & Knowledge Engineering,2010,69(8):800-815.
[51]MASSEGLIA F,PONCELET P,TEISSEIRE M.Incremental mining of sequential patterns in large databases[J].Data & Knowledge Engineering,2003,46(1):97-121.
[52]LI H.An algorithm to discover the approximate probabilistic frequent itemsets with sampling method[C]∥International Conference on Natural Computation,Fuzzy Systems and Know-ledge Discovery.IEEE,2016:1428-1432.
[53]WU X,FAN W,PENG J,et al.Iterative sampling based fre-quent itemset mining for big data[J].International Journal of Machine Learning & Cybernetics,2015,1(6):1-8.
[54]RIONDATO M,UPFAL E.Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees[J].Acm Transactions on Knowledge Discovery from Data,2014,8(4):1-32.
[55]PIETRACAPRINA A,RIONDATO M,UPFAL E,et al.Mining top-K frequent itemsets through progressive sampling[J].Data Mining & Knowledge Discovery,2010,21(2):310-326.
[56]MAHAFZAH B A,AL-BADARNEH A F,ZAKARIA M Z.A new sampling technique for association rule mining[J].Journal of Information Science,2009,35(3):358-376.
[57]ZAKI J,PARTHASARATHY S,LIN W,et al.Evaluation of sampling for data mining of association rules[C]∥Proceedings of Seventh International Workshop on Research Issues in Data Engineering.1997:42-49.
[58]BRONNIMANN H,CHEN B,DASH M,et al.Efficient data reduction with EASE[C]∥Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2003:59-68.
[59]CHEN B,HAAS P,SCHEUERMANN P.A new two-phase sampling based algorithm for discovering association rules[C]∥Proceedings of the Eighth ACM SIGKDD International Confe-rence on Knowledge Discovery and Data Mining.2002:462-468.
[60]AKCAN H,ASTASHYN A,BRONNIMANN H.Deterministic algorithms for sampling count data[J].Data and Knowledge Engineering,2008,64(2):405-418.
[61]PARTHASARATHY S.Efficient progressive sampling for association rules[C]∥Proceedings of the IEEE International Conference on Data Mining.2002:354-361.
[62]BANDYOPADHYAY S,SAHA S.GAPS:A clustering method using a new point symmetry-based distance measure[J].Pattern Recognition,2007,40(12):3430-3451.
[63]ANERJEE A,KRUMPELMAN C,GHOSH J,et al.Model-based overlapping clustering[C]∥Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Disco-very in Data Mining.2005:532-537.
[64]CHEN Y L,HU H L.An overlapping cluster algorithm to provide non-exhaustive clustering[J].European Journal of Operational Research,2006,173(3):762-780.
[65]SAHA S,BANDYOPADHYAY S.Application of a new symmetry-based cluster validity index for satellite image segmentation[J].IEEE Geoscience and Remote Sensing Letters,2008,5(2):166-170.
[66]CHEN C,HORNG S,HUANG C.Locality sensitive hashing for sampling-based algorithms in association rule mining[J].Expert Systems with Applications,2011,38(10):12388-12397.
[67]EL-HAJJ M.COFI approach for mining frequent itemsets revi-sited[M]∥DMKD’04.Paris:ACM,2004:70-75.
[68] EL-HAJJ M,ZAÍANE O.Inverted matrix:Efficient discovery of frequent items in large datasets in the context of interactive mining[C]∥Acm Sigkdd International Conference on Knowledge Discevery & Data Mining.National Acad Sciences,2003:109-118.
[69]AGARWAL R C,AGGARWAL C C,V V,et al.Tree Projection Algorithm for Generation of Frequent Item Sets[J].Journal of Parallel and Distributed Computing,2001,61(3):350-371.
[70]PEI J,HAN J,LU H,et al.H-mine:Hyper-structure mining of frequent patterns in large databases[C]∥IEEE International Conference on Data Mining.IEEE,2002:441.
[71]LIU J,PAN Y,WANG K,et al.Mining frequent item sets by opportunistic projection[C]∥8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2002:229-238.
[72]LIU G,LU H,LOU W,et al.Ascending Frequency Ordered Prefix-tree:Efficient Mining of Frequent Patterns[C]∥Procee-dings of KDD Conference.2003:65-73.
[73]AGARWAL R,AGGARWAL C,PRASAD V.Depth first gene-ration of long patterns[C]∥ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2000:108-118.
[74]PIETRACAPRINA A,ZANDOLIN D.Mining Frequent Item-sets Using Patricia Tries[C]∥Proceedings of the IEEE ICDM Workshop on FIMI.2003.
[75]SUCAHYO Y G,GOPALAN R P.CT-ITL:efficient frequent item set mining using a compressed prefix tree with pattern growth[C]∥Australasian Database Conference.Australian Computer Society,2003:95-104.
[76]SUCAHYO Y G,GOPALAN R P.CT-PRO:A Bottom-Up Non Recursive Frequent Itemset Mining Algorithm Using Compressed FP-Tree Data Structure[C]∥Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations(Fimi’04).Brighton,Uk,DBLP,2004.
[77]GRAHNE G,ZHU J.Fast algorithms for frequent itemset mi-ning using FP-trees[J].IEEE Transactions on Knowledge & Data Engineering,2005,17(10):1347-1362.
[78]秦亮曦,苏永秀,刘永彬,等.基于压缩FP-树和数组技术的频繁模式挖掘算法[J].计算机研究与发展,2008,45(z1):244-249.
[79]ZHU Q,LIN X.Depth First Generation of Frequent Patterns Without Candidate Generation[M]∥Emerging Technologies in Knowledge Discovery and Data Mining.Springer Berlin Heidelberg,2007:378-388.
[80]杨云,罗艳霞.FP-Growth算法的改进[J].计算机工程与设计,2010,31(7):1506-1509.
[81]章志刚,吉根林.一种基于FP-Growth的频繁项目集并行挖掘算法[J].计算机工程与应用,2014,50(2):103-106.
[82]WEI X,MA Y,ZHANG F,et al.Incremental FP-Growth mining strategy for dynamic threshold value and database based on Map-Reduce[C]∥IEEE,International Conference on Computer Supported Cooperative Work in Design.IEEE,2014:271-276.
[83]陆可,桂伟,江雨燕,等.基于Spark的并行FP-Growth算法优化与实现[J].计算机应用与软件,2017,34(9):273-278.
[84]王建明,袁伟.基于节点表的FP-Growth算法改进[J].计算机工程与设计,2018,39(1):140-145.
[85]ZAKI M J.Scalable algorithms for association mining[M].IEEE Educational Activities Department,2000.
[86]ZAKI M J,GOUDA K.Fast vertical mining using diffsets[C]∥ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.ACM,2003:326-335.
[87]SHENOY P,HARITSA J R,SUDARSHAN S,et al.Turbo-charging vertical mining of large databases[J].Acm Sigmod Record,2000,29(2):22-33.
[88]XIONG Z Y,CHEN P E,ZHANG Y F.Improvement of Eclat algorithm for association rules based on hash Boolean matrix[J].Application Research of Computers,2010,27(4):1323-1325.
[89]YU X,WANG H.Improvement of Eclat Algorithm Based on Support in Frequent Itemset Mining[J].Journal of Computers,2014,9(9):2116-2123.
[90]ZHANG Y F,XIONG Z Y,GENG X F,et al.Analysis and Improvement of Eclat Algorithm[J].Computer Engineering,2010,36(23):28-30.
[91]FENG P E,YU L,QIU Q Y,et al.Strategies of efficiency improvement for Eclat algorithm[J].Journal of Zhejiang University,2013,47(2):223-230.
[92]PASQUIER N,BASTIDE Y,TAOUIL R,et al.Discovering Frequent Closed Itemsets for Association Rules[J].Lecture Notes in Computer Science,1999,1540:398-416.
[93]PEI J,HAN J,MAO R.CLOSET:An Efficient Algorithm for Mining Frequent Closed Itemsets[C]∥SIGMOD International Workshop on Data Mining and Knowedge Discovery.2000:21-30.
[94]WANG J,HAN J,PEI J.CLOSET+:searching for the best strategies for mining frequent closed itemsets[C]∥ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2003:236-245.
[95]GRAHNE G.Efficiently using prefix-trees in mining frequent itemsets[C]∥Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations.2003.
[96]CHENG H,YU P S,HAN J.AC-Close:Efficiently Mining Approximate Closed Itemsets by Core Pattern Recovery[C]∥International Conference on Data Mining.IEEE,2006:839-844.
[97]UNO T,KIYOMI M,ARIMURA H.Efficient Mining Algo-rithms for Frequent/Closed/Maximal Itemsets[C]∥FIMI’04.2004.
[98]LUCCHESE C,ORLANDO S,PEREGO R.Fast and Memory Efficient Mining of Frequent Closed Itemsets[J].IEEE Transa-ctions on Knowledge & Data Engineering,2006,18(1):21-36.
[99]CHI Y,WANG H,YU P S,et al.Moment:maintaining closed frequent itemsets over a stream sliding window[C]∥IEEE International Conference on Data Mining.IEEE,2006:59-66.
[100]CHIU S C,LI H F,HUANG J L,et al.Incremental mining of closed inter-transaction itemsets over data stream sliding windows[J].Journal of Information Science,2011,37(2):208-220.
[101]NORI F,DEYPIR M,HADI M,et al.A new sliding window based algorithm for frequent closed itemset mining over data streams[J].Journal of Systems & Software,2013,86(3):615-623.
[102]DONG J,HAN M.BitTableFI:An efficient mining frequent itemsets algorithm[J].Knowledge-Based Systems,2007,20(4):329-335.
[103]SONG W,YANG B,XU Z.Index-BitTableFI:An improved algorithm for mining frequent itemsets[J].Knowledge-Based Systems,2008,21(6):507-513.
[104]BAYARDO R J.Efficiently mining long patterns from databases[C]∥ACM SIGMOD International Conference on Management of Data.ACM,1998:85-93.
[105]AGARWAL R C,AGGARWAL C C,PRASAD V V V.Depth first generation of long patterns[C]∥ACM SIGKDD International Conference on Knowedge Discovery and Data Mining.ACM,2000:108-118.
[106]BURDICK D,CALIMLIM M,FLANNICK J,et al.MAFIA:A Maximal Frequent Itemset Algorithm[C]∥International Conference on Data Engineering.IEEE Computer Society,2001:443.
[107]GOUDA K,ZAKI M J.Efficiently Mining Maximal Frequent Itemsets[C]∥IEEE International Conference on Data Mining.IEEE,2002:2405-2409.
[108]ZOU Q,CHU W W,LU B.SmartMiner:A Depth First Algorithm Guided by Tail Information for Mining Maximal Frequent Itemsets[C]∥IEEE International Conference on Data Mining,2002(ICDM 2003).IEEE,2002:570-577.
[109]宋余庆,朱玉全,孙志挥,等.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592.
[110]颜跃进,李舟军,陈火旺,等.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222.
[111]秦亮曦,史忠植.SFP-Max-基于排序FP-树的最大频繁模式挖掘算法[J].计算机研究与发展,2005,42(2):217-223.
[112]JU S,CHEN C.MMFI:An Effective Algorithm for Mining Maximal Frequent Itemsets[C]∥International Symposiums on Information Processing.IEEE Computer Society,2008:144-148.
[113]钱雪忠,惠亮.关联规则中基于降维的最大频繁模式挖掘算法[J].计算机应用,2011,31(5):1339-1343.
[114]ZHAO Z G,WANG F,WAN J.Maximal frequent itemsets mi-ning algorithm based on OWSFP-tree[J].Computer Engineering &Design,2013,34(5):1687-1680.
[115]YANG P,PENG H,ZHOU X,et al.FP-MFIA:improved algorithm for mining maximum frequent itemsets based on frequent-pattern tree[J].Journal of Computer Applications,2015,35(3):775-778.
[1] 李思颖, 徐杨, 王欣, 赵若成.
基于关联分析的铁路旅客同行预测方法
Railway Passenger Co-travel Prediction Based on Association Analysis
计算机科学, 2021, 48(9): 95-102. https://doi.org/10.11896/jsjkx.200700097
[2] 孙林, 平国楼, 叶晓俊.
基于本地化差分隐私的键值数据关联分析
Correlation Analysis for Key-Value Data with Local Differential Privacy
计算机科学, 2021, 48(8): 278-283. https://doi.org/10.11896/jsjkx.201200122
[3] 孙明玮, 司维超, 董琪.
基于多维度数据的网络服务质量的综合评估研究
Research on Comprehensive Evaluation of Network Quality of Service Based on Multidimensional Data
计算机科学, 2021, 48(6A): 246-249. https://doi.org/10.11896/jsjkx.200900131
[4] 张琴, 陈红梅, 封云飞.
一种基于粗糙集和密度峰值的重叠社区发现方法
Overlapping Community Detection Method Based on Rough Sets and Density Peaks
计算机科学, 2020, 47(5): 72-78. https://doi.org/10.11896/jsjkx.190400160
[5] 李刚, 王超, 韩德鹏, 刘强伟, 李莹.
基于深度主成分相关自编码器的多模态影像遗传数据研究
Study on Multimodal Image Genetic Data Based on Deep Principal Correlated Auto-encoders
计算机科学, 2020, 47(4): 60-66. https://doi.org/10.11896/jsjkx.190300073
[6] 王妍, 韩笑, 曾辉, 刘荆欣, 夏长清.
边缘计算环境下服务质量可信的任务迁移节点选择
Task Migration Node Selection with Reliable Service Quality in Edge Computing Environment
计算机科学, 2020, 47(10): 240-246. https://doi.org/10.11896/jsjkx.190900054
[7] 鲁显光, 杜学绘, 王文娟.
基于改进FP growth的告警关联算法
Alert Correlation Algorithm Based on Improved FP Growth
计算机科学, 2019, 46(8): 64-70. https://doi.org/10.11896/j.issn.1002-137X.2019.08.010
[8] 付泽强, 王晓锋, 孔军.
高性能网络安全告警信息的关联分析方法
High-performance Association Analysis Method for Network Security Alarm Information
计算机科学, 2019, 46(5): 116-121. https://doi.org/10.11896/j.issn.1002-137X.2019.05.018
[9] 茹锋, 徐锦, 常琪, 阚丹会.
一种用于影像遗传学关联分析的高阶统计量结构化稀疏算法
High Order Statistics Structured Sparse Algorithm for Image Genetic Association Analysis
计算机科学, 2019, 46(4): 66-72. https://doi.org/10.11896/j.issn.1002-137X.2019.04.010
[10] 吴珺,王春枝.
面向大数据的多维粒矩阵关联分析及应用
Multiple Correlation Analysis and Application of Granular Matrix Based on Big Data
计算机科学, 2017, 44(Z11): 407-410. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.086
[11] 琚安康,郭渊博,朱泰铭,王通.
网络安全事件关联分析技术与工具研究
Survey on Network Security Event Correlation Analysis Methods and Tools
计算机科学, 2017, 44(2): 38-45. https://doi.org/10.11896/j.issn.1002-137X.2017.02.004
[12] 胡文生,杨剑锋,赵明.
类设计质量评估方法的研究
Methodology for Classes Design Quality Assessment
计算机科学, 2017, 44(12): 150-155. https://doi.org/10.11896/j.issn.1002-137X.2017.12.029
[13] 余勇,林为民.
基于等级保护的电力信息安全监控系统的设计
Design of the Electric Power System's Security Monitoring System Based on Classified Protection
计算机科学, 2012, 39(Z11): 440-442.
[14] 贾 焰,王晓伟,韩伟红,李爱平,程文聪.
YHSSAS:面向大规模网络的安全态势感知系统
YHSSAS: Large-scale Network Oriented Security Situational Awareness System
计算机科学, 2011, 38(2): 4-8.
[15] 周延年,朱怡安.
基于灰嫡绝对关联分析在嵌入式计算机性能评价中的应用
New and Better Algorithm for Evaluation of Overall Performance of Embedded Computer through Combining Grey Entropy with Absolute Correlation Degree
计算机科学, 2011, 38(11): 206-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!