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Abstract— The ability to model independent decision makers other licensed spectrum bands are under-utilized. This
whose actions potentially affect all other decision makers fact motivates the development of new technologies and
makes game theory attractive to analyze the performances — giangards in wireless communication systems that seek

of wireless communication systems. Recently, there has been . . -
growing interest in adopting game theoretic methods to to use these under-utilized licensed bands. The idea of

cognitive radio networks for power control, rate adaptation ~ cognitive radio systems [7]-[9] is one possible method to
and channel access schemes. This work presents several achieve more efficient utilization of the available spectrum

results in game theory and their applications in cognitive  resources. While the traditional approach to ensure the
radio systems. First, we compute the Nash equilibrium g ayistence of multiple systems is to split the available

power allocation and rate adaptation policies in cognitive t into f band d allocate th ¢
radio systems using static game and dynamic Markovian spectrum “into irequency bands and aflocate them (o

game frameworks. We then describe how mechanism design different licensed (primary) users, the dynamic spectrum
helps to design a truth revealing channel access scheme. access in cognitive radio systems improves the spectrum

Finally, we introduce the correlated equilibrium concept in utilization by detecting unoccupied spectrum holes and
stochastic games and its applicatiqn to solve the transmission assigning them to unlicensed (secondary) users.
control problem in & cognitive radio system. The term cognitive radio was coined 1999 by J. Mi-
:\;l‘gfﬁolgr’?g—r;‘?ﬁligitgzn?:dgvv\/&?‘me -Elhoen(ipc/)’l gzrrféall-\lii? tola 1l in [10]. Dynamic spectrum access is an important
Equilibrium, K//Iechanism Désign, Corgrelated Equilibrihm aspecF of cqgnltlve rad!o. It can t?e aChI.eved n \{arlous
ways includingunderlaying,overlaying or interweaving
the signals of secondary users with that of the primary
|. INTRODUCTION users, while keeping the interferences as low as possible.
Game theory was first introduced by J. V. Neumann In cognitive radio networks with reduced functional-
and O. Morgenstern in [1] inl944. It is a discipline ity base stations (no central authority) and autonomous
aiming at modeling situations in which decision makerscognitive radios, game theory can be naturally applied to
have to make specific actions that have mutual, possiblgchieve the decentralized operation and self configuration
conflicting consequences. Game theory has been widelgatures. In a game theoretic setting, cognitive radios
used as an analysis tool in economic systems [2], [3]can be viewed as selfish rational players each seeking
Recently, with the introduction of ad-hoc networks andto optimize its own utility. The interest of an individual
cognitive radio systems, has game theory been consideredgnitive radio may conflict with that of the network,
as an adequate tool to design wireless self-organized neéts which case game theory can be straightforwardly
works [4], [5]. Specifically, game theoretic models haveapplied, as it traditionally analyzes situations where player
been developed to better understand congestion contralpjectives are in conflict.
routing, power control, trust management and other issues

in wired and wireless communication systems. The go . . . .
of this paper is to present recent results in game theoarlé' Cognitive Radio Power Control with Static Game

applied to the design and analysis of cognitive radio¥heoret|c Approach
networks. In a cognitive radio network, proper power control
is of importance to ensure efficient operation of both
Oorimary and secondary users. Even without the presence
of primary users, power control is still an issue among

secondary users since the signal of one user may cause

With an increasing demand on data rates and neWerference to the transmissions of others. Thus, how to
applications, spectrum crowding and congestion continugeyelop an efficient power allocation scheme that is able
to grow. A report released by the Federal Communicationg, jointly optimize the performance of multiple cognitive

Commission (FCC) irz002 [6] suggests that while some 5 igs in the presence of mutual interference is of interest
spectrum bands are over-utilized and crowded, many, g ch a system.

A. Why is Game Theory Relevant to Cognitive Radi
Systems?

Manuscript received June 29, 2009; revised August 3, 2009; accepted Static g.a_m? framework has b_een us_e_d to_ Compu.t.e the
September 2, 2009. Nash equilibrium power allocation policies in cognitive
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radio networks [8], [11], [12]. Different from a dynamic be owned by different agents and they may work in
game where players make sequence of decisions, a stattompetitive rather than cooperative manners. These selfish
game is one in which all players make decisions onaisers can become so sophisticated that they lie about
time simultaneously, without knowledge of the strategiegheir states to optimize their own utilities at the cost
of other players. The Nash equilibrium of a game is aof reducing the overall system performance. It requires
set of strategies, one for each user, such that no usemechanism design theory in order to prevent this from
has the incentive to unilaterally change its action. In ahappening. Mechanism design is the study of design-
Nash equilibrium, any change in the strategy by a useing rules for strategic, autonomous and rational players
would lead that user to have less payoff than if it keepgo achieve predictable global outcome [22] using game
the current strategy. Section Il gives an example of aheoretic approach. A milestone in mechanism design is
cognitive radio system where each user aims to maximizéhe Vickrey-Clark-Groves (VCG) mechanism, which is
its information rate subject to the transmission powera generalization of Vickrey’s second price auction [23]
constraint. A distributed asynchronous iterative waterproposed by Clark [24] and Groves [25]. The particular
filling algorithm is used to compute the Nash equilibrium pricing policy of the VCG mechanism makes reporting
power allocation policy of such a system using static gamérue values the dominant strategy for all the players.
theoretic approach [12]. Section IV is an example where we model each user in a
cognitive radio as a selfish player aiming to optimize his
C. Switching Control Game: A Special Type of Stochastiown utility and we try to find a mechanism which ensures
Dynamic Game efficient resource allocation within the network [26].

Most games considered in wireless communication
systems to date are static games. Stochastic dynamic gamee Correlated Equilibrium of a Dynamic Markovian
theory is an essential tool for cognitive radio systems agame
it is able to exploit the correlated channels in the analysis

of decentralized behaviors of cognitive radios. . ) S .
. — Markovian games is Nash equilibrium, however, it suf-
The concept of a stochastic game, first introduced b P .
ers from limitations, such as non-uniqueness, loss of

Lloyd Shapley in early1950s, is a dynamic game played efficiency, non-guarantee of existence. In game theory,

by one or more players. The elements of a stochasti¢ o . . S
. . -.~a correlated equilibrium is a solution concept which is
game include system state set, action sets, transition

probabilities and utility functions. It is an extension of the more general than the Nash equilibrium [27], [28]. A

single player Markov decision process (MDP) to include.Correlated equilibrium is defined as follows. Each player

the multiple players whose actions all impact the resultin In a game chooses his action according to his observation

o %t the value of a signal. A strategy assigns an action
payoffs and next state. A switching control game [13]_t0 every possible observation a player can make. If no

[15] is a special type of stochastic dynamic game where :
the transition probability in any given state depends OrP!ayer would deviate from the recommended strategy, the

: o distribution is called a correlated equilibrium. Compared
only one player. It is known that the Nash equilibrium for e L
. tq Nash equilibria, correlated equilibria offer a number
such a game can be computed by solving a sequence Q . . .
conceptual and computational advantages, including

Markov decision processes. Section Il shows an exampl§1e facts that new and sometimes more “fair" payoffs
can be achieved, that correlated equilibria can be com-

where the rate adapt problem in a Time Division Multiple
Access (TDMA) cognitive radio system is formulated as o :
o . ) “puted efficiently for games in standard normal form,
a switching control Markovian game and a value iterative’ o .
and that correlated equilibria are the convergence notion

optimization algorithm is proposed to compute the NaShfor several natural learning algorithms. Furthermore, it

equilibrium for such a game [16] has been argued that the correlated equilibria are the
natural equilibrium concept consistent with the Bayesian
perspective [28]. Section V is one of such examples where
An efficient spectrum assignment technology is essent formulates the user scheduling problem in a cognitive
tial to a Cognitive radio SyStem, which allows Secondaryradio network using stochastic dynamica| game frame-

users to opportunistically utilize the unoccupied spectrumyork with the goal of obtaining the correlated equilibrium
holes based on agreements and constraints. These S@giicy [29].

ondary users have to coordinate with each other in order
to maintain the order and result in maximum efficiency. It
motivates the development of spectrum access approach%rs
in cognitive radio systems. The opportunistic scheduling This paper is organized as follows: Section Il formu-
in cognitive networks assuming the scheduling is fullylates the power allocation problem in a cognitive radio
aware of primary user transmissions are considered in [Ldystem using static game framework. Section Ill then
and [18], while [19]-[21] consider the scenario with only introduces a special type of dynamic game: A switching
partial primary user activity information is available. control game and uses it to solve the rate adaptation
However, all the existing opportunistic scheduling ap-problem in a TDMA cognitive radio system. Section IV
proaches overlook the fact that the secondary users mapplies mechanism design to obtain a truth revealing

The fundamental solution concept for dynamic

D. Mechanism Design in Cognitive Radio Systems

Organization of this Paper
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opportunistic scheduling algorithm and Section V com-zero-mean circularly symmetric complex Gaussian noise
putes the correlated equilibrium in a stochastic dynami@t the kth receiver over thegth subcarrier. The term

. . . K 2 . .
game. Finally, Section VI concludes the paper with someztzlvt# |hit|*pe(g) is the total interference caused by
open issues on applying game theory in cognitive radiall other users to usek.

systems. Using pr = {pr(1),pr(2),...,px(G)} to denote the
power allocation vector of théth user andp_, =

Il. DISTRIBUTED TRANSMISSIONPOWER CONTROL: ~ {P1;--+;Pk~1,Pk+1;---, P } t0 denote the power allo-

ASYNCHRONOUSITERATIVE WATER-FILLING cation strategies of the remainifg — 1 remaining users,

the power allocation strategy of all the users in the system

in [11] to obtain the Nash equilibrium for multiuser o be denoted a8 = {p1,...,px} = {Pr, P} We

. - . . denoteP,, as the set of transmission policies of uger
power control problem in a digital subscriber line system, : . e e
. _that satisfy the system constraints (1, 2), it is specified
In the problem formulation, the user power allocation

problem in a interference channel system is modeled as™ o
a noncooperative game, and the existence and uniqueness _ [y : Zpk(g) < Py, prlg) < PP(g)}.  (4)
g=1

An iterative water-filling algorithm (IWFA) is proposed

of a Nash equilibrium are established for a two-player

version of such a game. However, the IWFA suffers from -
low convergence rate in a system with large numbetVe USEP™ = {pf,...,pj} to denote the Nash equilib-
of users. In order to overcome this disadvantage, afilUm Power allocation strategy. Givep” , the optimal
improved asynchronous iterative water-filling algorithm PoWwer allocation strategy of theh userp; is the solution
(AIWFA) was proposed in [12]. The AIWFA is based t© the following optimization problem:

on the asynchronous framework as described in [30] max Ry(px,P_%), s.t. Px € Pr, (Vk € K). (5)
which allows all the users to update in a completely P*

asynchronous way. This feature makes AIWFA applicabldiere, Ry (px, p—x) (specified in (3)) is the maximum
to all practical cognitive radio systems. achievable transmission rate of thth user.

The system model we consider here is a Gaussian ) - ,
frequency-selective interference channel with multipleB: Asynchronous lterative Water-filling Algorithm
cognitive radio users and multiple receivers. It is aimed Based on the above problem formulation, an asynchro-
to find a distributed power allocation scheme withoutnous iterative water-filling algorithm is proposed to obtain
the coordination among users. In the system model, wéhe Nash equilibrium policy [12]. We use to denote
assume there ar& secondary users and each user haghe iteration index andv' = {0,1,2,...} to indicate the
G subcarriersC = {1,2,..., K} is used to denote the iteration index set. Due to the asynchronous feature of
set of users. Denoting the power allocation of Usewver  the AIWFA, not every user updates its power allocation
subcarriery aspy(g), the system constraint can be written Strategy at each iteration. We useN, to indicate the
as follows. iteration index set for usek where userk updates its

a policy p. Here,p} is specified as the power allocation

Zpk (9) < P, (1) Policy of the kth user at thenth iteration.

— - The AIWFA is outlined in Algorithm 1 is the water-

9= e level parameter chosen to satisfy the power constraint of

pe(9) < PP(9), (2)  thekth user (1) andz]® is the Euclidean projection af
. onto the intervala, b]. The algorithm can be summarized

where P; denotes the total transmission power of e o5 follows. In step 1, we initialize the iteration indexand
user andP"**(g) denotes the power limit on theth  the initial power allocation vectop?, wherep® satisfies
subcarrier of theth user. (1) is the total power constraint the system constraints (1,2). 4 € N}, we update the
on each user and (2) is the spectral mask constraint arfiensmission policy of thekth user at thenth iteration

it is imposed to eliminate the interference from each useFZ according to the water-filling algorithm, otherwise,
o he power allocation policy of théth user remains
over specified spectrum bands.

unchanged. The algorithm terminates wipgghconverges.
It is shown in [12] that the convergence of Algorithm 1 is

A. Problem Formulation guaranteed if one of the following conditions is satisfied.

2
With the above system setup and constraints (1,2), each L Z max |Z’“l‘2 gwl < 1,VkeK;
user aims to maximize its transmission rate in a distributed W 4= n€DeN Py By i | P
way. DenoteR;, as the maximum achievable rate of the 1 |hea|? P, ]
kth user, and it can be expressed as: w k%:lne%f%(p, sl B8 S Lvieks (®)

1 & \hie x(9)*pr(9) wherew = {wy,wa, ..., wg } iS any positive vectorDy,
Ry, = 521% <1+ o2 ( )+ZK e (9)2pi( ))7 fBnotes the sefl,2,...,G} possibly deprived by the
9=1 k9 =1k RGPS subcarrier indicates the usérwould never use as the
with h; ; denoting the channel quality between tliln  best response set to any strategies used by the other users,
cognitive radio user andth receiver on thegth sub- for the given set of transmission power and propagation
carrier. |ox(g)|? is used to denote the variance of thechannels [12].
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Algorithm 1 Asynchronous Iterative Water-filling Algo-
rithm
Step 1 Setn = 0; Initialize p° with p, € Py for Yk € K.
Step 2 Update the transmission policy of each user:
for k=1:K do
if n € Ny then
for g=1:G do
P (9) = [k -
E D+ 1k [hae,1(9)12P1(9)™ 1 PR (g)
|hk,k-,(g)‘2pl(9)n ]0 Cognitive Radio Network

end if ' Figure 1. AK user cognitive radio system network where all the users

end for are trying to access to the spectrum hole.

Step 3 If p"*! # p”, thenn = n + 1; otherwise,p™ ! is
the system Nash equilibrium power allocation policy.

control Markovian dynamic game.
1) System States and TDMA Access Rulge are
I1l. SWITCHING CONTROL MARKOVIAN DYNAMIC going to denote the time slot index asand¢ € 7 =
GAME {0,1,2,...}. The channel quality state of uskrat time
dt is denoted a%! and it is assumed to belong to a finite

In this section, we are going to forn_n_JIate the secon set{0,1,...,Qn}. The channel state can be obtained by
user rate adaptation problem in a cognitive radio network

. e ._guantizing a continuous valued channel model comprising
as a constrained general-sum switching control Markovia . . . .
: L . _of circularly symmetric complex Gaussian random vari-
dynamic game. A switching control game [13]-[15] is a

special type of game where the transition probabilit inables that depend only on the previous time slot. The
P yp 9 P y omposition of channel states of all t€ users can be

any given state depends on only one player. It turns Ou\(/Evritten ash’ — {A',..., hl. }. Assuming that the channel

that we can solve such type of game by a finite sequencse[ateht € H,t € K is block fading and each block length

of Markov decision processes. i
The svstem model considers the secondary user ra?equals to one time slot, the channel state can be modeled
Y Y using a finite states Markov chain model. The transition

adaptation problem in cognitive radio networks where i :
multiple secondary users attempt to access a spectruErFObab'“ty of the channel states from timéo ¢ + 1 can

hole [16]. We assume a Time Division Multiple Access € den?ted as(h'"!h’).

(TDMA) cognitive radio system model (as specified in the Let b, de'note the buffer occupancy state of useat
IEEE 802.16 standard [31]) that schedules one user pé'rmet and 't, pelongs to a finite sef,  {0,1,...,L}.
spectrum hole at each time slot according to a predeﬁne-Elhe composmc;n of trze buffetr states ct)f_all theusers can
decentralized scheduling policy. Therefore, the interactiof€ denoted ab’ = {by,..., b} andb’ is an element of
among secondary users is characterized as a competitidif Secondary user buffer state sp&te _

for the spectrum hole and can naturally be formulated New packets arrive at the buffer at each time slot
as a dynamic game. By modeling transmission channeNd we denote the number of new incoming packets of

as correlated Markovian sources, the transmission raffe kth user at timet as fy, fi € {0,1,2,...,00}.
adaptation problem for each user can be formulatedne composition of the Incoming trafflct of all th&
as a general-sum switching control Markovian dynamicusers can be denoted &5 = {f{,...,fi}, itis an

game with a latency constraint. The transmission policyelement of the incoming traffic space. For simplicity,
of such a game takes into account the secondary us#te incoming traffic is assumed to be independent and

channel qualities, as well as the transmission delay dfientically distributed (i.i.d.) in terms of time indexand
each secondary user. user indexk. The incoming traffic is not a part of the

system state but it affects the buffer state evolution.
Uses! = [hi,b.] to denote the state of usérat time

t, the system state at timecan then be denoted a&=
This subsection introduces the system model (Fig. 1){s!, ... s’ }. The finite system state space is denoted as

We consider a TDMA system witli{' secondary users S, which comprises channel staté and secondary user

where only one user can access the channel at each tirggffer state3. That is, S = H x B. Here x denotes

slot according to a predefined decentralized access rulg. Cartesian product. Furthermo, is used to indicate

The access rule will be described later in this section. Thﬁ’]e state space where ugeis scheduled for transmission.

correlated block fading channel of each user is modeleg, s, ... S, are disjoint subsets & with the property

as a Markov chain. The rate control problem of eachyf s — S, US, U---USk.

secondary user can then be formulated as a constrainedThe system adopts a TDMA cognitive radio system

Markovian dynamic game. More specifically, under themodel (IEEE 802.16 [31]). A decentralized channel access

predefined decentralized access rule, the problem pr@lgorithm can be constructed as follows: At the beginning

f a time slot, each user attempts to access the channel

sented is a special type of game, namely a SWitChingﬂer a certain time delal#’ 7. The time delay of usek

A. System Description
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can be specified via an opportunistic scheduling algorithnThe buffer occupancy of uset evolves according to
[32], such as Lindley’s equation [33]

WT} = b;—]’;z @ bt = min ([bf — al]™ + f£, L). (10)
. o . . The buffer state of user e K, i # k evolves accordin
Here v, is a user specified quality of service (Q0S)q the following rule: i g

parameter andy, € {v,,7s}. If userk is a primary user, i o,

Y. = 7, Otherwise,y, = 7. By settingy, << s, b;"" = min(b; + fi, L).

the network does not allow the transmission of secondanthe puffer state transition probability of uskerdepends
users with the presence of primary users. As soon as @n its incoming traffic distribution and its action, which
user successfully access a channel, the remaining usess

detect the cha;nnel occupancy and stop their attempt tIPq s 6 P(ff = bt — b —al]t) b < L
access. Usé*! to denote the index of the first user P(bx  [bk,ar) = o bt —al )t P(fi=2) b,=L -
which successfully accesses the spectrum hole, in the case bk

where there are multiple users with the same minimunf-or those users who are not scheduled for transmission,
- ; t i ; the buffer state transition probabilities only depends on
\gggzg”?t;ne’ k™" Is chosen from those users with equal the incoming traffic, which can be written as

2) Action and Costs:If the kth user is scheduled 1 P(fi=0b""—b)) b7 <L
. . . . . t P(bl |bz) = oo t t+1 _ .

for transmission at time slot, its actionaj, represents 2omppt P(fi =) b =1L

the bits/symbol rate of the transmission. Assuming the

system uses an uncoded M-ary quadrature amplitude 2) Switching Controlled Markovian Game Formula-

modulation (QAM), different bits/symbol rates determinetion: We user; (i = 1,2, ..., K) to denote the transmis-
the modulation schemes, that i — 29+ . sion pohcy(v)eg:tor ogthe(;ch user.hW|th a slight abuslge off

Transmission cost: When uskfis scheduled for trans- Notationm;(s) Is used to denote the transmission policy o
mission at time instant, that is, s’ € S, the cost USE€riin states and is a component af;. 7;(s) lives in the
function of userk depenas only c'mzfC as all the other jsarpe tsgace aks the aﬁt'gn?féh]? m; user. Assume at t'g‘-e

: . b ' - . instantt userk is scheduled for transmission according
ggg{so?Lesgf?tgefc L:tilt(i?n’eik)Sdpeer::(i)ftiﬁaflrl]fctr(as?sc?I)S?slon to the system access rule which is specified in (7). The
P . 1Cg ' Yk

chosen to be the bit error rate (BER) of useturing the '?fﬁltf ; 0”20?()6 ﬁgiftﬁﬂ(}gﬂrgfsﬁggtigg ggﬁtggfctgﬁ
transmission. Thus, the costs of all the users in the systepl \yritten as:
can be specified as: ’
cr(s'iap) > 0 ®) Ci(m) = Enx [Zﬁ“ ~cz~(sia2)] (12)
t=1

ciizk(s,ap) = 0.

(11

where( < 8 < 1 is the discount factor. The expectation
of the above function is taken over the system stdte
Holding cost: Each user has an instantaneous Qo®hich evolves over time index If we denote the holding
constraint denoted ag(st, a),i = 1,..., K. If the QoS COst of uset at theith time slot asi;(s’, a;), the infinite
constraint is chosen to be the delay (latency Constraim}erlzo_n expected total discounted latency constraint can
NG . , e written as
then d;(s’, a},) is a function of the buffer staté!. The .
@nstan_tar_u—:tous h(_)lding costs will be sgbsequently included Di(m) = En, |:Zﬁt—1 di(s ai)] <D, (13)
in an infinite horizon latency constraint. =

- . o whereD; is a system parameter depending on the system

B. Transition Probabilities and SWItChII’]g Control Game requirement_ Note here that we assume the |atency con-
Formulation straint is valid in our problem formulatiorD; is chosen

1) Transition Probabilities: With the above setup, the so that the set of policies that satisfy such a constraint

decentralized transmission control problem in a Markovis non-empty. This assumption will be discussed more
ian block fading channel cognitive radio system can NOVGecifically in Section 111-C

be formulated as a switching control game. In such a . e . N
game [14], the transition probabilities depend only on the Equations (9,12,13) define a constrained switching con-
action of thekth user whers € S;,. This feature enables trol Markovian game. Our goal is to compute a Nash
us to solve such a game by a finite sequence of Markoequilibrium policy 77,7 € K (which is not necessarily
g\?v?tlg;\?r?g %@ﬁﬁgfzzmécwﬁgw%wg)h Tseerﬁrsogg{ltgdglfe thgnique) that minimizes the discounted transmission cost
for transmission, the transition probability between the(lz) subject to the Iatency_constr_amt. (13). The following
current composite stat€ = [h!, b?] and the next state result shows that a Markovian switching control game can

stt1 = [+t b*1] depends only on the action of the be solved using a sequence of Markov decision processes

kth usera},, which can be specified as (MDPs).
Result: [14, Chapter 3.2]The constrained switching
P(s"t'|s’, al) control Markovian game (12,13) can be solved by a finite
K sequence of MDPs (as described in Algorithm 2). At each
— HP(th\hf)' H PO bY) - P(OL™ b, ak )(Q) step, the algorithm iteratively updates the transmission
i =1 itk policy «* of useri given the transmission policies of
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the remaining users. The optimization problem of eachuns at every time slot and the inner loop iteration period
iteration can be mathematically written as: equals to the time slot period.

In Step 1, we set the outer loop index to be(0 and
initialize the step sizd, the value vectorVy_,, .
and Lagrange multipliers_, , .. Step 3is the inner

loop where at each step we soli¢h user controlled
C. Value lIteration Algorithm game and obtain the new optimal strategy for that user

We present a value iterative algorithm in this subsectionVith the strategies of the remaining players fixed. Step 4
to compute a Nash equilibrium solution to the constrained/Pdates the Lagrange multipliers based on the discounted

Makovian dynamic game optimization problem describefl€lay value of each user given the transmission policies
L is the step size which satisfies

in (14). A value iterative optimization algorithm was {W?wa;-_aﬁ?(}- T _
designed to calculate the Nash equilibrium for an unthe conditions for convergence of the Robbins-Monro
constrained general-sum dynamic Markovian switching?!dorithm. This the sequence of Lagrange multipliers

*7
Uy

{r{" :minC}'(m;) st.Dj(m)<Dii€K.} (14)

control game [14]. Therefore, we first transfer the problemt A1 - - -,)\}'5}* with m = 0,1,2,... converges in prob-
in (14) to an unconstrained one using Lagrangian dynamigPility to {Af,..., Ak} which satisfy the constrained

programming and then apply the value iterative algorithnProblem defined in (14) [34], [35]. The algorithm termi-

specified in Algorithm 2 to compute the Nash equilibrium
solution.

Algorithm 2 Value lterative Optimization Algorithm
Step L
Setm = 0; Initialize I.
Initialize {V?, V9, ..., VO {0 N, . A%}
Step 2 Inner Loop: Setn = 0;
Step 3 Inner Loop: Update Transmission Policies;
for k=1: K do
for eachs € Sy,

T (s) = argmingn (s ¢ c(s, ar) + A7 - di(s, ax) +

B P s, an)op (s’

) ¢
)+ AT di(s,mR(s)) +

pH(s) = e(s,mp(s)

B P(s')s, 7 ())op ()

v?;11;[(,i;ék(3) = A di(s,m;(s)) +
B B(s!|s, 7w (s))op (s));

end for

Step 4 If V™! < VI ke K, setn =n+ 1, and
return to Step 3; Otherwise, go to Step 5.

Step 5 Update Lagrange Multipliers

for k=1: K do

1 1
Mt = A1 + 1| Dy(nt, 75,
end for

Step 6 The algorithm stops whek?*, k € K converge,
otherwise, sein = m + 1 and return to Step 2.

77(-?() _ﬁk

The algorithm can be summarized as follows. We use

Vi_1.2. .k to represent the value vector ath inner
iteration and\}L, ,  x to represent Lagrange multiplier
at mth outer iteration. The algorithm mainly consists of

two parts: the outer loop and the inner loop. The outer
loop updates the Lagrange multiplier of each user and the

nates when certain accuracy 8f',, , is obtained,
otherwise, go to Step 2.

Since this is a constrained optimization problem, the
optimal transmission policy is a randomization of two de-
terministic polices [33]. Use;_, , f to represent the
Lagrange multipliers obtained with the above algorithm.
The randomization policy of each user can be written as:

mi(s) = @i (s, Ak1) + (1= qr)7mi(s, Ak2),  (19)

where0 < ¢, < 1 is the randomization factor and
(s, A1), mh(s, Ak2) are the unconstrained optimal
policies with Lagrange multipliera, ; and\ ». Specifi-
cally, A1 = Ay —A andX o2 = A} +A for a perturbation
parameterA. The randomization factor of thieh userg;

is calculated by:

_ Dy, — Dp(Mi2,..., Ak2)
DM, k1) — DA 2, -

qx (16)

'a)\K,Q) '

The convergence proof of the inner loop of Algorithm 2
can be referred to [14, Chapter 6.3]. The intuition behind
the proof is as follows: The value vecté,f,g") (k € K)
is nonincreasing on the iteration index in the value
iteration algorithm. There are only a finite number of
strategies available for the optimal poliay, for k € K.

It can be concluded that the algorithm converges in a
finite number of iterations. This value iterative algorithm
obtains a Nash equilibrium solution to the constrained
switching control Markovian game with general sum
reward and general sum constraint.

Fig. 2 is an example on the performance of Algo-
fithm 2. The system ha&cognitive radio users, each user
has a siza 0 buffer, and the channel quality measurements
are quantized into two different states, namély2}. It
could be seen from Fig. 2 that the Nash equilibrium policy
of userl is a randomized mixture of two pure policies.

inner loop optimize the transmission policy of each user

under fixed Lagrange multipliers. The outer loop index

and inner loop index arex andn, respectively. It could

be seen from Algorithm 2 that the interaction among all

IV. TRUTH REVEALING OPPORTUNISTIC
SCHEDULING

The decentralized channel access algorithm adopt in

the secondary users is through the update of value vecto&ection IlI-A.1 is based on the opportunistic access

n+1

sincev; " iz

(s) is a function ofr}}(s). The inner loop
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Randomized Optimal Policy unit transmission power, the instantaneous throughput is:

Pk = wkmk(l —pe(hk,mk))Sk. (17)
Here, s;, denotes the average packet size in hitg/y)
denotes the BER, which is a function of the SNR and
modulation mode of current usér Assuming the system
uses an uncoded M-ary quadrature modulation (QAM),
pe(hi) can be approximated as [33]:

—1.6hy,
2mk — 1

2

Policy

Channel State

pe(hi, mi) = 0.2 X exp [ ] (18)

Applying quantization to the instantaneous throughput
pr, we havep, € {0,1,2,...,Q,} (k = 1,2,...,K)
with @, indicating the maximum throughput quantization
level. Similarly, g, is used to indicate the instantaneous

throughput state that usérreports to the central sched-
Figure 2. The Nash equilibrium transmission control policy obtained viayler andp;, € {0,1,2,..., Qp}-

value iterative optimization algorithm (Algorithm 2). 2-user system . . o

is considered, and each user has a sixéuffer. For notation convenience, we us#, N {pr,br} to
represent the true states of thitn user and;, to represent
the reported states of thgh user.©_; denotes the true

time at the beginning of each time slot and the first useStates of all the remaining’ —1 users (excluding use)
who accesses the channel can use the channel for tH&td ©—k denotes the corresponding reported values. We

time slot. The system is equivalent of having a virtualUS€© = {Ok, ©_} to denote the true states of all the
central scheduler which decides which user is scheduledSers and = {©;,0_;} to denote the reported states.
for transmission at each time slot. However, if different The opportunistic access scheme is based on the re-
o . i ' " “ported buffer and throughput states. Defihas afeasible
cognitive radios belong to different agents, the selfistset, it is a subset ok = {1,2,...,K}, and A C K.
cognitive radios may not reveal their true state informationA feasible set is a set which satisfies the system con-

to the virtual central scheduler aiming to maximize theirstraint. We specify the system constraint to be the overall
own payoffs. Mechanism design theory can be applied téransm!ssgon power in the system. Specifically, the overall
. ; ransmission power in the system should be equal or less
prevent this from happening. than the system power limiP. As we specified earlier in
This section considers a multiple user cognitive radicthis subsection, each user uses an unit transmission power
system. We propose a truth revealing system access prt$ transmit. Thus, the transmission power constraint on the

tocol based on opportunistic scheduling algorithm [26].3%’3"53!3\/ ﬁgLg\rlglgga;?nti?t?ngoﬁt;?iigt &%tgﬁr;%tgrl S;legté‘?;
The proposed protog:ol provides better system .perfor\—NhO are transmitting simultaneousl),/ should be less or
mance over conventional approaches. By applying thequal to the system power limi?. The optimal feasible

mechanism design theory to the opportunistic schedulingset A* to the conventional opportunistic access scheme is

system users are eliminated from lying and the optimalitya solution to the following optimization problem.

of the overall system performance is ensured. The pricing A" = argmax Z i - U (pe, bi) (19)
mechanism we propose is based on VCG mechanism and = Y
it maintains the same desirable economic properties as s.t. |A| < P. (20)

that of the VCG mechanism. . R
|A| denotes the number of users in seand Uy (px, by)

denotes the corresponding utility of ugegiven through-
put 5, and buffer statéy. v, in (19) is the QoS parameter
which depends on the user type. In a cognitive radio
This subsection describes a conventional opportunistigystem, there are two types of users, primary user and
scheduling algorithm in &’ users cognitive radio system. secondary user. Thusy, = {v,,7s}. If user k is a
Similar to the previous notations, is used to indicate the primary user;y;, = ¥p, Otherwisey, = ~,. Furthermore,
buffer state of usek andb = {b1,bs,...,bx}. by isused Dby settingy, > ~,, the network would not allow the
to represent the buffer state that thth user reports to transmission of secondary users with the presence of
the virtual central scheduler. In a truth revealing systemprimary user. If there are multiple sets that optimize
each user reports the true state value @ne- by, k € K. 19 subject to the constraint 201* is randomly chosen
The channel quality of usér is denoted a%,, specif-  from these set with equal probability. In the decentralized
ically, hi, measures the signal to noise radio (SNR). Thechannel access algorithm specified in Section IlI-A.1, the
composition of the channel states of all thé users utility function is specified a#/;, (py, bx) = hibi and the

A. Conventional Opportunistic Accessing Scheme

is denoted ash = {hy,hs,...,hi}. Let the symbols transmission power limit is specified to /@ = 1 since
per second transmission rate of ugeibe w; and bits only one user is allowed for transmission per time slot.
per symbol rate ben, (different values ofm; leads to The conventional opportunistic accessing scheme as-

different modulation schemes). Assuming each user usesimes the state information received by the virtual central
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scheduler is true, that isp, = pr and b, = b;. the central scheduler aiming to maximize its own utility
However, the conventional opportunistic algorithm mayfunction.

be challenged when the users become so sophisticated andThere is one condition necessary in order to achieve an
are able to reconfigure themselves to make efficient usagsficient allocation scheme with selfish agents [36], [37]:
of the local resources (e.g. manage their own reportingf a userk (k=1,2,...,K) reports a false state valu@s #
data to have the most efficient data transmission). 1©, results in the same value of the utility function as that
becomes increasing important to design a mechanism tof if it reports the true value, which is, (O, Oy, 0 _;) =
optimize the overall system performance while ensuring; (0, O, é),k), Oy, # Oy, then the user will choose to

the profit of each user. report the true values. We name this asttiugh preferred
rule. The interpretation of this rule is that when lying
B. The Pricing Mechanism about the states does not bring any benefit to a user, a

. . . user would prefer telling the truth.
We are going to apply the VCG pricing mechanism to The pricing mechanism we propose above is based on
the opportunistic scheduling algorithm, the new mecha- P 9 prop

. . the VCG mechanism, where we modified the conventional
nism enforces the truth revealing property of each user, : o o
o X . summation form of the utility function into a product
The Nash equilibrium of such an algorithm is when eac - . .
orm. Such pricing mechanism can be easily related to a

user reports true values.

1) The Pricing MechanismDifferent from the cen- practical 802.11 system and interpret the utility function
tralized conventional opportunistic scheduling algorithm,in terms of real physical parameters.
the proposed pricing mechanism is a distributed algorithm 2) Economic Properties of The Pricing Mechanism:

where each user tries to maximize his own utility functionThe pricing mechanism we proposed above still maintains

by choosing the reported state values. The buffer an . : ;
throughput that usek chooses to report to the central e same desirable economic properties as that of VCG

scheduler is a solution of the following optimization Mechanism, these properties are specified as follows [38],
problem: :
(s b} = Hé)aka((")k,ék,é—k) 1) The mechanism is incentive-compatible in ex-post

k

Nash equilibrium. The best response strategy is to

, TLca oz aiPib reveal the true state informatio®, = ©, even
= maxa PR x ST ae + Iigar, after they have complete information about other
Pk bk H A o ViPi%
Je usersO_;.
where the setsA* and A" are defined in the following 2) The mechanism is individually rational. A selfish
ways: agent will join the mechanism rather than choosing
4 = argmaxzwf)jl}j, st A <P not to, beg:ause the value of the utility function is
ey non-negative.
/ . 3) The mechanism is efficient. Since all the users
A= argmax. Az: %ibsby, st |Alkga < P will truthfully reveal their state information, the
e opportunistic scheduling algorithm carried out by
In this Optlmlzatlon prOblem is a fixed constant for the the central scheduler will maximize the System
system chosen to he > 1, I ; is the indication function performance.

whose value id when the condition is true, otherwise, it The detailed proof of the properties is shown in [26].

is 0. . . : - ;
ve(OF, 0,0_) is the utility function of userk, Fig. 3 is a numerical example showing the performance

which is a function of the true states @th user, the Of the pricing mechanism we designed. We simulate a
reported states ofth user and the reported states of all30 users cognitive radio system with each user Bas
the remaining users. When a user is not scheduled fdsuffer states and0 throughput states. The transmission
transmission, his utility function equals 19 while when power constraint on the system B = 3 which is

a user is scheduled for transmission, his utility function_ _ . ; -
equals to the first part, that is: equwalent to thgt the maximum number of users transmit
simultaneously is3.

QVRPROR T, px 5o 032305 . n Fig. 3, the x-axis represents the number of iterations

PR e av Yok A In Fig. 3, th ts th ber of iterat

0k(Ok, Ok, 0 ) = IR CE ke and y-axis represents the mean squared error (MSE) of the
1. ea if k¢ A~ reported buffer states and throughput statess used to

denote the iteration index. Defining® = {57,..., 5%}
In the above equation, the first part~+’ is the gain andb™ = {b7,..., b}, the MSE of the reported buffer
of userk per unit of subcarrier with throughput state  states and throughput states can be written as:

~apyb
and buffer stateh,. The second ternM 1 K

. H7 N (ﬂJ”J”J. MSE([)”) - (ﬁz _ ,02)2; (21)
can be interpret as the number of unit of subcarrier that K =
userk will be allocated which is a function of the state 1

(R (22)

M=

of the remaining users in the system. In other words, the MSE(Q") = 2= %
inverse of the second term could be interpreted as the

price that usek has to pay to the system if it is scheduled In the figure, the solid curve and the dash curve show the
for transmission. Each user sele{qikj)k} to report to  MSE of the reported buffer states and throughput states,

=

=1
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Result with Mechanism Learning Algorithm channel quality of usek and the composition of the
channel states i& = {hy,...,hx}. The channel state
1 over time is formulated as a Markov chain with transition
probability denoted aB(h!*1|ht). The buffer state of user
B[ 1 k is denoted a$;, andb = {by,...,bx}. The incoming
traffic of userk is fr andf = {f1,..., fx}. The system
state of userk is s, = {hs, br} and the composition of
15¢ 1 the states of all the users is denotedsas {s1,...,sx}.
The system is designed to perform effective user
scheduling. At each time slot, each user(k € K)
5 | chooses an optimal actiof, from the action setd;, =
\ {0,1}, where0 representsio transmissiorand 1 repre-
T T T T 1 18 2o sentstransmission The joint action of all the users is
Number of lierations denoted a& = {a1,...,ax}, which is an element of the
joint action spacea € A. Using standard game theoretic
Figure 3. The MSE of the reported buffer states and throughput staiddotation, we can writex = {ax,a_x} With a_; standing
after applying the pricing mechanism. The result is 8bausers system  for the joint actions of other users excluding uger
with L =5, Q, =10 and P = 3. The transition probability between the current compos-
ite states = [h,b] and the next state’ = [h/,b’] is a
function of a, which can be expressed as:
respectively. We can see from the figure that the MSE K K
converge to0 after 11 iterations, at which state, all the P(s'[s,a) = [ [ P(hilhe) - ] P(bklbr, ar), (23)
users in the system report truthfully agi= ©. k=1 k=1

35

30

20

MSE

101

where the expression @f(b;,|bx, ax) is given in (11).

V. CORRELATED EQUILIBRIUM IN STOCHASTIC The utility function of userk in states given actiona
DYNAMICAL GAME is denoted asi,(s,a), and it is specified as:
This section considers the user scheduling problem in |hi| % an
o . . . ug(s,a) = y[log(1+

a cognitive radio network, with the goal of obtaining the o2(n) + Zle i TR0y
correlated equilibrium policy in a general-sum stochastic Bibr ’

dynamical game setting. The correlated equilibrium policy TI~K 7. YK b, 1

K Jj=

of each user takes into account its transmission rate and

transmission delay [29]. The dynamic of the channewhere; is the QoS parameter ang. € {v,,7s}. If
quality and buffer state is formulated as a Markov chairuser k is a primary usery, = v, > 0, while if user

and the correlated equilibrium of such a stochastic game ik is a secondary usefy, = vs > 0. v, > v, so that
defined based on the Q-functions. The existing non-regréhe primary users have the priority over secondary users.
learning algorithm [40], [41] can be easily applied to The first half of the utility functionlog(...) represents
obtain such correlated equilibrium policies. The correlatedhe maximum achievable transmission rate of usand
equilibrium policy of each user is independent from eacht is similar to that in (3), while the second half includes
other, which enables the decentralized feature of théhe transmission delay ang, > 0 denotes the weighting
system. We propose two algorithms, namely, iterative corparameter between the transmission rate and the delay.
related equilibrium algorithm and correlated Q-learning7,; iS the channel coefficient determined by the location
algorithm. Compared to Algorithm 3, Algorithm 4 com- Of users andy, ;-h; measures the channel quality between
bines the Q-learning with the non-regret learning whichthe jth transmitter and théth receiver.

offers a decentralize feature and is more implementable.

Distributed learning is an important feature of a cognitiveg correlated Equilibrium in a Markovian Dynamic
radio system since it does not require central control angsgme

each user is able to learn the correlated equilibrium policy
independently. Both of the algorithms proposed in this
section are novel and have not been applied in cognitiv
radio networks before.

1) A Review of Correlated Equilibrium in Static
ames: To motivate the correlated equilibrium for a
ynamic game, we first review the correlated equilibrium

for a static game. In d-user static game setup, each
o N userk € K aims to devise a rule for selecting an action
A. System Model and Transmission Control Utility Func—ak from its action setd;. so as to maximize the expected
tion value of its utility functionu,({ay,as,...,ax}). Since
Different from the system model used in Section lll, each user is only able to adapt its own action, the optimal
the system model we use here allows more than one usaction policy depends on the rational consideration of the
to access to the spectrum at each time slot. policies from other users. The adopted solution for such
Similarly, we assume there ai€ users in the system a problem is called arequilibrium Many equilibrium
and ¢ is used as the time slot index,; denotes the concepts have been developed and the most common one
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is the Nash equilibrium In this section, we focus on an value vector update simultaneously. The value vector of

important generalization of the Nash equilibrium, knownuserk converges tdv'g* under policy=* and Vk"*(s) €

ascorrelated equilibrium[27], [28], which is defined as Vg*

follows. We are now ready to define the Q-function. Q-function
Q"f (s,a) of userk is the total discounted reward of

Definition 1: Define a joint policyr to be a probabil- taﬁln,g actiona in states and then followingr* thereafter,

ity distributiﬁn r?n the joint action ?paﬁé =A; x Agﬁ and it is defined as:

... Ag. With the given actions of other usess j, the = / o

policfﬂ- isa correl%ted equilibrium, if for eveny, ¢ Ak, QF (s,2) =uk(s,a) +7- 3 P(S'ls, )V (). (26)

(k =1,2,...,K) such thatr(a_g,ar) > 0, and any

alternative policya), € Ay, it holds that, Therefore, we can have the following relationship be-
tween the value vector and Q-function [42].

Z m(a—k, ar)ur({a-k,ar}) >

s'eS

a Ay Vii(s) =Y m(a) - QF (s.a). 27)
3" wlak an)us({a_k, ai}). (24) acA
a_r€A_y The correlated equilibrium in a Markovian dynamic game

One intuitive interpretation of correlated equilibrium is is then defined as follows.

that = provides theK users a strategy recommendation Definition 2: The stationary policyr* is a correlated
from the trusted third-party. The implicit assumption is equilibrium for the Markovian game described above if
that the K — 1 other users follow this recommendation, 7% € K, Vs € S andVay, aj, € Ay,

and userk ask itself whether it is of its best interest > mak ar) - QF (s, {a_n,ar}) >

to follow the recommendation as well. The equilibrium a LA, B

condition states that there is no derivation rule that could Z (@, o) Qr' (s (ar,dl}) 28)
s\A—k, Uk) " Wk ) —k,Uky)-

award usetk a better expected utility. We also notice that
the set of Nash equilibria is obtained by intersecting the
polyhedron described above with the additional constraint L o .
m(a_play) = w(a_ylal) for all ax,d} € Ay anda_j € C. Distributed Correlated Equilibrium Algorithm
A_.. Any Nash equilibrium can be represented as a In this section, we first introduce an iterative corre-
correlated equilibrium when the users can generate thelated equilibrium algorithm which uses the non-regret
recommendations independently. learning algorithm to obtain the correlated equilibrium
One advantage of using correlated equilibrium is thain the Markovian game. Then, we propose a correlated
it permits coordination among users, generally througtQ-learning algorithm which combines the non-regret al-
observation of a common signal, which leads to improvedyorithm and Q-learning so as to calculate the correlated
performance over a Nash equilibrium [28]. equilibrium policy in a distributed way. Both of the
2) The Definition of Correlated Equilibrium in algorithms proposed are novel and have not been applied
e S et P S YT, i cognithe adio neturks
to genote the transmission policy vector of all the ut?érs in First of all, the existence of a correlated equilibrium
states. The policies of all the users over all the states card" any general-sum Markov game can be shown by the
be denoted as andw, € 7. Any ¢ can be decomposed following result from [42].
into marginals frs 1, ms, %) for any k, wherem ;, is the Theorem 3: [42] Every general-sum Markov game
marginal probability distribution of the strategy of user pas g stationary correlated equilibrium policy.

while 75 _, is the marginal distribution of all users blit . L .
Furthermore, each entry of, is denoted as(a_, ay) This result enables the application of the following algo-

(Va_, € A_y,Va, € A;), which represents the joint fthms.

a_p€A_y

probability of taking actiomna_j anda; in states. The 1) lterative Correlated Equilibrium Algorithm:Non-
infinite horizon expected total discounted value of user regret learning algorithm was first proposed by Hart and
with initial states = s under transmission policy is: Mas-Colell in [40], where they formulate the probabil-
oo ities the players depart from their current plays to be
Vil(s) = En{Zﬁ‘tw(St,atHSO =s|, (25  proportional to the measure of regret for not having
t=0

used other strategies in the past. The non-regret learning
where0 < § < 1 is the economic discount factor chosenalgorithm has been proved to be able to converge to the
by the system. set of correlated equilibria of the game with probability
Based on the above definitions, each ubeic € K one. An iterative correlated equilibrium algorithm has
?pdatges its value vector from timeto ¢ + 1 in the been designed to obtain the correlated equilibrium in the
ollowing way, . . . ) :
Markovian game system model in this section. By using
Vi(s) = max Y ms(a)[ur(s,a) +7 Y _ P(s'|s,a)Vy " '(s)]  this algorithm, each user in the system does not need to
Tk acA s'es keep the information of the Q-functions of other users
" and the problem has been solved in a distributed way to
The above optimization problem defines how the strateggome extent.
of each usetrs . is updated at each iteration. Deneté The iterative correlated equilibrium algorithm is sum-
as the solution to the problem when all the users do thenarized in the table for Algorithm 3. In the algorithm, we
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Algorlthm 3 lterative Correlated Equ”lbrlum Algorlthm model. In this section, we are going to propose a corre-

Outer Loop lated Q-learning to calculate the correlated equilibrium
Step é'”'“;".zit.'ol.”: o for Vi ¢ K v ¢ x ang Policy for the Markovian game. Compared to Algo-
Ga_e Aan initialize Q} (s, a) for €M Vs e aan rithm 3, this algorithm does not require the information of
Step 2For Vk € K andVs € S do the following: Fhe system state trans.ition probability matrix which makes
Inner Loop: Non-regret Learning it more practical and implementable.

Initialize inner loop index = 0, initial regret matrixR$
and actionay Algorithm 4 Correlated Q-learning Algorithm

Action Update: leti = o}, and letal™ = j with the 9 — Q 5 97g
probability Step llnitialize n = 0 and Q). (s,a) for Vk € K, Vs € S

Pl+1(]~) — max{R} (4,5),0} if ] 75 i andVa € A.

’; . s .max{Rn(i,m>:o} o Step 2Updatew™ by non-regret learning.

Pr(j) =1 - =ik if j=i. Step 3Update the Q-function values:

Regret matrix update: ForVs € S andVa € A:

Hy (a7 = Iy - [Qu(al) — Quli 2] Pls,a) = (1 - o") - Q(s,a) + a[ux(s,a) +

RL™ = RL + 4 (Hi(a!) — RY). VP(s'[s, @) 3o 4 i (8, @") - Qi (s, @)

The algorithm terminates when the values of the parameters

s 1 n __ I+1.
Exit inner loop wherP;, converges and set” = P else 7" converge; else set = n + 1 and return back to Step.

set! =1+ 1 and return back ténner Loop.
Step 3Update value vectors:

g’“n(s)ﬂj zd:aeA ”;; (a) ',QZ(S]a)' forvk e K, Vs €S. The correlated Q-learning algorithm (Algorithm 4) can
tffl(s s) aie S};(l;n;;'T \W/a LES' P(s'[s,a)V;(s') for be summarized as follows. System initializes the iteration
VheK Vse X andac A, O °° Tk index n and the initial Q-function values in Step 1.

The iteration terminates when the values of the parameterStep 2 calculates the correlated equilibrium polic$
7" converge; else set = n + 1 and return back to Step.  with given Q-function values by using the non-regret
learning similar to that in Algorithm 3. The system runs
the non-regret learning offline. Based on the updated
first initialize the outer loop iteration index= 0 and the  transmission policies, each user updates its Q-function
initial Q-function values in Step 1. Then, we implementValues by using Q-learning. Parametet is the learning
the non-regret learning algorithm for eaklands to learn ~ rate sequence which is chosen such $hgf | oy, = o0
the new policy. Based on the new policy, we update thénd >-.~, a7 < co. The algorithm terminates when the
value vectorsV;* and the Q-function values accordingly. Q-function converges. The optimal correlated equilibrium
The inner loop of the algorithm is non-regret Iearning,and the value function can thus be obtained from the final
where! denotes the inner loop iteratioR., denotes the ~Q-function.
regret matrix of userk at thelith iteration. Each entry  In both Algorithm 3 and Algorithm 4, at each inner
R! (i, j) indicates the regret value from actiono action  loop iteration, they require the knowledge of thig-
j. P! denotes the policy of all the users at fitie iteration, function they calculate at each outer loop. Based on this
while P. denotes that of usérandP! = {P},... PL}. informa_tion, each user perform_s_ one table lookup in its
Each of P, entry P(j) represents the probability of Q-function to calculate the)-utility given the current
taking actionj at iterationl. The new policy of each user readings of the state and the actiona’. Two additions
is to pick an action according to the action probability@nd two multiplications update the regret value; and one
P!. The constanf is a normalization factor chosen to fandom number, one multiplication and one comparison
be yu > Zm# max{ R} (i,m), 0}, ensuring the update of suffice to cf'ilculate the next action. In th(_a outer _Ioop,
P yields valid probabilities. It can be viewed as an@n Update is done for each stateand action profile

inertia parameter, i.e., a highgryields lower probability & The computational complexity for the inner loop is
of switching. The terml;,, is the indicator function small and hence suitable for implementation. However,

which equals tol when f(s) is true ando otherwise. the complexity of outer loop depends on the number of

The non-regret learning algorithm applied here is basegtates and the size of action profiles. The size of the action

on [41] and its convergence has been proved therein. weet is exponential in the number of users. However, it is
observe that in Algorithm 3, each user does not nee@ossible to regard the actions of other users as one virtual
to know the utility functions and policies of other users action so as to reduce the dimension of the set of action

which makes the algorithm distributed. Note that in theProfiles. This dimension reduction technique enables a
inner loops, users play the repeated games and the procéd@matic reduction in computational complexity, making
can be implemented online while the outer loop relies or?" Efficient process the update of the Q-functions in the

the knowledge of the probability transition matrix and algorithms.

hence is an offline update. It motivates us to propose

the next algorithm, which lifts the requirement of the VI. OPENISSUES ANDCONCLUSIONS

transition matrix and is implementable online. This paper adopt game theoretic approach to solve
2) Correlated Q-learning Algorithm:Q-learning is a various problems in cognitive radio systems, such as

type of reinforcement learning technique which learns thgower allocation, rate adaptation and accessing control.

Q-function values without the knowledge of the systemThe main game theoretic concepts we used include Nash
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equilibria in static games and switching control games[11] W. Yu, G. Ginis, and J. M. Cioffi, “Distributed multiuser
correlated equilibria in stochastic Markovian games and
mechanism design.

Despite the recent popularity of game theory in Wire—[lz]

less

potential for further research is vast. Here are some open

communications and cognitive radio networks, the

issues related to this paper:

1)

2)

3)

4)

(1]
(2]
(3]
(4]

(5]

(6]

(7]

(8]

(9]
[10]

. . . |
The dimension of the system state in a stochastic
game is exponential to the number of users of

the system, thus, the convergence speed of AlgoH4]

rithm 2,3,4 suffers from the “curse of dimension-
ality” when the system has large number of users.
How to efficiently reduce the state space is yet an
issue to solve.

Section Il only focuses on a special type of
game, namely switching control Markovian game.
The study of a more general type of Markovian
game is still a very interesting area. For example,
prove the existence of the Nash equilibrium in a
general Markovian game under certain conditions

[17

(15]

(16]

]

or propose efficient algorithms to obtain a Nash[18]

equilibrium policy in a general Markovian game.

The pricing mechanism used in Section IV is based[19

on the well-known VCG mechanism. The devel-
opment of other pricing mechanisms or reputation
based mechanism can be one direction of the future
work.

More analytical results of the correlated equilibrium
in a general-sum stochastic game (e.g., the struc-
tural result on the correlated equilibrium policy) can

]

(20]

be explored. [21]
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