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ABSTRACT 

Simulation plays a vital role in identifying the best system 
design from among a set of competing designs. To improve 
simulation efficiency, ranking and selection techniques are 
often used to determine the number of simulation replica-
tions required so that a pre-specified level of correct selec-
tion is guaranteed at a modest possible computational ex-
pense. As most real-life systems are multi-objective in 
nature, in this paper, we consider a multi-objective ranking 
and selection problem, where the system designs are 
evaluated in terms of more than one performance measure. 
We incorporate the concept of Pareto optimality into the 
ranking and selection scheme, and try to find all of the 
non-dominated designs rather than a single “best” one. A 
simple sequential solution method is proposed to allocate 
the simulation replications. Computational results show 
that the proposed algorithm is efficient in terms of the total 
number of replications needed to find the Pareto set. 

1 INTRODUCTION 

Simulation is commonly used to identify the best system de-
sign from among a set of proposed alternatives, where “best” 
is defined in terms of the maximum (or minimum) expected 
value of some function of the simulation output. However, 
since simulation can be both expensive and time consuming, 
efficiency is still a key concern in this area. Therefore, to 
evaluate the relative worth of the competing designs, rank-
ing and selection techniques are often used to determine the 
number of simulation replications required for each design 
so that a pre-specified level of correct selection is guaranteed 
at the least possible computational expense. This area of re-
search has gained popularity in simulation output analysis 
and optimization in the last decade. There are quite a num-
ber of review papers available in this field (Bechhofer, Sant-
ner, and Goldsman 1995; Goldsman and Nelson 1998; 
Swisher, Jacobson, and Yücesan   2003).  
Ranking and selection procedures are statistical meth-
ods specially developed to select the best system design or a 
subset that contains the best system design from a set of n 
competing alternatives (Goldsman and Nelson 1994). Sev-
eral different approaches to the problem have been pro-
posed. The difference mainly lies in how to allocate replica-
tions to certain designs. For instance, the commonly used 
two-stage indifference-zone procedure proposed by Rinott 
(1978) determines the number of additional simulation repli-
cations for each design based on the sample variances esti-
mated from the first stage of sampling. This procedure is 
based on a least-favorable configuration formulation to allo-
cate additional replications. Alternatively, an average case 
analysis can be used to allocate additional replications. This 
idea has engendered two distinct approaches, outlined be-
low. Chen, Chen, and Dai (1996) and Chen et al. (1997) fol-
lowed a Bayesian methodology, making use of information 
on both sample means and sample variances. The rational 
here is to only simulate likely competitors for the “best”, 
thus leading to significant improvement in computing effort 
in the simulation. Chick (1997) proposed Bayesian decision 
theoretic methods, which attempt to select an additional 
number of replications for each system so that the expected 
value of information gained from those replications is 
maximized, rather than using the thought experiment as in 
Chen, Chen, and Dai (1996) and Chen et al. (1997). 
Information gains for the probability of correct selection are 
measured with respect to the 0-1 loss function. 

Most of the studies in the ranking and selection area 
focus on a single measure of system performance, or put  
another way, the system is evaluated with respect to a sin-
gle objective. However, most real-life systems and designs 
often have multiple objectives. For example, in product-
design optimization, the cost and the quality of products 
are two conflicting objectives. In evaluating airline flight 
schedules, we may want to select flight schedules in terms 
of minimal FTC (flight time credit) and minimal percent-
age of late arrivals (Tan 2003). In this setting, the problem 
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of selecting the best designs from a set of alternatives 
through simulation becomes a multi-objective ranking and 
selection (MORS) problem. One common way to address 
the MORS problem is to weight several parameters of in-
terest to form a single measure of effectiveness by apply-
ing multiple attribute utility (MAU) theory (Butler, Mor-
rice, and Mullarkey 2001; Morrice, Butler, and Mullarkey 
1998; Swisher and Jacobson 2002). The problem reduces 
to a single-objective model, and existing methods can be 
applied. Dudewicz and Taneja (1978) proposed a multi-
variate procedure by defining a multivariate normal vector 
composed of 1c >  component variates with an unknown 
and unequal variance-covariance matrix. They redefine the 
indifference-zone parameter as the Euclidean distance from 
a mean vector to the best mean vector. In both approaches, 
the authors try to determine a single “best” solution. In the 
former (weighted parameter) approach, the decision maker 
not only needs to “cost out” performance in one criterion 
for performance in another, but he also needs to specify the 
relative importance of the performance measurers. As a re-
sult, the best solution selected would be strongly dependent 
on these preferences. In case another decision maker has 
different preferences with respect to the performance 
measures, or if the decision maker changes his preferences, 
the solution may become inferior. In the latter (multivari-
ate) approach, it may not be easy to find the best mean vec-
tor due to the multi-objective nature of the problem. 

 In the case of problems that are multi-objective in na-
ture, there may not exist a single best solution, but rather a 
set of non-dominated solutions. The complete set of non-
dominated solutions is referred to as the Pareto set of solu-
tions. They represent the “best” designs and are character-
ized by the definition that no other solution exists that is 
superior in all the objectives. In the application of evolu-
tionary algorithms to solve multi-objective problems, the 
concept of Pareto optimality is often employed to find the 
non-dominated Pareto set (Fonseca and Fleming 1995; 
Teich and Schemann 2000; Zitzler and Thiele 1999). In 
this paper, to address the MORS problem, we incorporate 
the concept of Pareto optimality into the ranking and selec-
tion scheme. We try to provide a non-dominated Pareto set 
of designs to the decision maker, rather than reducing the 
problem to a single-objective model and providing a single 
“best” design as in Butler, Morrice, and Mullarkey (2001), 
Morrice, Butler, and Mullarkey (1998), and Swisher and 
Jacobson (2002).  

The problem considered in this study is now stated as 
follows. Suppose that we have a set of n designs, where each 
is evaluated in terms of m independent objectives. We want 
to find the non-dominated (Pareto) set of designs by running 
simulations. The problem is to determine an optimal alloca-
tion of the simulation replications to the designs, so that the 
non-dominated set of designs can be found at the least ex-
pense in terms of simulation replications. In this paper, we 
assume that the number of non-dominated designs (K) in the 
space is known in advance. The paper is organized as fol-
lows. Section 2 introduces a performance index to measure 
how non-dominated a design is in the case of multi-objective 
problems. The posterior distribution of the mean perform-
ance of a design is discussed in Section 3.  Section 4 pro-
poses a simulation replications allocation procedure for the 
MORS problem. Section 5 presents some computational re-
sults, and finally some conclusions and future research direc-
tions are summarized in Section 6.   

2 MEASUREMENT OF NON-DOMINATED 
DESIGNS IN MULTI-OBJECTIVE  
PROBLEMS 

To incorporate the concept of Pareto optimality into the 
ranking and selection scheme, we first need to find a way 
to measure how non-dominated a design is. 

Without loss of generality, we assume that minimiza-
tion of the objectives is our goal throughout this paper. 
Also, we assume that the random variables under study fol-
low continuous distributions. 

2.1 Comparing Uncertain Performance  
Measures of Two Designs 

When considering Pareto optimality, we are trying to find a 
complete set of those non-dominated designs. Suppose we 
have two designs i and j, each of which is evaluated in 
terms of m performance measures as illustrated below.  
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In a noise-free situation, design j dominates design i, de-
noted by ij µµ p , if the following condition holds with at 
least one inequality being strict: 

 
.,...,2,1for mkikjk =≤ µµ  

                                             
However, if “fitness” values ikµ  and jkµ  are random, i.e., 
subject to noise, then we have to consider the probability 
that design j dominates design i, as expressed in the follow-
ing condition with at least one inequality being strict: 
 

.),...,2,1for()( mkPP ikjkij =≤= µµµµ p  
                                

Under the condition that the performance measures are in-
dependent from one another and they follow continuous 
distributions, we have 

 .)()(
1

∏
=

≤=
m

k
ikjkij PP µµµµ p  (1) 
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2.2 A Performance Index to Measure  

the Non-dominated Designs 

We now introduce a performance index to measure how 
non-dominated a design i is, when the performance meas-
ures are subject to noise. Given n designs, we calculate the 
cumulative probability of design i being dominated by 
other designs: 
                  

 .)(
,1
∑

≠=

=
n

ijj
iji P µµψ p  (2) 

                                
Performance index iψ  measures the sum of the probabili-
ties that other designs are better than design i. Therefore, if 

iψ  is close to 0, then the probability that other designs are 
better than design i is low; and the probability that design i 
is non-dominated is high, so that it should be included in 
the Pareto set.  

We establish some notation.  
 

*ψ :  A predefined required performance index for designs 
in the Pareto set to be retained at the end of the 
simulation. 

pS  :  The Pareto set containing all non-dominated designs. 

iδ   :  The number of replications allocated to design i. 
K    :  The number of non-dominated designs known in ad-

vance.  
Nmax: The maximum total number of simulation replica-

tions available. 
 
The general idea is to perform 0δ  replications for each 

design (i = 1,2,…,n), estimate the performance index iψ  for 
each design, and then rank the designs in ascending order of 

iψ , with )()()2()1( nK ψψψψ ≤≤≤≤≤ LL . Since iψ  is 
the performance index measuring the sum of probabilities 
that other designs are better than design i, the K designs with 
the smallest ψ values are very likely to be the non-
dominated designs at the current simulation stage; therefore, 
we put them into the Pareto set, given that K is the known 
number of non-dominated designs. Then our problem be-
comes: determine the optimal allocation of the replications 
to the designs so that each design in the Pareto set has per-
formance index less than the required performance index 
( *ψ ), and the total number of simulation replications is 
minimized. The problem can be formulated as follows:  
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 (3) 
Alternatively, we can minimize the largest perform-
ance index for designs in the Pareto set, while satisfying 
the constraint that the total number of replications is within 
a predefined limit, Nmax. The problem becomes: 
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In this study, though our final goal is to solve problem 

(3), we adopt a sequential approach, where at each step, 
given a total number of δ (<< Nmax) replications to be allo-
cated, problem (4) is considered.  

3 POSTERIOR DISTRIBUTIONS BASED  
ON BAYESIAN MODEL AND  
SIMULATION OUTPUT  

When we try to identify the best designs among several de-
signs, we compare random variables representing the 
means whose posterior distributions can be derived based 
on the simulation output. Therefore, before presenting a 
method to solve problems (3) or (4), we need to know how 
to get the posterior distributions of the random variables 
representing the means, and how each distribution would 
change upon additional replications allocated to the corre-
sponding design. Suppose that ikF%  is the random variable 
representing the posterior mean performance for the kth 
objective of design i, and îkF  is the random variable repre-
senting the posterior mean performance for the kth objec-
tive of design i after additional replications are allocated to 
design i. Now we illustrate how to get the posterior distri-
butions for ikF%  and îkF  based on a Bayesian model and 
simulation output.  

Assume that we use the following additional notation: 
 

s
ikf : Simulation sample s for the kth objective of design i.  

ikf : The sample mean of the simulation output for the kth 
objective of design i. 

1

1 .
i

s
ik ik

i s

f f
δ

δ =

= ∑  

:ikµ  The unknown mean performance measure for the kth 
objective of design i. 

2
ikσ :  The known variance of the kth objective of design i. 

ikF% : A random variable representing the posterior mean 
performance for the kth objective of design i. 



Lee, Chew, Teng, and Goldsman 

      

     
 

îkF : A random variable representing the posterior mean 
performance for the kth objective of design i after ad-
ditional replications have been allocated to design i. 

 
Suppose that the simulation output s

ikf  follows a nor-
mal distribution with unknown mean ikµ , and known vari-

ance 2
ikσ , where the unknown mean ikµ  is itself a random 

variable with prior distribution ),( 2
ikik vN η ; then according 

to DeGroot (1970), the posterior distribution of ikµ  is: 
           

ikF% ~
2 2 2 2

2 2 2 2,( ).ik ik i ik ik ik ik

ik i ik ik ik i

v f v
N

v v
σ η δ σ

σ δ σ δ
+
+ +

 

                                           
If the variance 2

ikv  of the prior distribution of ikµ  is 
very large, then little prior knowledge is available for the 
performance of the designs before conducting the simula-
tion. In that case, the posterior distribution of ikµ  can be 
approximated as 
                    

ikF% ~
2

,( ).ik
ik

i
N f

σ
δ

 

 
which makes intuitive sense.                

In our study, we assume that the “known” variance of 
the simulation output ( 2

ikσ ) is simply the sample variance 

(which is actually a random variable used to estimate 2
ikσ ). 

Our estimate for 2
ikσ  is updated whenever additional simula-

tion replications are allocated to certain designs. If the vari-
ance 2

ikσ  is also assumed to be unknown, the posterior dis-
tribution of ikµ  will follow a more complex distribution. 

To examine how the probability distribution of ikF%  
changes after additional replications are allocated to design 
i, suppose we conduct 0δ  replications on design i first, af-
ter which an additional iδ  replications are allocated to de-
sign i. Then the posterior distribution for the kth objective 
of design i is  

 

 îkF ~
0 2

0 01

1 ,( ).
i

s ik
ik

i is

N f
δ δ σ

δ δ δ δ

+

=+ +∑      

                                                                                                   
If iδ  is small, then a good approximation to the posterior 
distribution is  

 

                    îkF ~
0 2

0 01

1 ,( ).s ik
ik

is

N f
δ σ

δ δ δ= +∑  (5) 
        

4 A REPLICATIONS ALLOCATION 
PROCEDURE FOR THE  
MORS PROBLEM 

From (5), we see that additional replications allocated to a 
certain design should be small enough so that the sample 
mean does not change much after running the additional 
replications. Therefore, we adopt a sequential approach to 
solve problem (3): we iteratively perform a number of 
steps, with a small number of δ  replications allocated to 
the designs at each step. Specifically, at each step, given a 
total number of δ  replications to allocate, we consider 
solving problem (4), which is to find design(s) that can 
gain the highest decrease in the overall performance index 
of designs in the Pareto set.  

To solve problem (4), we examine the change on the 
performance index iψ  upon additional replications allo-
cated to design d, say idψ∆ . Then allocate additional rep-
lications to those designs that can gain the highest increase 
in the total change of the performance index for designs 
selected into the Pareto set.  

4.1 Change on Performance Index upon Additional 
Replications Allocated to a Design d  

We show how the performance index iψ  of design i 
changes upon additional replications ( dδ ) allocated to a 
certain design d. 

Given ikF%  and îkF  as defined in Section 3, from (1) 
and (2), we have design i’s performance index  
 

1, 1

( ).
mn

i jk ik
j j i k

P F Fψ
= ≠ =

= ≤∑ ∏ % %  

                                      
First of all, suppose id ≠ , so that additional replications 
are not allocated to design i. Since only the distributions 
for the m objectives of design d will change, we have    

 

 
1 1

ˆ( ) ( ).
m m

id dk ik dk ik
k k

P F F P F Fψ
= =

∆ = ≤ − ≤∏ ∏% % %  (6) 

                                      
Otherwise, if id = , then the distributions for design i’s ob-
jectives will change, so 

 

1, 1,1 1

ˆ( ) ( ).
m mn n

id jk ik jk ik
j j i j j ik k

P F F P F Fψ
= ≠ = ≠= =

∆ = ≤ − ≤∑ ∑∏ ∏% % %  (7) 

 
From (6) and (7), we see that the performance index 

iψ  is the sum of 1−n  components. However, when calcu-
lating the change in iψ  ( idψ∆ ) upon additional replica-
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tions allocated to design d, we only need to calculate the 
difference between two components for the 1−n  cases for 
which id ≠ . Only for one case ( id = ) do we need to cal-
culate the difference between all 1−n  components. This 
helps to improve the computational efficiency of the pro-
posed algorithm.  

4.2 Outline of the Multi-Objective Computing  
Budget Allocation (MOCBA) Algorithm  

We propose the following procedures to allocate simula-
tion replications to designs for the MORS problem. We 
call the set of two procedures the MOCBA algorithm. 
Given that p is the number of designs selected to allocate 
additional replications, we have  
 
PROCEDURE I 
Step 0: Perform 0δ  replications for each design  (i = 

1,2,…,n). Then total number of observations   
N  = 0δn . 

Step 1: Calculate performance index iψ  for each design (i 
= 1,2,…,n). Sort the designs i = 1,2,…,n in ascend-
ing order of iψ  as )()2()1( ,...,, nψψψ . Put the K de-

signs with the smallest values of iψ  into the Pareto 
set (Sp). 

Step 2: If )(Kψ < *ψ  or N > Nmax, go to Step 5. 
Step 3: Solve problem (4) by calling PROCEDURE II. Se-

lect p designs 1 2, , ..., pw w w and the corresponding 

number of additional replications 
iwδ (i = 1,2,…,p) 

from PROCEDURE II. 
Step 4: Perform 

iwδ (i =1,2,…,p) replications from those 

selected designs, set
1

,
i

p

w
i

N N δ
=

= +∑ and go to 

Step 1.  
Step 5: Output the K best designs. 

 
PROCEDURE II 
Step 1: For each design pSi ∈  and for each design d = 

1,2,…,n, calculate the change in performance index 
idψ∆  upon additional replications from design d.  

Step 2: Calculate the total change in the performance index 
for designs in pS .  

p

d id
i S

ψ ψ
∈

∆ = ∆∑ . 

Step 3: Sort the designs in descending order of dψ∆  as 

1 2, , ..., nw w w , with the corresponding changes in 
the performance index denoted as 

1wψ∆ ,
2wψ∆ ,…, 
  

nwψ∆ . Allocate additional replications 
iwδ , i = 

1,2,…,p for the first p designs 1 2( , , ..., )pw w w as 
follows.  

 

1

p

p

i

w
w p

w
i

δ ψ
δ

ψ
=

∆
=

∆∑
,  

 

* 1, 2,..., 1i

i p
p

w
w w

w
i p

ψ
δ δ

ψ
∆

= = −
∆

 

5 COMPUTATIONAL RESULTS  

To examine the performance of MOCBA, we make two 
comparisons. One is against the theoretical optimal alloca-
tion (TOA) and the theoretical uniform allocation (TUA); 
and the other is with the uniform computing budget alloca-
tion (UCBA) algorithm. In the following computational 
experiment, when calling PROCEDURE II to solve prob-
lem (4), the number of designs (p) selected to allocate 
additional replications (δ ) is set at 1, and the number of 
replications δ  is set at 5.  

5.1 Comparison with TOA and TUA 

Suppose we know the true mean and variance of the per-
formance measures of the n designs. Then, given a maxi-
mum total number of replications (Nmax) available, we can 
determine how to optimally allocate these replications to the 
designs so that the performance indexes ( iψ ) for designs in 
the Pareto set are minimized. This is what theoretical opti-
mal allocation means. Suppose iδ  is the number of replica-
tions allocated to design i, and )1(ψ , )2(ψ ,…, )(Kψ , …, )(nψ  
is an ordered sequence in ascending order of the values of 

iψ . Given that K is the number of non-dominated designs in 
the Pareto set, we want to find an optimal solution to prob-
lem (4). To find the optimal allocation of the simulation rep-
lications, we conduct a brute force search. Specifically, we 
fix the maximum number of replications Nmax = 400 and the 
number of designs n = 5. We consider the case when designs 
are evaluated in terms of 3 objectives. The means and stan-
dard deviations to generate the designs are listed in Table 1. 
From Table 1, we know that design 2 is dominated by de-
signs 0 and 1; design 3 is dominated by design 1; design 4 is 
dominated by designs 1 and 3; and designs 0 and 1 are non-
dominated designs. 

For the TOA, from the brute force search, the number 
of replications allocated to each design (R) and its percent-
age of total number of replications (θ ) are shown in Table 
2. The Kth (2nd) performance index reached for the best al-
location is 5.6 E-4. 
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Table 1: Means and Standard Deviations to Gen-
erate the Designs 
Designs Mean1 Std1 Mean2 Std2 Mean3 Std3

0 16 9 44 9 56 9 
1 17 9 40 9 64 9 
2 18 9 45 9 65 9 
3 19 9 42 9 66 9 
4 20 9 43 9 67 9 

 
Table 2: Number of Replications Needed for the TOA 

Designs 0 1 2 3 4 
R 105 142 40 78 35 
θ   26.3 35.5 10.0 19.5 8.8 

 
For the TUA, similarly, we suppose the true means 

and standard deviations of the designs are known as in Ta-
ble 1. We want to determine — if we allocate the replica-
tions uniformly to each design — how many replications 
should be allocated to each design, so that the Kth (2nd) 
performance index is within the required performance in-
dex *ψ  = 5.6 E-4. The numbers of replications needed for 
each design (R) are illustrated in Table 3. In this case, 110 
replications should be allocated to each design, and a total 
of 550 replications are needed to attain the same perform-
ance index as in TOA. 

 
Table 3:  Number of Replications Needed for the TUA 

Designs 0 1 2 3 4 
R 110 110 110 110 110 

 
To compare the proposed heuristic (MOCBA) with 

TOA and TUA, we generate 20 problem instances based 
on the means and standard deviations as illustrated in Ta-
ble 1. We set the required performance index ( *ψ ) to be 
5.6 E-4. The replications needed for the 20 instances from 
MOCBA are illustrated in Table 4.   

On average for the 20 instances, the total number of 
replications needed for the 5 designs is 297, which is less 
than 400 (Nmax) for TOA and 550 for TUA. It seems that 
the heuristic (MOCBA) even takes fewer replications than 
the theoretical optimal one. The reason may be due to the 
fact that the MOCBA is sequential; and at each step, it can 
make use of the sampling information from the previous 
steps to make decisions regarding the allocation of addi-
tional replications. Chen, He, and Yücesan (2003) also pre-
sented similar findings. The following Table 5 shows the 
performance comparison among the three algorithms. 

Table 5 illustrates, in our computational experiment, 
how replications are allocated to each design for 
MOCBA, TOA and TUA. This includes the numbers of 
replications allocated to each design (R) and the corre-
sponding percentages of the total number of replications 
(θ ). From Table 5, we can see that the distribution of the 
replications among the designs is similar for MOCBA and 
TOA; see columns θ  for MOCBA, TOA and TUA. The 
results indicate that MOCBA is effective. 

 
Table 4: Number of Replications Needed for 
the MOCBA 

Designs Instance 
No. 0 1 2 3 4 
0 42 55 34 29 29 
1 40 34 5 5 5 
2 83 131 11 7 100 
3 44 52 6 32 15 
4 209 220 57 95 5 
5 117 172 29 127 34 
6 8 45 20 37 15 
7 185 256 6 179 12 
8 211 225 37 77 19 
9 41 56 9 6 28 

10 12 12 5 5 5 
11 111 114 37 19 24 
12 240 247 6 11 95 
13 31 111 63 105 27 
14 28 57 20 53 5 
15 61 62 71 56 92 
16 36 80 14 53 37 
17 65 68 5 5 8 
18 91 96 7 46 20 
19 97 111 6 5 14 

 
Table 5:  Comparison of MOCBA with TOA and TUA 

MOCBA TOA TUA Design 
No. R θ  R θ  R θ  
0 88 29.5 105 26.3 110 20 
1 110 37.1 142 35.5 110 20 
2 22 7.5 40 10.0 110 20 
3 48 16.0 78 19.5 110 20 
4 29 9.9 35 8.8 110 20 

Total 297 100 400 100 550 100 

5.2 Comparison with Uniform Computing 
Budget Allocation (UCBA) 

In this section we present results obtained from comparing 
MOCBA with UCBA. In UCBA, we iteratively allocate 
the same number of replications to each design, until the 
required performance measure is met. We consider the case 
when designs are evaluated in terms of 3 objectives. We 
generate 25 designs based on given means and standard 
deviations. The means used for each design are shown in 
Table 6, and the standard deviation is 3 for all designs. 
From the means of the designs, we know that designs 0, 1, 
3, 4, 8 are non-dominated. To test the robustness of the al-
gorithm, we generate 20 problem instances.  
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Table 6:  Means Used to Generate the 25 Designs 
Design No. Mean1 Mean2 Mean3 

0 15 44 56 
1 16 42 64 
2 19 43 63 
3 22 42 58 
4 18 38 62 
5 23 43 64 
6 18 45 60 
7 19 39 63 
8 20 40 60 
9 22 42 62 

10 24 44 64 
11 26 46 66 
12 28 48 68 
13 30 50 70 
14 32 52 72 
15 34 54 74 
16 36 56 76 
17 38 58 78 
18 40 60 80 
19 42 62 82 
20 42 60 80 
21 36 62 82 
22 42 56 68 
23 32 62 66 
24 34 60 82 

 
In the following comparison of MOCBA with UCBA, 

we set the initial number of runs 0δ  = 15. Also, we set the 
required performance index *ψ  = 0.001 as the stopping 
criterion. 

Figure 1 illustrates the number of replications needed 
for MOCBA and UCBA. From Figure 1, we can see that the 
average speedup of MOCBA over UCBA is about 2 times.  
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Figure 1: Comparison of Total Number of Replications 
for MOCBA and UCBA  

 
Figure 2 illustrates for the 20 problem instances gener-

ated, the average number of replications that are allocated 
to each design for both MOCBA and UCBA. From the 
MOCBA plots, we can clearly see that the following de-
signs are allocated more replications: (a) those designs that 
should be in the Pareto set, and (b) those designs whose 
performances are very close to designs in (a). This indi-
cates that our MOCBA algorithm is effective.  
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Figure 2: Comparison of Average Number of Replica-
tions for Each Design 

6 CONCLUSIONS 

In this paper, we present a framework for the ranking and 
selection problem when the designs are evaluated in terms 
of more than one performance measure: the multi-objective 
ranking and selection (MORS) problem. We incorporate 
the concept of Pareto optimality into the ranking and selec-
tion scheme, and try to find all the non-dominated designs 
in the Pareto set rather than a single “best” design. We pre-
sent a simple sequential solution method (MOCBA) to 
solve the problem. Computational results show that the 
proposed algorithm is efficient in terms of the total number 
of replications needed to find the Pareto set, at least in 
comparison with the TOA (theoretical optimal allocation) 
and TUA (theoretical uniform allocation) with known true 
mean and variance, as well as with the UCBA (uniform 
computing budget allocation). Compared to the TOA and 
TUA, MOCBA takes fewer replications; while compared 
to UCBA, the speedup of MOCBA over UCBA is about 2 
times. In the current study, we assume that the number of 
non-dominated designs in the Pareto set is known. In future 
research, we may relax this assumption and propose meth-
ods to find the correct non-dominated Pareto set. 
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