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Abstract— The ability to model independent decision makers
whose actions potentially affect all other decision makers
makes game theory attractive to analyze the performances
of wireless communication systems. Recently, there has been
growing interest in adopting game theoretic methods to
cognitive radio networks for power control, rate adaptation
and channel access schemes. This work presents several
results in game theory and their applications in cognitive
radio systems. First, we compute the Nash equilibrium
power allocation and rate adaptation policies in cognitive
radio systems using static game and dynamic Markovian
game frameworks. We then describe how mechanism design
helps to design a truth revealing channel access scheme.
Finally, we introduce the correlated equilibrium concept in
stochastic games and its application to solve the transmission
control problem in a cognitive radio system.

Index Terms— Cognitive Radio, Game Theory, General-Sum
Markovian Dynamic Game, Switching Control Game, Nash
Equilibrium, Mechanism Design, Correlated Equilibrium

I. I NTRODUCTION

Game theory was first introduced by J. V. Neumann
and O. Morgenstern in [1] in1944. It is a discipline
aiming at modeling situations in which decision makers
have to make specific actions that have mutual, possibly
conflicting consequences. Game theory has been widely
used as an analysis tool in economic systems [2], [3].
Recently, with the introduction of ad-hoc networks and
cognitive radio systems, has game theory been considered
as an adequate tool to design wireless self-organized net-
works [4], [5]. Specifically, game theoretic models have
been developed to better understand congestion control,
routing, power control, trust management and other issues
in wired and wireless communication systems. The goal
of this paper is to present recent results in game theory
applied to the design and analysis of cognitive radio
networks.

A. Why is Game Theory Relevant to Cognitive Radio
Systems?

With an increasing demand on data rates and new
applications, spectrum crowding and congestion continue
to grow. A report released by the Federal Communications
Commission (FCC) in2002 [6] suggests that while some
spectrum bands are over-utilized and crowded, many
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other licensed spectrum bands are under-utilized. This
fact motivates the development of new technologies and
standards in wireless communication systems that seek
to use these under-utilized licensed bands. The idea of
cognitive radio systems [7]–[9] is one possible method to
achieve more efficient utilization of the available spectrum
resources. While the traditional approach to ensure the
co-existence of multiple systems is to split the available
spectrum into frequency bands and allocate them to
different licensed (primary) users, the dynamic spectrum
access in cognitive radio systems improves the spectrum
utilization by detecting unoccupied spectrum holes and
assigning them to unlicensed (secondary) users.

The term cognitive radio was coined in1999 by J. Mi-
tola III in [10]. Dynamic spectrum access is an important
aspect of cognitive radio. It can be achieved in various
ways includingunderlaying,overlaying, or interweaving
the signals of secondary users with that of the primary
users, while keeping the interferences as low as possible.

In cognitive radio networks with reduced functional-
ity base stations (no central authority) and autonomous
cognitive radios, game theory can be naturally applied to
achieve the decentralized operation and self configuration
features. In a game theoretic setting, cognitive radios
can be viewed as selfish rational players each seeking
to optimize its own utility. The interest of an individual
cognitive radio may conflict with that of the network,
in which case game theory can be straightforwardly
applied, as it traditionally analyzes situations where player
objectives are in conflict.

B. Cognitive Radio Power Control with Static Game
Theoretic Approach

In a cognitive radio network, proper power control
is of importance to ensure efficient operation of both
primary and secondary users. Even without the presence
of primary users, power control is still an issue among
secondary users since the signal of one user may cause
interference to the transmissions of others. Thus, how to
develop an efficient power allocation scheme that is able
to jointly optimize the performance of multiple cognitive
radios in the presence of mutual interference is of interest
to such a system.

Static game framework has been used to compute the
Nash equilibrium power allocation policies in cognitive
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radio networks [8], [11], [12]. Different from a dynamic
game where players make sequence of decisions, a static
game is one in which all players make decisions one
time simultaneously, without knowledge of the strategies
of other players. The Nash equilibrium of a game is a
set of strategies, one for each user, such that no user
has the incentive to unilaterally change its action. In a
Nash equilibrium, any change in the strategy by a user
would lead that user to have less payoff than if it keeps
the current strategy. Section II gives an example of a
cognitive radio system where each user aims to maximize
its information rate subject to the transmission power
constraint. A distributed asynchronous iterative water-
filling algorithm is used to compute the Nash equilibrium
power allocation policy of such a system using static game
theoretic approach [12].

C. Switching Control Game: A Special Type of Stochastic
Dynamic Game

Most games considered in wireless communication
systems to date are static games. Stochastic dynamic game
theory is an essential tool for cognitive radio systems as
it is able to exploit the correlated channels in the analysis
of decentralized behaviors of cognitive radios.

The concept of a stochastic game, first introduced by
Lloyd Shapley in early1950s, is a dynamic game played
by one or more players. The elements of a stochastic
game include system state set, action sets, transition
probabilities and utility functions. It is an extension of the
single player Markov decision process (MDP) to include
the multiple players whose actions all impact the resulting
payoffs and next state. A switching control game [13]–
[15] is a special type of stochastic dynamic game where
the transition probability in any given state depends on
only one player. It is known that the Nash equilibrium for
such a game can be computed by solving a sequence of
Markov decision processes. Section III shows an example
where the rate adapt problem in a Time Division Multiple
Access (TDMA) cognitive radio system is formulated as
a switching control Markovian game and a value iterative
optimization algorithm is proposed to compute the Nash
equilibrium for such a game [16].

D. Mechanism Design in Cognitive Radio Systems

An efficient spectrum assignment technology is essen-
tial to a cognitive radio system, which allows secondary
users to opportunistically utilize the unoccupied spectrum
holes based on agreements and constraints. These sec-
ondary users have to coordinate with each other in order
to maintain the order and result in maximum efficiency. It
motivates the development of spectrum access approaches
in cognitive radio systems. The opportunistic scheduling
in cognitive networks assuming the scheduling is fully
aware of primary user transmissions are considered in [17]
and [18], while [19]–[21] consider the scenario with only
partial primary user activity information is available.

However, all the existing opportunistic scheduling ap-
proaches overlook the fact that the secondary users may

be owned by different agents and they may work in
competitive rather than cooperative manners. These selfish
users can become so sophisticated that they lie about
their states to optimize their own utilities at the cost
of reducing the overall system performance. It requires
mechanism design theory in order to prevent this from
happening. Mechanism design is the study of design-
ing rules for strategic, autonomous and rational players
to achieve predictable global outcome [22] using game
theoretic approach. A milestone in mechanism design is
the Vickrey-Clark-Groves (VCG) mechanism, which is
a generalization of Vickrey’s second price auction [23]
proposed by Clark [24] and Groves [25]. The particular
pricing policy of the VCG mechanism makes reporting
true values the dominant strategy for all the players.
Section IV is an example where we model each user in a
cognitive radio as a selfish player aiming to optimize his
own utility and we try to find a mechanism which ensures
efficient resource allocation within the network [26].

E. Correlated Equilibrium of a Dynamic Markovian
Game

The fundamental solution concept for dynamic
Markovian games is Nash equilibrium, however, it suf-
fers from limitations, such as non-uniqueness, loss of
efficiency, non-guarantee of existence. In game theory,
a correlated equilibrium is a solution concept which is
more general than the Nash equilibrium [27], [28]. A
correlated equilibrium is defined as follows. Each player
in a game chooses his action according to his observation
of the value of a signal. A strategy assigns an action
to every possible observation a player can make. If no
player would deviate from the recommended strategy, the
distribution is called a correlated equilibrium. Compared
to Nash equilibria, correlated equilibria offer a number
of conceptual and computational advantages, including
the facts that new and sometimes more “fair” payoffs
can be achieved, that correlated equilibria can be com-
puted efficiently for games in standard normal form,
and that correlated equilibria are the convergence notion
for several natural learning algorithms. Furthermore, it
has been argued that the correlated equilibria are the
natural equilibrium concept consistent with the Bayesian
perspective [28]. Section V is one of such examples where
it formulates the user scheduling problem in a cognitive
radio network using stochastic dynamical game frame-
work with the goal of obtaining the correlated equilibrium
policy [29].

F. Organization of this Paper

This paper is organized as follows: Section II formu-
lates the power allocation problem in a cognitive radio
system using static game framework. Section III then
introduces a special type of dynamic game: A switching
control game and uses it to solve the rate adaptation
problem in a TDMA cognitive radio system. Section IV
applies mechanism design to obtain a truth revealing
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opportunistic scheduling algorithm and Section V com-
putes the correlated equilibrium in a stochastic dynamic
game. Finally, Section VI concludes the paper with some
open issues on applying game theory in cognitive radio
systems.

II. D ISTRIBUTED TRANSMISSIONPOWER CONTROL:
ASYNCHRONOUSITERATIVE WATER-FILLING

An iterative water-filling algorithm (IWFA) is proposed
in [11] to obtain the Nash equilibrium for multiuser
power control problem in a digital subscriber line system.
In the problem formulation, the user power allocation
problem in a interference channel system is modeled as
a noncooperative game, and the existence and uniqueness
of a Nash equilibrium are established for a two-player
version of such a game. However, the IWFA suffers from
low convergence rate in a system with large number
of users. In order to overcome this disadvantage, an
improved asynchronous iterative water-filling algorithm
(AIWFA) was proposed in [12]. The AIWFA is based
on the asynchronous framework as described in [30]
which allows all the users to update in a completely
asynchronous way. This feature makes AIWFA applicable
to all practical cognitive radio systems.

The system model we consider here is a Gaussian
frequency-selective interference channel with multiple
cognitive radio users and multiple receivers. It is aimed
to find a distributed power allocation scheme without
the coordination among users. In the system model, we
assume there areK secondary users and each user has
G subcarriers.K = {1, 2, . . . ,K} is used to denote the
set of users. Denoting the power allocation of userk over
subcarrierg aspk(g), the system constraint can be written
as follows.

G∑
g=1

pk(g) ≤ Pk, (1)

pk(g) ≤ Pmax
k (g), (2)

wherePk denotes the total transmission power of thekth
user andPmax

k (g) denotes the power limit on thegth
subcarrier of thekth user. (1) is the total power constraint
on each user and (2) is the spectral mask constraint and
it is imposed to eliminate the interference from each user
over specified spectrum bands.

A. Problem Formulation

With the above system setup and constraints (1,2), each
user aims to maximize its transmission rate in a distributed
way. DenoteRk as the maximum achievable rate of the
kth user, and it can be expressed as:

Rk =
1
G

G∑
g=1

log
(

1 +
|hk,k(g)|2pk(g)

σ2
k(g) +

∑K
l=1,l 6=k |hk,l(g)|2pl(g)

)
, (3)

with hi,j denoting the channel quality between thejth
cognitive radio user andith receiver on thegth sub-
carrier. |σk(g)|2 is used to denote the variance of the

zero-mean circularly symmetric complex Gaussian noise
at the kth receiver over thegth subcarrier. The term∑K

t=1,t6=k |hk,t|2pt(g) is the total interference caused by
all other users to userk.

Using pk = {pk(1), pk(2), . . . , pk(G)} to denote the
power allocation vector of thekth user andp−k =
{p1, . . . ,pk−1,pk+1, . . . ,pK} to denote the power allo-
cation strategies of the remainingK−1 remaining users,
the power allocation strategy of all the users in the system
can be denoted asp = {p1, . . . ,pK} = {pk,p−k}. We
denotePk as the set of transmission policies of userk
that satisfy the system constraints (1, 2), it is specified
as:

Pk =
{
pk :

G∑
g=1

pk(g) ≤ Pk, pk(g) ≤ Pmax
k (g)

}
. (4)

We usep∗ = {p∗1, . . . ,p∗K} to denote the Nash equilib-
rium power allocation strategy. Givenp∗−k, the optimal
power allocation strategy of thekth userp∗k is the solution
to the following optimization problem:

max
pk

Rk(pk,p−k), s.t. pk ∈ Pk, (∀k ∈ K). (5)

Here, Rk(pk,p−k) (specified in (3)) is the maximum
achievable transmission rate of thekth user.

B. Asynchronous Iterative Water-filling Algorithm

Based on the above problem formulation, an asynchro-
nous iterative water-filling algorithm is proposed to obtain
the Nash equilibrium policy [12]. We usen to denote
the iteration index andN = {0, 1, 2, . . . } to indicate the
iteration index set. Due to the asynchronous feature of
the AIWFA, not every user updates its power allocation
strategy at each iterationn. We useNk to indicate the
iteration index set for userk where userk updates its
policy pn

k . Here,pn
k is specified as the power allocation

policy of thekth user at thenth iteration.
The AIWFA is outlined in Algorithm 1.µk is the water-

level parameter chosen to satisfy the power constraint of
the kth user (1) and[x]ba is the Euclidean projection ofx
onto the interval[a, b]. The algorithm can be summarized
as follows. In step 1, we initialize the iteration indexn and
the initial power allocation vectorp0, wherep0 satisfies
the system constraints (1,2). Ifn ∈ Nk, we update the
transmission policy of thekth user at thenth iteration
pn

k according to the water-filling algorithm, otherwise,
the power allocation policy of thekth user remains
unchanged. The algorithm terminates whenpn converges.
It is shown in [12] that the convergence of Algorithm 1 is
guaranteed if one of the following conditions is satisfied.

1

wk

X
k 6=l

max
n∈Dk∩Dl

|hk,l|2
|hk,k|2

Pl

Pk
wl < 1,∀k ∈ K;

1

wl

X
k 6=l

max
n∈Dk∩Dl

|hk,l|2
|hk,k|2

Pl

Pk
wk < 1,∀l ∈ K; (6)

wherew = {w1, w2, . . . , wK} is any positive vector.Dk

denotes the set{1, 2, . . . , G} possibly deprived by the
subcarrier indicates the userk would never use as the
best response set to any strategies used by the other users,
for the given set of transmission power and propagation
channels [12].
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Algorithm 1 Asynchronous Iterative Water-filling Algo-
rithm

Step 1: Setn = 0; Initialize p0 with pk ∈ Pk for ∀k ∈ K.
Step 2: Update the transmission policy of each user:
for k = 1 : K do

if n ∈ Nk then
for g = 1 : G do

pn+1
k (g) =

�
µk −

σ2
k(g)+

PK
l=1,l6=k |hk,l(g)|2pl(g)n

|hk,k(g)|2pl(g)n

�Pmax
k (g)

0

end for
else

pn+1
k = pn

k .
end if

end for
Step 3: If pn+1 6= pn, thenn = n + 1; otherwise,pn+1 is
the system Nash equilibrium power allocation policy.

III. SWITCHING CONTROL MARKOVIAN DYNAMIC

GAME

In this section, we are going to formulate the second
user rate adaptation problem in a cognitive radio network
as a constrained general-sum switching control Markovian
dynamic game. A switching control game [13]–[15] is a
special type of game where the transition probability in
any given state depends on only one player. It turns out
that we can solve such type of game by a finite sequence
of Markov decision processes.

The system model considers the secondary user rate
adaptation problem in cognitive radio networks where
multiple secondary users attempt to access a spectrum
hole [16]. We assume a Time Division Multiple Access
(TDMA) cognitive radio system model (as specified in the
IEEE 802.16 standard [31]) that schedules one user per
spectrum hole at each time slot according to a predefined
decentralized scheduling policy. Therefore, the interaction
among secondary users is characterized as a competition
for the spectrum hole and can naturally be formulated
as a dynamic game. By modeling transmission channels
as correlated Markovian sources, the transmission rate
adaptation problem for each user can be formulated
as a general-sum switching control Markovian dynamic
game with a latency constraint. The transmission policy
of such a game takes into account the secondary user
channel qualities, as well as the transmission delay of
each secondary user.

A. System Description

This subsection introduces the system model (Fig. 1).
We consider a TDMA system withK secondary users
where only one user can access the channel at each time
slot according to a predefined decentralized access rule.
The access rule will be described later in this section. The
correlated block fading channel of each user is modeled
as a Markov chain. The rate control problem of each
secondary user can then be formulated as a constrained
Markovian dynamic game. More specifically, under the
predefined decentralized access rule, the problem pre-
sented is a special type of game, namely a switching

Figure 1. AK user cognitive radio system network where all the users
are trying to access to the spectrum hole.

control Markovian dynamic game.
1) System States and TDMA Access Rule:We are

going to denote the time slot index ast and t ∈ T =
{0, 1, 2, . . . }. The channel quality state of userk at time
t is denoted asht

k and it is assumed to belong to a finite
set{0, 1, . . . , Qh}. The channel state can be obtained by
quantizing a continuous valued channel model comprising
of circularly symmetric complex Gaussian random vari-
ables that depend only on the previous time slot. The
composition of channel states of all theK users can be
written asht = {ht

1, . . . , h
t
K}. Assuming that the channel

stateht ∈ H, t ∈ K is block fading and each block length
equals to one time slot, the channel state can be modeled
using a finite states Markov chain model. The transition
probability of the channel states from timet to t + 1 can
be denoted asP(ht+1|ht).

Let bt
k denote the buffer occupancy state of userk at

time t and it belongs to a finite setbt
k ∈ {0, 1, . . . , L}.

The composition of the buffer states of all theK users can
be denoted asbt = {bt

1, . . . , b
t
K} andbt is an element of

the secondary user buffer state spaceB.
New packets arrive at the buffer at each time slot

and we denote the number of new incoming packets of
the kth user at timet as f t

k, f t
k ∈ {0, 1, 2, . . . ,∞}.

The composition of the incoming traffic of all theK
users can be denoted asf t = {f t

1, . . . , f
t
K}, it is an

element of the incoming traffic spaceF . For simplicity,
the incoming traffic is assumed to be independent and
identically distributed (i.i.d.) in terms of time indext and
user indexk. The incoming traffic is not a part of the
system state but it affects the buffer state evolution.

Usest
k = [ht

k, bt
k] to denote the state of userk at time

t, the system state at timet can then be denoted asst =
{st

1, . . . , s
t
K}. The finite system state space is denoted as

S, which comprises channel stateH and secondary user
buffer stateB. That is, S = H × B. Here × denotes
a Cartesian product. Furthermore,Sk is used to indicate
the state space where userk is scheduled for transmission.
S1,S2, . . . ,SK are disjoint subsets ofS with the property
of S = S1 ∪ S2 ∪ · · · ∪ SK .

The system adopts a TDMA cognitive radio system
model (IEEE 802.16 [31]). A decentralized channel access
algorithm can be constructed as follows: At the beginning
of a time slot, each userk attempts to access the channel
after a certain time delayWT t

k. The time delay of userk
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can be specified via an opportunistic scheduling algorithm
[32], such as

WT t
k =

γk

bt
kht

k

. (7)

Here γk is a user specified quality of service (QoS)
parameter andγk ∈ {γp, γs}. If userk is a primary user,
γk = γp, otherwise,γk = γs. By setting γp << γs,
the network does not allow the transmission of secondary
users with the presence of primary users. As soon as a
user successfully access a channel, the remaining users
detect the channel occupancy and stop their attempt to
access. Usek∗t to denote the index of the first user
which successfully accesses the spectrum hole, in the case
where there are multiple users with the same minimum
waiting time,k∗t is chosen from those users with equal
probability.

2) Action and Costs:If the kth user is scheduled
for transmission at time slott, its actionat

k represents
the bits/symbol rate of the transmission. Assuming the
system uses an uncoded M-ary quadrature amplitude
modulation (QAM), different bits/symbol rates determine
the modulation schemes, that is,M = 2at

k .
Transmission cost: When userk is scheduled for trans-

mission at time instantt, that is, st ∈ Sk, the cost
function of userk depends only onat

k, as all the other
users are inactive. Letci(st, at

k) denote the transmission
cost of useri, i ∈ K at time t. Specifically,ci(st, at

k) is
chosen to be the bit error rate (BER) of useri during the
transmission. Thus, the costs of all the users in the system
can be specified as:

ck(st, at
k) ≥ 0 (8)

ci,i 6=k(st, at
k) = 0.

Holding cost: Each user has an instantaneous QoS
constraint denoted asdi(st, at

k), i = 1, . . . , K. If the QoS
constraint is chosen to be the delay (latency constraint)
then di(st, at

k) is a function of the buffer statebt
i. The

instantaneous holding costs will be subsequently included
in an infinite horizon latency constraint.

B. Transition Probabilities and Switching Control Game
Formulation

1) Transition Probabilities:With the above setup, the
decentralized transmission control problem in a Markov-
ian block fading channel cognitive radio system can now
be formulated as a switching control game. In such a
game [14], the transition probabilities depend only on the
action of thekth user whens ∈ Sk. This feature enables
us to solve such a game by a finite sequence of Markov
decision processes. According to the property of the
switching control game, when thekth user is scheduled
for transmission, the transition probability between the
current composite statest = [ht,bt] and the next state
st+1 = [ht+1,bt+1] depends only on the action of the
kth userat

k, which can be specified as

P(st+1|st, at
k)

=

KY
i=1

P(ht+1
i |ht

i) ·
KY

i=1,i6=k

P(bt+1
i |bt

i) · P(bt+1
k |bt

k, at
k).(9)

The buffer occupancy of userk evolves according to
Lindley’s equation [33]

bt+1
k = min

�
[bt

k − at
k]+ + f t

k, L
�
. (10)

The buffer state of useri ∈ K, i 6= k evolves according
to the following rule:

bt+1
i = min(bt

i + f t
i , L).

The buffer state transition probability of userk depends
on its incoming traffic distribution and its action, which
is

P(bt+1
k |bt

k, at
k) =

�
P(f t

k = bt+1
k − [bt

k − at
k]+) bt+1

k < LP∞
x=L−[bt

k
−at

k
]+ P(f

t
k = x) bt

k = L .

For those users who are not scheduled for transmission,
the buffer state transition probabilities only depends on
the incoming traffic, which can be written as

P(bt+1
i |bt

i) =

�
P(f t

i = bt+1
i − bt

i) bt+1
i < LP∞

x=L−bt
i
P(f t

i = x) bt+1
i = L . (11)

2) Switching Controlled Markovian Game Formula-
tion: We useπi (i = 1, 2, . . . , K) to denote the transmis-
sion policy vector of theith user. With a slight abuse of
notation,πi(s) is used to denote the transmission policy of
useri in states and is a component ofπi. πi(s) lives in the
same space as the actionai of theith user. Assume at time
instant t userk is scheduled for transmission according
to the system access rule which is specified in (7). The
infinite horizon expected total discounted cost of theith
(i = 1, 2, . . . ,K) user under transmission policyπi can
be written as:

Ci(πi) = Eπi

� ∞X
t=1

βt−1 · ci(s
t, at

k)

�
(12)

where0 ≤ β < 1 is the discount factor. The expectation
of the above function is taken over the system statest

which evolves over time indext. If we denote the holding
cost of useri at thetth time slot asdi(st, at

k), the infinite
horizon expected total discounted latency constraint can
be written as

Di(πi) = Eπi

� ∞X
t=1

βt−1 · di(s
t, at

k)

�
≤ eDi, (13)

whereD̃i is a system parameter depending on the system
requirement. Note here that we assume the latency con-
straint is valid in our problem formulation.̃Di is chosen
so that the set of policies that satisfy such a constraint
is non-empty. This assumption will be discussed more
specifically in Section III-C.

Equations (9,12,13) define a constrained switching con-
trol Markovian game. Our goal is to compute a Nash
equilibrium policy π∗i , i ∈ K (which is not necessarily
unique) that minimizes the discounted transmission cost
(12) subject to the latency constraint (13). The following
result shows that a Markovian switching control game can
be solved using a sequence of Markov decision processes
(MDPs).

Result: [14, Chapter 3.2]The constrained switching
control Markovian game (12,13) can be solved by a finite
sequence of MDPs (as described in Algorithm 2). At each
step, the algorithm iteratively updates the transmission
policy πn

i of user i given the transmission policies of
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the remaining users. The optimization problem of each
iteration can be mathematically written as:

π∗n
i = {πn

i : min
πi

Cn
i (πi) s.t. Dn

i (πi) ≤ eDi, i ∈ K.} (14)

C. Value Iteration Algorithm

We present a value iterative algorithm in this subsection
to compute a Nash equilibrium solution to the constrained
Makovian dynamic game optimization problem described
in (14). A value iterative optimization algorithm was
designed to calculate the Nash equilibrium for an un-
constrained general-sum dynamic Markovian switching
control game [14]. Therefore, we first transfer the problem
in (14) to an unconstrained one using Lagrangian dynamic
programming and then apply the value iterative algorithm
specified in Algorithm 2 to compute the Nash equilibrium
solution.

Algorithm 2 Value Iterative Optimization Algorithm
Step 1:
Setm = 0; Initialize l.
Initialize {V0

1,V
0
2, . . . ,V

0
K}, {λ0

1, λ
0
2, . . . , λ

0
K}.

Step 2: Inner Loop: Setn = 0;
Step 3: Inner Loop: Update Transmission Policies;
for k = 1 : K do

for eachs ∈ Sk,

πn
k (s) = arg minπn

k (s)

{
c(s, ak) + λm

k · dk(s, ak) +

β
∑|S|

s′=1 P(s′|s, ak)vn
k (s′)

}
;

vn+1
k (s) = c(s, πn

k (s)) + λm
k · dk(s, πn

k (s)) +
β

∑|S|
s′=1 P(s′|s, πn

k (s))vn
k (s′);

vn+1
i=1:K,i 6=k(s) = λm

i · di(s, πn
k (s)) +

β
∑|S|

s′=1 P(s′|s, πn
k (s))vn

i (s′);
end for
Step 4: If Vn+1

k ≤ Vn
k , k ∈ K, set n = n + 1, and

return to Step 3; Otherwise, go to Step 5.
Step 5: Update Lagrange Multipliers
for k = 1 : K do

λm+1
k = λm

k + 1
l

[
Dk(πn

1 , πn
2 , . . . , πn

K)− D̃k

]

end for
Step 6: The algorithm stops whenλm

k , k ∈ K converge,
otherwise, setm = m + 1 and return to Step 2.

The algorithm can be summarized as follows. We use
Vn

k=1,2,...,K to represent the value vector atnth inner
iteration andλm

k=1,2,...,K to represent Lagrange multiplier
at mth outer iteration. The algorithm mainly consists of
two parts: the outer loop and the inner loop. The outer
loop updates the Lagrange multiplier of each user and the
inner loop optimize the transmission policy of each user
under fixed Lagrange multipliers. The outer loop index
and inner loop index arem andn, respectively. It could
be seen from Algorithm 2 that the interaction among all
the secondary users is through the update of value vectors
sincevn+1

i=1:K,i 6=k(s) is a function ofπn
k (s). The inner loop

runs at every time slot and the inner loop iteration period
equals to the time slot period.

In Step 1, we set the outer loop indexm to be 0 and
initialize the step sizel, the value vectorV0

k=1,2,...,K

and Lagrange multipliersλ0
k=1,2,...,K . Step 3 is the inner

loop where at each step we solvekth user controlled
game and obtain the new optimal strategy for that user
with the strategies of the remaining players fixed. Step 4
updates the Lagrange multipliers based on the discounted
delay value of each user given the transmission policies
{πn

1 , πn
1 , . . . , πn

K}. 1
l is the step size which satisfies

the conditions for convergence of the Robbins-Monro
algorithm. This the sequence of Lagrange multipliers
{λm

1 , . . . , λm
K} with m = 0, 1, 2, . . . converges in prob-

ability to {λ∗1, . . . , λ∗K} which satisfy the constrained
problem defined in (14) [34], [35]. The algorithm termi-
nates when certain accuracy ofλm

k=1,2,...,K is obtained,
otherwise, go to Step 2.

Since this is a constrained optimization problem, the
optimal transmission policy is a randomization of two de-
terministic polices [33]. Useλ∗k=1,2,...,K to represent the
Lagrange multipliers obtained with the above algorithm.
The randomization policy of each user can be written as:

π∗k(s) = qkπ∗k(s, λk,1) + (1− qk)π∗k(s, λk,2), (15)

where 0 ≤ qk ≤ 1 is the randomization factor and
π∗k(s, λk,1), π∗k(s, λk,2) are the unconstrained optimal
policies with Lagrange multipliersλk,1 andλk,2. Specifi-
cally, λk,1 = λ∗k−∆ andλk,2 = λ∗k+∆ for a perturbation
parameter∆. The randomization factor of thekth userqk

is calculated by:

qk =
D̃k −Dk(λ1,2, . . . , λK,2)

Dk(λ1,1, . . . , λK,1)−Dk(λ1,2, . . . , λK,2)
. (16)

The convergence proof of the inner loop of Algorithm 2
can be referred to [14, Chapter 6.3]. The intuition behind
the proof is as follows: The value vectorV(n)

k (k ∈ K)
is nonincreasing on the iteration indexn in the value
iteration algorithm. There are only a finite number of
strategies available for the optimal policyπ∗k for k ∈ K.
It can be concluded that the algorithm converges in a
finite number of iterations. This value iterative algorithm
obtains a Nash equilibrium solution to the constrained
switching control Markovian game with general sum
reward and general sum constraint.

Fig. 2 is an example on the performance of Algo-
rithm 2. The system has2 cognitive radio users, each user
has a size10 buffer, and the channel quality measurements
are quantized into two different states, namely{1, 2}. It
could be seen from Fig. 2 that the Nash equilibrium policy
of user1 is a randomized mixture of two pure policies.

IV. T RUTH REVEALING OPPORTUNISTIC

SCHEDULING

The decentralized channel access algorithm adopt in
Section III-A.1 is based on the opportunistic access
scheme where each cognitive radio waits for a certain
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Figure 2. The Nash equilibrium transmission control policy obtained via
value iterative optimization algorithm (Algorithm 2). A2-user system
is considered, and each user has a size10 buffer.

time at the beginning of each time slot and the first user
who accesses the channel can use the channel for that
time slot. The system is equivalent of having a virtual
central scheduler which decides which user is scheduled
for transmission at each time slot. However, if different
cognitive radios belong to different agents, the selfish
cognitive radios may not reveal their true state information
to the virtual central scheduler aiming to maximize their
own payoffs. Mechanism design theory can be applied to
prevent this from happening.

This section considers a multiple user cognitive radio
system. We propose a truth revealing system access pro-
tocol based on opportunistic scheduling algorithm [26].
The proposed protocol provides better system perfor-
mance over conventional approaches. By applying the
mechanism design theory to the opportunistic scheduling,
system users are eliminated from lying and the optimality
of the overall system performance is ensured. The pricing
mechanism we propose is based on VCG mechanism and
it maintains the same desirable economic properties as
that of the VCG mechanism.

A. Conventional Opportunistic Accessing Scheme

This subsection describes a conventional opportunistic
scheduling algorithm in aK users cognitive radio system.
Similar to the previous notations,bk is used to indicate the
buffer state of userk andb = {b1, b2, . . . , bk}. b̂k is used
to represent the buffer state that thekth user reports to
the virtual central scheduler. In a truth revealing system,
each user reports the true state value andb̂k = bk, k ∈ K.

The channel quality of userk is denoted ashk, specif-
ically, hk measures the signal to noise radio (SNR). The
composition of the channel states of all theK users
is denoted ash = {h1, h2, . . . , hK}. Let the symbols
per second transmission rate of userk be wk and bits
per symbol rate bemk (different values ofmk leads to
different modulation schemes). Assuming each user uses

unit transmission power, the instantaneous throughput is:

ρk = wkmk

(
1− pe(hk,mk)

)sk . (17)

Here,sk denotes the average packet size in bits.pe(hk)
denotes the BER, which is a function of the SNR and
modulation mode of current userk. Assuming the system
uses an uncoded M-ary quadrature modulation (QAM),
pe(hk) can be approximated as [33]:

pe(hk, mk) = 0.2× exp
� −1.6hk

2mk − 1

�
. (18)

Applying quantization to the instantaneous throughput
ρk, we haveρk ∈ {0, 1, 2, . . . , Qρ} (k = 1, 2, . . . , K)
with Qρ indicating the maximum throughput quantization
level. Similarly, ρ̂k is used to indicate the instantaneous
throughput state that userk reports to the central sched-
uler andρ̂k ∈ {0, 1, 2, . . . , Qρ}.

For notation convenience, we useΘk = {ρk, bk} to
represent the true states of thekth user and̂θk to represent
the reported states of thekth user.Θ−k denotes the true
states of all the remainingK−1 users (excluding userk)
and Θ̂−k denotes the corresponding reported values. We
useΘ = {Θk, Θ−k} to denote the true states of all theK
users and̂Θ = {Θ̂k, Θ̂−k} to denote the reported states.

The opportunistic access scheme is based on the re-
ported buffer and throughput states. DefineA as afeasible
set, it is a subset ofK = {1, 2, . . . ,K}, and A ⊆ K.
A feasible set is a set which satisfies the system con-
straint. We specify the system constraint to be the overall
transmission power in the system. Specifically, the overall
transmission power in the system should be equal or less
than the system power limitP . As we specified earlier in
this subsection, each user uses an unit transmission power
to transmit. Thus, the transmission power constraint on the
system is equivalent to the constraint on the total number
of users who are transmitting. That is, the number of users
who are transmitting simultaneously should be less or
equal to the system power limitP . The optimal feasible
setA∗ to the conventional opportunistic access scheme is
a solution to the following optimization problem.

A∗ = arg max
X
k∈A

γk · Uk(ρ̂k, b̂k), (19)

s.t. |A| ≤ P. (20)

|A| denotes the number of users in setA andUk(ρ̂k, b̂k)
denotes the corresponding utility of userk given through-
put ρ̂k and buffer statêbk. γk in (19) is the QoS parameter
which depends on the user type. In a cognitive radio
system, there are two types of users, primary user and
secondary user. Thus,γk = {γp, γs}. If user k is a
primary user,γk = γp, otherwise,γk = γs. Furthermore,
by settingγp À γs, the network would not allow the
transmission of secondary users with the presence of
primary user. If there are multiple sets that optimize
19 subject to the constraint 20,A∗ is randomly chosen
from these set with equal probability. In the decentralized
channel access algorithm specified in Section III-A.1, the
utility function is specified asUk(ρ̂k, b̂k) = ĥk b̂k and the
transmission power limit is specified to beP = 1 since
only one user is allowed for transmission per time slot.

The conventional opportunistic accessing scheme as-
sumes the state information received by the virtual central
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scheduler is true, that is,̂ρk = ρk and b̂k = bk.
However, the conventional opportunistic algorithm may
be challenged when the users become so sophisticated and
are able to reconfigure themselves to make efficient usage
of the local resources (e.g. manage their own reporting
data to have the most efficient data transmission). It
becomes increasing important to design a mechanism to
optimize the overall system performance while ensuring
the profit of each user.

B. The Pricing Mechanism

We are going to apply the VCG pricing mechanism to
the opportunistic scheduling algorithm, the new mecha-
nism enforces the truth revealing property of each user.
The Nash equilibrium of such an algorithm is when each
user reports true values.

1) The Pricing Mechanism:Different from the cen-
tralized conventional opportunistic scheduling algorithm,
the proposed pricing mechanism is a distributed algorithm
where each user tries to maximize his own utility function
by choosing the reported state values. The buffer and
throughput that userk chooses to report to the central
scheduler is a solution of the following optimization
problem:

{ρ̂k, b̂k} := max
Θ̂k

vk(Θk, Θ̂k, Θ̂−k)

= max
ρ̂k,b̂k

αγkρkbk ×
Q

j∈A∗,j 6=k αγj ρ̂j b̂jQ
j∈A

′ αγj ρ̂j b̂j
Ik∈A∗ + Ik/∈A∗ ,

where the setsA∗ and A
′

are defined in the following
ways:

A∗ := arg max
X
j∈A

γj ρ̂j b̂j , s.t. |A| ≤ P ;

A
′

:= arg max
ρ̂k=0

X
j∈A,j 6=k

γj ρ̂j b̂j , s.t. |A|k/∈A ≤ P.

In this optimization problem,α is a fixed constant for the
system chosen to beα > 1, I{.} is the indication function
whose value is1 when the condition is true, otherwise, it
is 0.

vk(Θk, Θ̂k, Θ̂−k) is the utility function of userk,
which is a function of the true states ofkth user, the
reported states ofkth user and the reported states of all
the remaining users. When a user is not scheduled for
transmission, his utility function equals to1, while when
a user is scheduled for transmission, his utility function
equals to the first part, that is:

vk(Θk, Θ̂k, Θ̂−k) =

8<: αγkρkbk ·Qj∈A∗,j 6=k α
γj ρ̂j b̂jQ

j∈A
′ α

γj ρ̂j b̂j
if k ∈ A∗

1. if k /∈ A∗

In the above equation, the first partαγkρkbk is the gain
of userk per unit of subcarrier with throughput stateρk

and buffer statebk. The second term
Q

j∈A∗,j 6=k αγj ρ̂j b̂jQ
j∈A

′ αγj ρ̂j b̂j

can be interpret as the number of unit of subcarrier that
userk will be allocated which is a function of the state
of the remaining users in the system. In other words, the
inverse of the second term could be interpreted as the
price that userk has to pay to the system if it is scheduled
for transmission. Each user select{ρ̂k, b̂k} to report to

the central scheduler aiming to maximize its own utility
function.

There is one condition necessary in order to achieve an
efficient allocation scheme with selfish agents [36], [37]:
if a userk (k=1,2,. . . ,K) reports a false state valuesΘ̂k 6=
Θk results in the same value of the utility function as that
of if it reports the true value, which isvk(Θk, Θ̂k, Θ̂−k) =
vk(Θk, Θk, Θ̂−k), Θ̂k 6= Θk, then the user will choose to
report the true values. We name this as thetruth preferred
rule. The interpretation of this rule is that when lying
about the states does not bring any benefit to a user, a
user would prefer telling the truth.

The pricing mechanism we propose above is based on
the VCG mechanism, where we modified the conventional
summation form of the utility function into a product
form. Such pricing mechanism can be easily related to a
practical 802.11 system and interpret the utility function
in terms of real physical parameters.

2) Economic Properties of The Pricing Mechanism:
The pricing mechanism we proposed above still maintains
the same desirable economic properties as that of VCG
mechanism, these properties are specified as follows [38],
[39]:

1) The mechanism is incentive-compatible in ex-post
Nash equilibrium. The best response strategy is to
reveal the true state information̂Θk = Θk even
after they have complete information about other
usersΘ−k.

2) The mechanism is individually rational. A selfish
agent will join the mechanism rather than choosing
not to, because the value of the utility function is
non-negative.

3) The mechanism is efficient. Since all the users
will truthfully reveal their state information, the
opportunistic scheduling algorithm carried out by
the central scheduler will maximize the system
performance.

The detailed proof of the properties is shown in [26].
Fig. 3 is a numerical example showing the performance

of the pricing mechanism we designed. We simulate a
30 users cognitive radio system with each user has5
buffer states and10 throughput states. The transmission
power constraint on the system isP = 3 which is
equivalent to that the maximum number of users transmit
simultaneously is3.

In Fig. 3, the x-axis represents the number of iterations
and y-axis represents the mean squared error (MSE) of the
reported buffer states and throughput states.n is used to
denote the iteration index. Defininĝρn = {ρ̂n

1 , . . . , ρ̂n
K}

and b̂n = {b̂n
1 , . . . , b̂n

K}, the MSE of the reported buffer
states and throughput states can be written as:

MSE(ρ̂n) =
1

K
×

KX
k=1

(ρ̂n
k − ρn

k )2; (21)

MSE(b̂n) =
1

K
×

KX
k=1

(b̂n
k − bn

k )2. (22)

In the figure, the solid curve and the dash curve show the
MSE of the reported buffer states and throughput states,
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Figure 3. The MSE of the reported buffer states and throughput states
after applying the pricing mechanism. The result is of a30 users system
with L = 5, Qρ = 10 andP = 3.

respectively. We can see from the figure that the MSE
converge to0 after 11 iterations, at which state, all the
users in the system report truthfully and̂Θ = Θ.

V. CORRELATED EQUILIBRIUM IN STOCHASTIC

DYNAMICAL GAME

This section considers the user scheduling problem in
a cognitive radio network, with the goal of obtaining the
correlated equilibrium policy in a general-sum stochastic
dynamical game setting. The correlated equilibrium policy
of each user takes into account its transmission rate and
transmission delay [29]. The dynamic of the channel
quality and buffer state is formulated as a Markov chain
and the correlated equilibrium of such a stochastic game is
defined based on the Q-functions. The existing non-regret
learning algorithm [40], [41] can be easily applied to
obtain such correlated equilibrium policies. The correlated
equilibrium policy of each user is independent from each
other, which enables the decentralized feature of the
system. We propose two algorithms, namely, iterative cor-
related equilibrium algorithm and correlated Q-learning
algorithm. Compared to Algorithm 3, Algorithm 4 com-
bines the Q-learning with the non-regret learning which
offers a decentralize feature and is more implementable.
Distributed learning is an important feature of a cognitive
radio system since it does not require central control and
each user is able to learn the correlated equilibrium policy
independently. Both of the algorithms proposed in this
section are novel and have not been applied in cognitive
radio networks before.

A. System Model and Transmission Control Utility Func-
tion

Different from the system model used in Section III,
the system model we use here allows more than one user
to access to the spectrum at each time slot.

Similarly, we assume there areK users in the system
and t is used as the time slot index.hk denotes the

channel quality of userk and the composition of the
channel states ish = {h1, . . . , hK}. The channel state
over time is formulated as a Markov chain with transition
probability denoted asP(ht+1|ht). The buffer state of user
k is denoted asbk andb = {b1, . . . , bK}. The incoming
traffic of userk is fk and f = {f1, . . . , fK}. The system
state of userk is sk = {hk, bk} and the composition of
the states of all the users is denoted ass = {s1, . . . , sK}.

The system is designed to perform effective user
scheduling. At each time slot, each userk (k ∈ K)
chooses an optimal actionak from the action setAk =
{0, 1}, where0 representsno transmissionand 1 repre-
sents transmission. The joint action of all the users is
denoted asa = {a1, . . . , aK}, which is an element of the
joint action space,a ∈ A. Using standard game theoretic
notation, we can writea = {ak,a−k} with a−k standing
for the joint actions of other users excluding userk.

The transition probability between the current compos-
ite states = [h,b] and the next states′ = [h′,b′] is a
function of a, which can be expressed as:

P(s′|s,a) =

KY
k=1

P(h′k|hk) ·
KY

k=1

P(b′k|bk, ak), (23)

where the expression ofP(b′k|bk, ak) is given in (11).
The utility function of userk in states given actiona

is denoted asuk(s,a), and it is specified as:

uk(s,a) = γk

�
log
�
1 +

|hk|2ak

σ2
k(n) +

PK
j=1,j 6=k |τk,jhj |2aj

�
− βkbk

1
K

PK
j=1 bj

�
,

where γk is the QoS parameter andγk ∈ {γp, γs}. If
user k is a primary user,γk = γp ≥ 0, while if user
k is a secondary user,γk = γs ≥ 0. γp À γs so that
the primary users have the priority over secondary users.
The first half of the utility functionlog(. . . ) represents
the maximum achievable transmission rate of userk and
it is similar to that in (3), while the second half includes
the transmission delay andβk ≥ 0 denotes the weighting
parameter between the transmission rate and the delay.
τk,j is the channel coefficient determined by the location
of users andτk,j ·hj measures the channel quality between
the jth transmitter and thekth receiver.

B. Correlated Equilibrium in a Markovian Dynamic
Game

1) A Review of Correlated Equilibrium in Static
Games: To motivate the correlated equilibrium for a
dynamic game, we first review the correlated equilibrium
for a static game. In aK-user static game setup, each
userk ∈ K aims to devise a rule for selecting an action
ak from its action setAk so as to maximize the expected
value of its utility functionuk({a1, a2, . . . , aK}). Since
each user is only able to adapt its own action, the optimal
action policy depends on the rational consideration of the
policies from other users. The adopted solution for such
a problem is called anequilibrium. Many equilibrium
concepts have been developed and the most common one
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is the Nash equilibrium. In this section, we focus on an
important generalization of the Nash equilibrium, known
as correlated equilibrium[27], [28], which is defined as
follows.

Definition 1: Define a joint policyπ to be a probabil-
ity distribution on the joint action spaceA = A1×A2×
. . .AK . With the given actions of other usersa−k, the
policy π is a correlated equilibrium, if for everyak ∈ Ak,
(k = 1, 2, . . . , K) such thatπ(a−k, ak) > 0, and any
alternative policya′k ∈ Ak, it holds that,X

a−k∈A−k

π(a−k, ak)uk({a−k, ak}) ≥X
a−k∈A−k

π(a−k, ak)uk({a−k, a′k}). (24)

One intuitive interpretation of correlated equilibrium is
that π provides theK users a strategy recommendation
from the trusted third-party. The implicit assumption is
that theK − 1 other users follow this recommendation,
and userk ask itself whether it is of its best interest
to follow the recommendation as well. The equilibrium
condition states that there is no derivation rule that could
award userk a better expected utility. We also notice that
the set of Nash equilibria is obtained by intersecting the
polyhedron described above with the additional constraint
π(a−k|ak) = π(a−k|a′k) for all ak, a′k ∈ Ak anda−k ∈
A−k. Any Nash equilibrium can be represented as a
correlated equilibrium when the users can generate their
recommendations independently.

One advantage of using correlated equilibrium is that
it permits coordination among users, generally through
observation of a common signal, which leads to improved
performance over a Nash equilibrium [28].

2) The Definition of Correlated Equilibrium in
Markovian Games:The stationary policy of the system is
only a function of the state instead of the time. We useπs
to denote the transmission policy vector of all the users in
states. The policies of all the users over all the states can
be denoted asπ andπs ∈ π. Any πs can be decomposed
into marginals (πs,k, πs,−k) for any k, whereπs,k is the
marginal probability distribution of the strategy of userk,
while πs,−k is the marginal distribution of all users butk.
Furthermore, each entry ofπs is denoted asπs(a−k, ak)
(∀a−k ∈ A−k, ∀ak ∈ Ak), which represents the joint
probability of taking actiona−k and ak in states. The
infinite horizon expected total discounted value of userk
with initial states0 = s under transmission policyπ is:

V π
k (s) = Eπ

� ∞X
t=0

βtuk(st,at)
��s0 = s

�
, (25)

where0 < β < 1 is the economic discount factor chosen
by the system.

Based on the above definitions, each userk, k ∈ K
updates its value vector from timet to t + 1 in the
following way,

V t
k (s) = max

πs,k

X
a∈A

πs(a)
�
uk(s,a) + γ

X
s′∈S

P(s′|s,a)V t−1
k (s′)

�
.

The above optimization problem defines how the strategy
of each userπs,k is updated at each iteration. Denoteπ∗

as the solution to the problem when all the users do the

value vector update simultaneously. The value vector of
userk converges toVπ∗

k under policyπ∗ andV π∗
k (s) ∈

Vπ∗
k
We are now ready to define the Q-function. Q-function

Qπ∗
k (s,a) of user k is the total discounted reward of

taking actiona in states and then followingπ∗ thereafter,
and it is defined as:

Qπ∗
k (s,a) = uk(s,a) + γ ·

X
s′∈S

P(s′|s,a)V π∗
k (s). (26)

Therefore, we can have the following relationship be-
tween the value vector and Q-function [42].

V π∗
k (s) =

X
a∈A

π∗s (a) ·Qπ∗
k (s,a). (27)

The correlated equilibrium in a Markovian dynamic game
is then defined as follows.

Definition 2: The stationary policyπ∗ is a correlated
equilibrium for the Markovian game described above if
∀k ∈ K, ∀s ∈ S and∀ak, a′k ∈ Ak,X

a−k∈A−k

π∗s (a−k, ak) ·Qπ∗
k (s, {a−k, ak}) ≥X

a−k∈A−k

π∗s (a−k, ak) ·Qπ∗
k (s, {a−k, a′k}). (28)

C. Distributed Correlated Equilibrium Algorithm

In this section, we first introduce an iterative corre-
lated equilibrium algorithm which uses the non-regret
learning algorithm to obtain the correlated equilibrium
in the Markovian game. Then, we propose a correlated
Q-learning algorithm which combines the non-regret al-
gorithm and Q-learning so as to calculate the correlated
equilibrium policy in a distributed way. Both of the
algorithms proposed are novel and have not been applied
in cognitive radio networks.

First of all, the existence of a correlated equilibrium
in any general-sum Markov game can be shown by the
following result from [42].

Theorem 3: [42] Every general-sum Markov game
has a stationary correlated equilibrium policy.
This result enables the application of the following algo-
rithms.

1) Iterative Correlated Equilibrium Algorithm:Non-
regret learning algorithm was first proposed by Hart and
Mas-Colell in [40], where they formulate the probabil-
ities the players depart from their current plays to be
proportional to the measure of regret for not having
used other strategies in the past. The non-regret learning
algorithm has been proved to be able to converge to the
set of correlated equilibria of the game with probability
one. An iterative correlated equilibrium algorithm has
been designed to obtain the correlated equilibrium in the
Markovian game system model in this section. By using
this algorithm, each user in the system does not need to
keep the information of the Q-functions of other users
and the problem has been solved in a distributed way to
some extent.

The iterative correlated equilibrium algorithm is sum-
marized in the table for Algorithm 3. In the algorithm, we
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Algorithm 3 Iterative Correlated Equilibrium Algorithm
Outer Loop
Step 1 Initialization:
n = 0 and initialize Q0

k(s,a) for ∀k ∈ K, ∀s ∈ X and
∀a ∈ A.
Step 2For ∀k ∈ K and∀s ∈ S do the following:
Inner Loop : Non-regret Learning

Initialize inner loop indexl = 0, initial regret matrixR0
k

and actiona0
k.

Action Update: leti = al
k and let al+1

k = j with the
probability

P l+1
k (j) =

max{Rn
k (i,j),0}
µ

if j 6= i;

P l+1
k (j) = 1−

P
m6=i max{Rn

k (i,m),0}
µ

if j = i.
Regret matrix update:
Hi,j

k (al+1) = I
(al+1

k
=i)

· �Qk(j,al+1
−k )−Qk(i,al+1

−k )
�
;

Rl+1
k = Rl

k + 1
l+1

�
Hk(al+1)−Rl

k

�
.

Exit inner loop whenPl
k converges and setπn = Pl+1; else

set l = l + 1 and return back toInner Loop .
Step 3Update value vectors:
V n

k (s) =
P

a∈A πn
s (a) ·Qn

k (s,a), for ∀k ∈ K, ∀s ∈ S.
Step 4Update Q-function values:
Qn+1

k (s,a) = uk(s,a) + γ · Ps′∈S P(s
′|s,a)V n

k (s′) for
∀k ∈ K, ∀s ∈ X anda ∈ A.
The iteration terminates when the values of the parameters
πn converge; else setn = n + 1 and return back to Step2.

first initialize the outer loop iteration indexn = 0 and the
initial Q-function values in Step 1. Then, we implement
the non-regret learning algorithm for eachk ands to learn
the new policy. Based on the new policy, we update the
value vectorsV n

k and the Q-function values accordingly.
The inner loop of the algorithm is non-regret learning,

wherel denotes the inner loop iteration.Rl
k denotes the

regret matrix of userk at the lth iteration. Each entry
Rl

k(i, j) indicates the regret value from actioni to action
j. Pl denotes the policy of all the users at thelth iteration,
while Pl

k denotes that of userk andPl = {Pl
1, . . . ,P

l
K}.

Each of Pl
k entry P l

k(j) represents the probability of
taking actionj at iterationl. The new policy of each user
is to pick an action according to the action probability
Pl. The constantµ is a normalization factor chosen to
beµ >

∑
m 6=i max{Rn

k (i,m), 0}, ensuring the update of
P l+1

k yields valid probabilities. It can be viewed as an
inertia parameter, i.e., a higherµ yields lower probability
of switching. The termIf(x) is the indicator function
which equals to1 whenf(s) is true and0 otherwise.

The non-regret learning algorithm applied here is based
on [41] and its convergence has been proved therein. We
observe that in Algorithm 3, each user does not need
to know the utility functions and policies of other users
which makes the algorithm distributed. Note that in the
inner loops, users play the repeated games and the process
can be implemented online while the outer loop relies on
the knowledge of the probability transition matrix and
hence is an offline update. It motivates us to propose
the next algorithm, which lifts the requirement of the
transition matrix and is implementable online.

2) Correlated Q-learning Algorithm:Q-learning is a
type of reinforcement learning technique which learns the
Q-function values without the knowledge of the system

model. In this section, we are going to propose a corre-
lated Q-learning to calculate the correlated equilibrium
policy for the Markovian game. Compared to Algo-
rithm 3, this algorithm does not require the information of
the system state transition probability matrix which makes
it more practical and implementable.

Algorithm 4 Correlated Q-learning Algorithm

Step 1 Initialize n = 0 and Q0
k(s,a) for ∀k ∈ K, ∀s ∈ S

and∀a ∈ A.
Step 2Updateπn by non-regret learning.
Step 3Update the Q-function values:
For ∀s ∈ S and∀a ∈ A:
Qn+1

k (s,a) = (1 − αn) · Qn
k (s,a) + αn[uk(s,a) +

γP(s′|s,a)
P

a′∈A πn
k (s′,a′) ·Qn

k (s′,a′)]
The algorithm terminates when the values of the parameters
πn converge; else setn = n + 1 and return back to Step2.

The correlated Q-learning algorithm (Algorithm 4) can
be summarized as follows. System initializes the iteration
index n and the initial Q-function values in Step 1.
Step 2 calculates the correlated equilibrium policyπn

with given Q-function values by using the non-regret
learning similar to that in Algorithm 3. The system runs
the non-regret learning offline. Based on the updated
transmission policies, each user updates its Q-function
values by using Q-learning. Parameterαn is the learning
rate sequence which is chosen such that

∑∞
n=1 αn = ∞

and
∑∞

n=1 α2
n < ∞. The algorithm terminates when the

Q-function converges. The optimal correlated equilibrium
and the value function can thus be obtained from the final
Q-function.

In both Algorithm 3 and Algorithm 4, at each inner
loop iteration, they require the knowledge of theQ-
function they calculate at each outer loop. Based on this
information, each user performs one table lookup in its
Q-function to calculate theQ-utility given the current
readings of the states and the actionsal. Two additions
and two multiplications update the regret value; and one
random number, one multiplication and one comparison
suffice to calculate the next action. In the outer loop,
an update is done for each states and action profile
a. The computational complexity for the inner loop is
small and hence suitable for implementation. However,
the complexity of outer loop depends on the number of
states and the size of action profiles. The size of the action
set is exponential in the number of users. However, it is
possible to regard the actions of other users as one virtual
action so as to reduce the dimension of the set of action
profiles. This dimension reduction technique enables a
dramatic reduction in computational complexity, making
an efficient process the update of the Q-functions in the
algorithms.

VI. OPEN ISSUES ANDCONCLUSIONS

This paper adopt game theoretic approach to solve
various problems in cognitive radio systems, such as
power allocation, rate adaptation and accessing control.
The main game theoretic concepts we used include Nash
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equilibria in static games and switching control games,
correlated equilibria in stochastic Markovian games and
mechanism design.

Despite the recent popularity of game theory in wire-
less communications and cognitive radio networks, the
potential for further research is vast. Here are some open
issues related to this paper:

1) The dimension of the system state in a stochastic
game is exponential to the number of users of
the system, thus, the convergence speed of Algo-
rithm 2,3,4 suffers from the “curse of dimension-
ality” when the system has large number of users.
How to efficiently reduce the state space is yet an
issue to solve.

2) Section III only focuses on a special type of
game, namely switching control Markovian game.
The study of a more general type of Markovian
game is still a very interesting area. For example,
prove the existence of the Nash equilibrium in a
general Markovian game under certain conditions
or propose efficient algorithms to obtain a Nash
equilibrium policy in a general Markovian game.

3) The pricing mechanism used in Section IV is based
on the well-known VCG mechanism. The devel-
opment of other pricing mechanisms or reputation
based mechanism can be one direction of the future
work.

4) More analytical results of the correlated equilibrium
in a general-sum stochastic game (e.g., the struc-
tural result on the correlated equilibrium policy) can
be explored.
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