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ABSTRACT

We study the optimization of a continuous function by its
stochastic relaxation, i.e., the optimization of the expected
value of the function itself with respect to a density in a
statistical model. We focus on gradient descent techniques
applied to models from the exponential family and in par-
ticular on the multivariate Gaussian distribution. From the
theory of the exponential family, we reparametrize the Gaus-
sian distribution using natural and expectation parameters,
and we derive formulas for natural gradients in both pa-
rameterizations. We discuss some advantages of the nat-
ural parameterization for the identification of sub-models
in the Gaussian distribution based on conditional indepen-
dence assumptions among variables. Gaussian distributions
are widely used in stochastic optimization and in particular
in model-based Evolutionary Computation, as in Estimation
of Distribution Algorithms and Evolutionary Strategies. By
studying natural gradient flows over Gaussian distributions
our analysis and results directly apply to the study of CMA-
ES and NES algorithms.

Categories and Subject Descriptors

G.1.6 [Mathematics of Computing]: Optimization —
Stochastic programming ; G.3 [Mathematics of Comput-

ing]: Probabilistic algorithms (including Monte Carlo)

General Terms

Theory, Algorithms

Keywords

Stochastic Relaxation; Information Geometry; Exponential
Family; Multivariate Gaussian Distribution; Stochastic Nat-
ural Gradient Descent
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In this paper we study the optimization of a continuous
function by means of its Stochastic Relaxation (SR) [19], i.e.,
we search for the optimum of the function by optimizing the
functional given by the expected value of the function it-
self over a statistical model. This approach is quite general
and appears in many different communities, from evolution-
ary computation to statistical physics, going through certain
techniques in mathematical programming.

By optimizing the stochastic relaxation of a function, we
move from the original search space to a new search space
given by a statistical model, i.e., a set of probability densi-
ties. Once we introduce a parameterization for the statistical
model, the parameters of the model become the new vari-
ables of the relaxed problem. The search for an optimal
density in the statistical model, i.e., a density that maxi-
mizes the probability of sampling an optimal solution for the
original function can be performed in different ways, simi-
larly, different families of statistical models can be employed
in the search for the optimum. In the literature of Evolu-
tionary Computation, we restrict our attention to model-
based optimization, i.e., those algorithms where the search
for the optimum is guided by a statistical model. In this
context, examples of Stochastic Relaxations of continuous
optimization are given by Estimation of Distribution Algo-
rithms (EDAs) [16], see for instance EGNA and EMNA, and
Evolutionary Strategies, such as CMA-ES [13], NES [32, 31]
and GIGO [9].

There is a clear connection of Stochastic Relaxation with
Entropy based methods in optimization. In fact, on a finite
state space it is easily shown that, starting form any proba-
bility function the positive gradient flow of the entropy goes
to the uniform distribution, while the negative gradient flow
goes to the uniform distribution on the values that maximize
the probability function itself, see e.g. [29].

We are interested in the study of the stochastic relax-
ation of a continuous real-valued function defined over R

n,
when the statistical model employed in the relaxation is
chosen from the exponential family of probability distribu-
tions [12]. In particular we focus on multivariate Gaussian
distributions, which belong to the exponential family, and
are one of the most common and widely employed models
in model-based continuous optimization, and, more in gen-
eral, in statistics. Among the different approaches to the
optimization of the expected value of the function over the
statistical model, we focus on gradient descent techniques,
such as the CMA-ES and NES families of algorithms.

The methods used here are actually first order optimiza-
tion methods on Riemannian manifolds, see [1] for the spe-



cific case of matrix manifolds, with two major differences.
First, our extrema are obtained at the border of the mani-
fold as parameterized by the exponential family. This fact
presents the issue of an optimization problem of a manifold
with border which, in turn, is defined through an extension
of the manifold outside the border with a suitable parame-
terization. Second, the actual IG structure is reacher that
the simple Riemannian structure because of the presence
of what Amari calls dually flat connections and some ge-
ometers call Hessian manifold. Second order optimization
methods are available for the Stochastic Relaxation prob-
lem. The finite state space case has been considered in our
paper [22]. Second order methods are not discussed in the
present paper.

The geometry of the multivariate Gaussian distribution
is a well established subject in mathematical statistics, see
for instance [30]. In this paper, we follow a geometric ap-
proach based on Information Geometry [4, 7] to the study
of the multivariate Gaussian distribution and more gener-
ally of the exponential family from the point of view of the
stochastic relaxation of a continuous function, cf. [27]. In
this work, we extend to the case of continuous sample space
some of the results presented in [20, 21] for the finite sam-
ple space, using a information geometric perspective on the
stochastic relaxation based on gradient descent over an ex-
ponential family. A similar framework, based on stochastic
relaxation has been proposed under the name of Informa-
tion Geometric Optimization (IGO) [26], where the authors
consider the more general case of the relaxation of rank-
preserving trasformations of the function to be optimized.

Exponential families of distributions have an intrinsic Rie-
mannian geometry, where the Fisher information matrix
plays the role of metric tensor. Moreover, the exponential
family exhibits a dually flat structure, and besides the pa-
rameterization given by the natural parameters of the ex-
ponential family, there exists a dually coupled parameteri-
zation for densities in the exponential family given by the
expectation parameters. Since the geometry of the expo-
nential family is in most cases not Euclidean, gradients need
to be evaluated with respect to the relevant metric tensor,
which leads to the definition of the natural gradient [5], to
distinguish it from the vector of partial derivatives, which
are called as vanilla gradient. Such a distinction makes no
sense in the Euclidean space, where the metric tensor is the
identify matrix, and the gradient with respect to the metric
tensor is the vector of partial derivatives.

In the following sections, besides the mean and covariance
parameterization, we discuss the natural and expectation
parameterizations for the multivariate Gaussian distribution
based on the exponential family, and we provide formulae
for transformations from one parameterization to the other.
We further derive the Fisher information matrices and the
vanilla and natural gradients in the different parameteriza-
tions. We prove convergence results for the Gibbs distribu-
tion and study how the landscape of the expected value of
the function changes according to the choice of the Gaus-
sian family. We introduce some toy examples which make
it possible to visualize the flows associated to the gradient
over the statistical model used in the relaxation.

The use of the natural parameters of the exponential fam-
ily makes it possible to identify sub-families in the Gaussian
distribution by setting some of the natural parameters to
zero. Indeed, since the natural parameters are proportional

to the elements of inverse of the covariance matrices, by
setting to zero one of these parameters we have a corre-
sponding zero in the precision matrix, i.e., we are imposing
a conditional independence constraint over the variables in
the Gaussian distribution. From this perspective, we can
rely on an extensive literature of graphical models [17] for
model selection and estimation techniques.

2. THE EXPONENTIAL FAMILY
We consider the statistical model E given on the measured

sample space (X ,F , µ) by the densities of the form

pθ(x;θ) = exp

(
k∑

i=1

θiTi(x)− ψ(θ)

)
, (1)

with θ ∈ ϑ, where ϑ is an open convex set in R
k. The

real random variables {Ti} are the sufficient statistics of the
exponential family, and ψ(θ) is a normalizing term, which
is equal to the log of the partition function

Z : θ 7→

∫
exp

(
k∑

i=1

θiTi(x)

)
µ(dx) .

The entropy is

−

∫
log p(x;θ) pθ(x;θ) µ(dx) = ψ(θ)−

k∑

i=1

θiEθ[Ti] .

The partition function Z is a convex function whose proper
domain is a convex set. We assume that the ϑ domain is
either the proper domain of the partition function, if it is
open, or the interior of the proper domain. Standard ref-
erence on exponential families is [12], where an exponential
family such that the proper domain of Z is open is said to be
steep. Moreover we assume that the sufficient statistics are
affinely independent, that is, if a linear combination is con-
stant, then the linear combination is actually zero. Such an
exponential family is called minimal in standard references.

The exponential family admits a dual parameterization to
the natural parameters, given by the expectation parameters
η = Eθ[T ], see [12, Ch. 3]. The θ and η parameter vectors
of an exponential family are dually coupled in the sense of
the Legendre transform [8], indeed, let θ and η such that
pθ(x;θ) = pη(x;η), then

ψ(θ) + ϕ(η)− 〈θ,η〉 = 0 , (2)

where ϕ(η) = Eη[log p(x;η)] is the negative entropy of the

density pη(x;η), and 〈θ,η〉 =
∑k
i=1 θiηi denotes the inner

product between the two parameter vectors. See [28, Part
III] on convex duality.

From the Legendre duality it follows that the variable
trasformations between one parameterization and the other
are given by

η = ∇θψ(θ) = (∇ηϕ)
−1(θ) ,

θ = ∇ηϕ(η) = (∇θψ)
−1(η) .

We introduced two dual parameterizations for the same
exponential family E , the θ and η parameters, so that any
p ∈ M can be parametrized either with pθ(x;θ) or with
pη(x;η). In the following, to simplify notation, we drop the
index of p which denotes the parameterization used when
the parameter appears as an argument, however notice that
pθ and pη are different functions of their parameterizations.



The Fisher information matrices in the two different pa-
rameterizations can be evaluated by taking second deriva-
tives of ψ(θ) and ϕ(η)

Iθ(θ) = Hessψ(θ) , (3)

Iη(η) = Hessϕ(η) . (4)

The following result shows the relationship between the
Fisher information matrices expressed in the θ and η pa-
rameterizations for the same distribution. The result ap-
pears in [7], see also Theorem 2.2.5 in [15].

Theorem 1. Consider a probability distribution in the
exponential family E , we have

Iη(η) = (Iθ ◦ ∇ϕ)(η)−1

Iθ(θ) = (Iη ◦ ∇ψ)(θ)−1 .

Moreover, we have

Iη(η)
−1 = Covη(T ,T ) = Eη[(T − η)(T − η)T] .

2.1 The Gibbs Distribution
For each objective function f : X → R, we introduce its

Gibbs distribution, the one dimensional exponential family
whose sufficient statistics is the function f itself. In the
discrete case, it is a classical result in Statistical Physics
and it is easy to show that the Gibbs distribution for θ →
∞ weakly converges to the uniform distribution over the
minima of f . We refer for example to [20] for a discussion in
the context of the stochastic relaxation for discrete domains.
In this subsection we consider the extension of the result to
the continuous case.

In the following we look for the minima of the objective
function f . hence, we assume assume f to be bounded below
and non constant. Given a probability measure µ, the Gibbs
exponential family of f is the model θ 7→ eθf−ψ(θ) · µ. As f
is bounded below and µ is finite, the log-partition function
ψ(θ) = log

(∫
eθf dµ

)
is finite on an interval containing the

negative real line. We take in particular the interior of such
an interval, hence ψ is defined on an open interval J =
] − ∞, θ[, where θ ∈ [0,+∞]. The function ψ : J → R is
strictly convex and analytic, see [12].

Define f = ess infµ f = inf {A : µ {f ≤ A} > 0}, f =
ess supµ f = sup {B : µ {B ≤ f} > 0}, and define the Gibbs
relaxation or stochastic relaxation of f to be the function

F (θ) = Eθ[f ] =

∫
feθf−ψ(θ) dµ =

d

dθ
ψ(θ) ,

so that f ≤ F (θ) ≤ f .

Proposition 2.

1. The function F is increasing on its domain J.

2. The range of the function F is the interval ]f , supF [,

3. in particular, lim
θ→−∞

Eθ[f ] = f .

Proof. 1. As ψ is strictly convex on J , then its deriva-
tive F is strictly increasing on J .

2. As F is strictly increasing and continuous on the open
interval J , it follows that range F (J) is the open inter-
val ] infθ∈J F, supθ∈J F (θ)[, which is contained in ]f , f [.
We show that its left end is actually f . Equivalently,

we show that for each ǫ > 0 and each η > f + ǫ,
η ∈ F (J), there exists θ such that F (θ) = η. The
argument is a variation of the argument to prove the
existence of maximum likelihood estimators because
we show the existence of a solution to the equation
F (θ) − η = d

dθ
(ηθ − ψ(θ) = 0 for each η > f . Let

A = f + ǫ and take any θ < 0 to show that

1 =

∫
eθf(x)−ψ(θ) µ(dx) ≥

∫

{f≤A}

eθf(x)−ψ(θ) µ(dx) ≥

µ {f ≤ A} eθA−ψ(θ).

Taking the logarithm of both sides of the inequality,
we obtain, for each η

0 ≥ log µ {f ≤ A}+ θA− ψ(θ) =

log µ {f ≤ A}+ θ(A− η) + θη − ψ(θ) ,

and, reordering the terms of the inequality, that

θη − ψ(θ) ≤ − log µ {f ≤ A}+ θ(η − A) .

If η > A, the previous inequality implies

lim
θ→−∞

θη − ψ(θ) = −∞ ,

that is, the strictly concave differentiable function θ 7→
θη − ψ(θ) goes to −∞ as θ → −∞. Let us study
what happens at the right of of the interval F (J).
Let F (θ1) = η1 > η. If θ → θ1 increasingly, then
(ψ(θ1) − ψ(θ))/(θ1 − θ) goes to ψ′(θ1) = F (θ1) = η1
increasingly. Hence, there exists θ2 < θ1 such that
(ψ(θ1) − ψ(θ2))/(θ1 − θ2) > η, that is ηθ2 − ψ(θ2) >
ηθ1 − ψ(θ1). It follows that the strictly concave and
differentiable function θ 7→ ηθ − ψ(θ) has a maxi-

mum θ̂ ∈]−∞, η1[, where its derivative is zero, giving

η = ψ′(θ̂) = F (θ̂).

3. As F is strictly increasing, limθ→−∞ F (θ) = min(F (J)) =
f .

Remark 3. Our assumption on the objective function is
asymmetric as we have assumed f bounded below while we
have no assumption on the big values of f . If f is bounded
above, we have the symmetric result by exchanging f with −f
and θ with −θ. If f is unbounded, then a Gibbs distribution
need not to exist because of the integrability requirements of
eθf . If the Laplace transform of f in µ is defined, then the
Gibbs distribution exists, but only Item 1 of Prop. 2 applies.
The result above does say only that the left limit of the re-
laxed function is greater or equal to f . In such cases the
technical condition on f called steepness would be relevant,
see [12, Ch. 3]. We do not discuss this issue here because
the problem of finding the extrema of an unbounded function
is not clearly defined.

Remark 4. Statistical models other that the Gibbs model
can produce a relaxed objective function usable for finding the
minimum. Let pθ · µ be any one-dimensional model. Then
limθ→−∞

∫
fpθ dµ = f if, and only if,

lim
θ→−∞

∫
f(eθf−ψ(θ) − pθ) dµ = 0 .



In particular, a simple sufficient condition in case of a bounded
f is

lim
θ→−∞

∫ ∣∣∣eθf−ψ(θ) − pθ

∣∣∣ dµ = 0.

In practice, it is unlikely f to be known and we look forward
learning some proper approximation od the Gibbs relaxation.

The convergence of the expected value along a statistical
model to the minimum of the values of the objective function
f , which was obtained above, is a result weaker than what we
are actually looking for, that is the convergence of the sta-
tistical model to a limit probability µ∞ supported by the set
of minima,

{
x ∈ X : f(x) = f

}
, that is a probability such

that
∫
f(x) µ(dx) = f . For example, if f(x) = 1/x, x > 0,

and µn is the uniform distribution on [n, n+1], n = 1, 2, . . . ,
then

∫
fd µn = log ((n+ 1)/n) goes to 0 = inf f , but there

is no minimum of f nor limit of the sequence (µn)n.
The following proposition says something about this is-

sue. We need topological assumptions. Namely, we assume
the sample space X to be a metric space and the objective
function to be bounded below, lower semicontinuous, and
with compact level sets

{
x ∈ X : f(x) ≤ f + A

}
. In such a

case we have the following result about weak convergence of
probability measures, see [11].

Proposition 5. The family of measures (eθf−ψ(θ) ·µ)θ∈J
is relatively compact as θ → −∞ and the limits are supported
by the closed set

{
x : f(x) = f

}
. In particular, if the min-

imum is unique, then the sequence converges weakly to the
delta mass at the minimum.

Proof. The set
{
f ≤ f + A

}
is compact and we have,

by Markov inequality, that

lim sup
θ→−∞

∫

{f>f+A}
eθf−ψ(θ) dµ ≤

A−1 lim
θ→−∞

∫
(f − f)eθf−ψ(θ) dµ = 0,

which is the tightness condition for relative compactness. If
ν is a limit point along the sequence (θn)n∈N, limn→∞ θn =
−∞, then for all a > 0 the set

{
f > f + a

}
is open and, by

the Portmanteaux Theorem [11, Th. 2.1.(iv)],

ν
{
f > f + a

}
≤ lim inf

n→∞

∫

{f>f+a}
eθnf−ψ(θn) dµ = 0.

As each of the set
{
f > f + a

}
has measure zero, their (un-

countable) union ha s measure zero,

ν
{
f > f

}
= ν

(
∪a>0

{
f > f + a

})
= 0.

Finally, if
{
f = f

}
has a unique point, then each limit ν has

to have a point support, hence has to be the Dirac delta.

As a consequence of the previous result we can extend Th.
12 in [20] to the continuous case. Let V = Span{T1, . . . , Tk}
be the vector space generated by the affinely independent
random variables Tj , j = 1, . . . , k and let E be the exponen-
tial family on the sample space (X , µ) with that sufficient

statistics. For f ∈ V , f =
∑k
j=1 αjTj , and q = pθ ∈ E ,

consider the Gibbs family

p(x; t) =
e−tfq

Eq[e−tf ]
, t : tα+ θ ∈ ϑ . (5)

Note that this family is actually a subfamily of E that moves
from q in the direction f − Eq[f ]. We further assume f to
be bounded below to obtain the following.

Theorem 6. The gradient of the function F : E ∋ q 7→
Eq[f ] is ∇F (q) = f − Eq [f ]. The trajectory of the negative
gradient flow through q is the exponential family in Eq. (5).
The negative gradient flow is a minimizing evolution.

Proof. The only thing we need to verify is the fact that
the velocity of the curve in Eq. (5) at t = 0 is precisely
f − Eq [f ]. The evolution is minimizing, according to the
assumptions on f , because of Prop. 2 and 5.

The previous theorem can be applied to the case when the
exponential family is a Gaussian distribution. In particular
it makes it possible to prove global convergence of natural
gradient flows of quadratic non-constant and lower bounded
functions in the Gaussian distribution. For any given initial
condition, the natural gradient flow converges to the δ dis-
tribution which concentrates all the probability mass over
the global optimum of f . Akimoto et. al proved in [2] an
equivalent result for isotropic Gaussian distributions in the
more general framework of IGO which takes into account
a rank preserving trasformation of the function to be opti-
mized based on quantiles. In this context, see also the work
of Beyer [10].

3. MULTIVARIATE GAUSSIAN DISTRIBU-

TIONS
In this section we discuss the multivariate Gaussian distri-

bution and discuss its geometry in the more general context
of the exponential family. The geometry of the Gaussian
distribution has been widely studied in the literature, see
for instance [30] as an early and detailed reference on the
subject.

Since the multivariate Gaussian distribution belongs to
the exponential family, besides mean and covariance ma-
trice, we can introduce two alternative parameterizations,
based on natural and expectation parameters. Notice that
all these parameterizations are one-to-one.

Vectors are intended as column vectors and are repre-
sented using the bold notation. Let ξ be a vector of param-
eters, in order to obtain compact notation, we denote the
partial derivative ∂/∂ξi with ∂i. When a parameter ξij of ξ
is identified by two indices, we denote the partial derivative
with ∂ij .

3.1 Mean and Covariance Parameters
Consider a vector x = (x1, . . . ,xn)

T ∈ R
n = Ω. Let

µ ∈ R
n be a mean vector and Σ = [σij ] a n× n symmetric

positive-definite covariance matrix, the multivariate Gaus-
sian distribution N (µ,Σ) can be written as

p(x;µ,Σ) = (2π)−n/2|Σ|−1/2 exp

(
−
1

2
(x− µ)TΣ−1(x− µ)

)
.

(6)
We denote with Σ−1 = [σij ] the inverse covariance matrix,
also known as precision matrix or concentration matrix. We
use upper indices in σij to remark that they are the elements
of the inverse matrix Σ−1 = [σij ]

−1. The precision ma-
trix captures conditional independence between variables in
X = (X1, . . . ,Xn)

T. Zero partial correlations, i.e., σij = 0,
correspond to conditional independence assumption of Xi



andXj given all other variables, denoted byXi ⊥⊥ Xj |X\i\j .
See [17] as a comprehensive reference on graphical models.

3.2 Natural Parameters
It is a well known result that the multivariante Gaussian

distribution N (µ,Σ) is an exponential family for the suf-
ficient statistics Xi, X

2
i , 2XiXj , i ≤ j. We denote with

ω : (µ,Σ) 7→ θ the parameter transformation from the cou-
ple mean vector and covariance matrix to the natural pa-
rameters. By comparing Eq. (1) and (6), it is easy to verify
that

T =




(Xi)
(X2

i )
(2XiXj)i<j



 =




(Ti)
(Tii)

(Tij)i<j



 , (7)

θ = ω(µ,Σ) =




Σ−1µ

(− 1
2
σii)

(− 1
2
σij)i<j


 =




(θi)
(θii)

(θij)i<j


 ,

where k = n+ n+ n(n− 1)/2 = n(n+ 3)/2, which leads to

pθ(x;θ) = exp

(
∑

i

θixi +
∑

i

θix
2
i +

∑

i<j

2θijxixj − ψ(θ)

)
.

To simplify the formulae for variable transformations and
in particular the derivations in the next sections, we define

θ = (θi) = Σ−1
µ , (8)

Θ =
∑

i

θiieie
T
i +

∑

i<j

θij(eie
T
j + eje

T
i ) = −

1

2
Σ−1 , (9)

and represent θ as

θ = (θ; Θ) ,

so that

pθ(x;θ) = exp
(
θTx+ x

TΘx− ψ(θ)
)
.

Notice that since Θ is symmetric, the number of free pa-
rameters in the θ vector and its representation (θ; Θ) is the
same, and we do not have any over-parametrization.

The natural parameterization and the mean and covari-
ance parameterization are one-to-one. The inverse trasfor-
mation from natural parameters to the mean vector and the
covariance matrix is given by w−1 : θ 7→ (µ; Σ), with

µ = −
1

2
Θ−1θ , (10)

Σ = −
1

2
Θ−1 . (11)

From Eq. (1) and (6), the log partition function as a func-
tion of (µ; Σ) reads

ψ ◦ ω =
1

2

(
n log(2π) + µ

TΣ−1
µ+ log |Σ|

)
,

so that as a function of θ it becomes

ψ(θ) =
1

2

(
n log(2π)−

1

2
θTΘ−1θ − log(−2)n|Θ|

)
.(12)

Conditional independence assumptions between variables
in X correspond to vanishing components in θ. As a con-
sequence, the exponential manifold associated to the mul-
tivariate Gaussian distribution has a straightforward hier-
archical structure, similar to what happens in the case of
binary variables, cf [6].

Proposition 7. The conditional independence structure
of the variables in X determines a hierarchical structure for
N (θ) where nested submanifolds given by some θij = 0 are
identified by the conditional independence assumptions of the
form Xi ⊥⊥ Xj |X\i\j .

3.3 Expectation Parameters
The expectation parameters are a dual parameterization

for statistical models in the exponential family, given by
η = Eθ[T ]. Let χ : (µ; Σ) 7→ η, from the definition of the
sufficient statistics of the exponential family in Eq. (7), since
Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ], it follows

η = χ(µ,Σ) =




(µi)

(σii + µ2
i )

(2σij + 2µiµj)i<j



 =




(ηi)
(ηii)

(ηij)i<j



 .

Similarly to the natural parameters, also the relationship
between the expectation parameters and the mean and co-
variance parameterization is one-to-one. We introduce the
following notation

η = (ηi) = µ , (13)

E =
∑

i

ηiieie
T
i +

∑

i<j

ηij
eie

T
j + eje

T
i

2
= Σ+ µµ

T,(14)

and represent η as

η = (η;E) ,

so that χ−1 : η 7→ (µ; Σ) can be written as

µ = η , (15)

Σ = E − ηηT . (16)

The negative entropy of the multivariate Gaussian distri-
bution parametrized by (µ; Σ) reads

ϕ ◦ χ = −
n

2
(log(2π) + 1)−

1

2
log |Σ| ,

so that in the expectation parameters we have

ϕ(η) = −
n

2
(log(2π) + 1)−

1

2
log
∣∣∣E − ηηT

∣∣∣ . (17)

Combining Eq. (6) and (17), the multivariate Gaussian
distribution in the η parameters can be written as

p(x;η) = exp

(
−
1

2
(x− η)T

(
E − ηηT

)−1

(x− η)+

+ϕ(η) +
n

2

)
, (18)

which a specific case of the more general formula for the
exponential family parametrized in the expectation param-
eters, cf. Eq.(1) in [23], that is,

p(x;η) = exp

(
k∑

i=1

(Ti − ηi)∂iϕ(η) + ϕ(η)

)
. (19)

3.4 Change of Parameterization
In this section we have introduced three different parame-

terizations for a multivariate Gaussian distribution, namely
the mean and covariance, the natural and the expectation
parameterization.



By combining the transformations between η, θ, and (µ; Σ)
in Eq. (8)-(11) and (13)-(16), we have

η = (η;E) =

(
−
1

2
Θ−1θ;

1

4
Θ−1θθTΘ−1 −

1

2
Θ−1

)
, (20)

θ = (θ; Θ) =

((
E − ηηT

)−1

η;−
1

2

(
E − ηηT

)−1
)
.(21)

Moreover, from Eq. (2), (12), and (17) we obtain

〈θ,η〉 =
1

2
ηT
(
E − ηηT

)−1

η −
n

2
, (22)

= −
1

4
θTΘ−1θ −

n

2
.

Finally, by Eq. (18) and (22), the multivariate Gaussian
distribution can be expressed as

p(x;θ,η) = exp

(
x

T
(
E − ηηT

)−1
(
η −

1

2
x

)
+

+ ϕ(η)− 〈θ,η〉

)
.

The following commutative diagram summarize the trans-
formations between the three parameterizations for the mul-
tivariate Gaussian distribution introduced in this section.

θ

p (µ; Σ)

η

∇θψ

ω

χ

∇ηϕ

3.5 Fisher Information Matrix
In this section we introduce the formulae for the Fisher

information matrix in the three different parameterizations
we have introduced. The derivations have been included in
the appendix.

In the general case of a statistical model parametrized by
a parameter vector ξ = (ξ1, . . . , ξd)

T, the standard definition
of Fisher information matrix reads

Iξ(ξ) = Eξ

[(
∂i log p(x;ξ)

)(
∂j log p(x;ξ)

)T]
.

Under some regularity conditions, cf. Lemma 5.3 (b) in [18],
and in particular when log p(x;ξ) is twice differentiable, the
Fisher information matrix can be obtained by taking the
negative of the expected value of the second derivative of
the score, that is,

Iξ(ξ) = −Eξ

[
∂i∂j log p(x;ξ)

]
.

For the multivariate Gaussian distribution, the Fisher in-
formation matrix has a special form, and can be obtained
from a formula which depends on the derivatives with re-
spect to the parameterization of the mean vector and the
covariance matrix, c.f. [25, Thm. 2.1] and [24]. Let µ and Σ
be a function of the parameter vector ξ and ∂i be the partial
derivatives with respect to ξi, we have

Iξ(ξ) =

[
(∂iµ)

TΣ−1(∂jµ) +
1

2
Tr
(
Σ−1(∂iΣ)Σ

−1(∂jΣ)
)]

(23)

Whenever we choose a parameterization for the Fisher
information matrix for which the mean vector and the co-
variance matrix depend on two different vector parameters,
Eq. (23) takes a special form and becomes block diagonal
with Iξ(ξ) = diag(Iµ, IΣ), cf. [24]. The mean and covari-
ance parameterization clearly satisfies this hypothesis, and
by taking partial derivaties we obtain

Iµ,Σ(µ; Σ) =





i kl

j Σ−1 0

mn 0 αklmn



 , (24)

with

αklmn =





1
2
(σkk)2 , if k = l = m = n ,

σkmσln , if k = l ⊻m = n ,

σkmσln + σlmσkn , otherwise.

(25)

In the following we derive Iθ(θ) and Iη(η) as the Hessian
of ψ(θ) and ψ(η), respectively, as in Eq. (3) and (4). Clearly,
the derivations lead to the same formulae that would be
obtained from Eq. (23). For the Fisher information matrix
in the natural parameters we have

Iθ(θ) =
1

2
×





i kl

j −Θ−1 Λklθ

mn θTΛmn λklmn − θTΛklmnθ



(26)

with

Λkl =





[Θ−1]·k[Θ
−1]k· , if k = l ,

[Θ−1]·k[Θ
−1]l·+

+[Θ−1]·l[Θ
−1]k· , otherwise,

(27)

=

{
4Σ·kΣl· , if k = l ,

4 (Σ·kΣl· + Σ·lΣk·) , otherwise,
(28)

λklmn =





[Θ−1]kk[Θ
−1]kk , if k = l = m = n ,

[Θ−1]km[Θ−1]ln+

+[Θ−1]lm[Θ−1]kn , if k = l ⊻m = n ,

2
(
[Θ−1]km[Θ−1]ln+

+ [Θ−1]lm[Θ−1]kn
)
, otherwise,

(29)

=





4(σkkσkk) , if k = l = m = n ,

4(σkmσln + σlmσkn) , if k = l ⊻m = n ,

8(σkmσln + σlmσkn) , otherwise,

(30)

Λklmn =





[Λkk]·m[Θ−1]n· , if k = l ,

[Λkl]·m[Θ−1]n·+
+[Λkl]·n[Θ

−1]m· , otherwise,

(31)

=





−8Σ·kσkkΣk· , if k = l = m = n ,

−8 (Σ·kσkmΣn·+
+ Σ·kσknΣm·) , if k = l ∧m 6= n ,

−8 (Σ·kσlmΣm·+
+ Σ·lσlmΣm·) , if k 6= l ∧m = n ,

−8 (Σ·kσlmΣn·+
+Σ·kσlnΣm·+
+Σ·lσkmΣn·+
+Σ·lσknΣm·) , otherwise.

(32)



Where Λkl a matrix which depends on the indices k and l,
and Λklθ is a column vector. Notice that in case of µ = 0,
Iθ(θ) becomes block diagonal.

For models in the exponential family, we have a general
formula based on covariances

I(θ) = Covθ(Ti, Tj) . (33)

By using Eq. (33), we can also derive the Fisher information
matrix in the natural parameterization using covariances.

Iθ(µ,Σ) =




i kl

j Σ akl(µkσlj + µlσkj)

mn amn(µmσni + µnσmi) aklmnγklmn


 ,

(34)
with

akl =

{
1 , if k = l ,

2 , otherwise.
(35)

aklmn =






1 , if k = l = m = n ,

2 , if k = l ⊻m = n ,

4 , otherwise.

(36)

γklmn = µnµlσkm + µkµmσln + µmµlσkn + µnµkσlm+

+ σkmσln + σlmσkn . (37)

Finally, in the η parameters the Fisher information matrix
becomes

Iη(η) =




i kl

j Γ −Kklη

mn −ηTKmn κklmn


 , (38)

with

Γ = (E − ηηT)−1 + (E − ηηT)−1ηT(E − ηηT)−1η+

+ (E − ηηT)−1ηηT(E − ηηT)−1 (39)

= Σ−1 + Σ−1
µ

TΣ−1
µ+ Σ−1

µµ
TΣ−1 (40)

Kkl =





[(E − ηηT)−1]·k[(E − ηηT)−1]k· , if k = l ,
1
2

(
[(E − ηηT)−1]·k[(E − ηηT)−1]l·+
+ [(E − ηηT)−1]·l[(E − ηηT)−1]k·

)
, otherwise.

(41)

=

{
[Σ−1]·k[Σ

−1]k· , if k = l ,
1
2

(
[Σ−1]·k[Σ

−1]l· + [Σ−1]·l[Σ
−1]k·

)
, otherwise.

(42)

κklmn =






1
2
[(E − ηηT)−1]kk×

×[(E − ηηT)−1]kk , if k = l = m = n ,
1
2
[(E − ηηT)−1]km×

×[(E − ηηT)−1]ln , if k = l ⊻m = n ,
1
4

(
[(E − ηηT)−1]km×

×[(E − ηηT)−1]ln+

+ [(E − ηηT)−1]lm×

× [(E − ηηT)−1]kn
)
, otherwise.

(43)

=






1
2
(σkk)2 , if k = l = m = n ,

1
2
σkmσln , if k = l ⊻m = n ,

1
4

(
σkmσln + σlmσkn

)
, otherwise.

(44)

4. NATURAL GRADIENT
We are interested in optimizing a real-valued function f

defined over Rn, that is

(P) min
x∈Rn

f(x) .

We replace the original optimization problem (P) with the
stochastic relaxation F of f , i.e., the minimization of the
expected value of f evaluated with respect to a density p
which belongs to the multivariate Gaussian distribution, i.e.,

(SR) min
ξ∈Ξ

F (ξ) = min
ξ∈Ξ

Eξ[f(x)] .

Given a parametrization ξ for p, the natural gradient of
F (ξ) can be evaluated as

∇̃ξF (ξ) = I(ξ)−1∇ξF (ξ) ,

where F (ξ) is the vector or partial derivatives, often called
vanilla gradient.

Notice that for models in the exponential family, and thus
for the Gaussian distribution, the vanilla gradient of F (ξ)
can be evaluated as the expected value of f∇ξ log p(x;ξ),
indeed

∂iF (ξ) = ∂iEξ[f ] = E0[f∂ip(x;ξ)] = Eξ[f∂i log p(x; ξ)] .

In the mean and covariance parameterization, the vanilla
gradient is given by

see for instance [3].
In the following, we provide formulae for∇F (θ) and∇F (η),

in the natural and expectation parameterizations. In the
natural parameters we have

∂i log p(x;θ) = Ti(x)− ∂iψ(θ) = Ti(x)− ηi .

In the expectation parameters, by deriving the log of Eq. (19)
we obtain

∂i log p(x;η) = (Ti(x)− ηi)∂i∂jϕ(η) .

So that

∇F (θ) = Eθ[f(T − η)] = Covθ(f,T ) ,

∇F (η) = Hessϕ(η)Eη[f(T − η)]

= Iη(η)Covη(f,T ) .

A common approach to solve the (SR) is given by natu-
ral gradient descent, when the parameters of a density are
updated iteratively in the direction given by the natural gra-
dient of F , i.e.,

ξ
t+1 = ξ

t − λ∇̃ξF (ξ) ,

where the parameter λ > 0 controls the step size.

5. EXAMPLES
In this section we introduce and discuss some toy exam-

ples, for which it is possible to represent the gradient flows
and the landscape of the stochastic relaxation. In particu-
lar we evaluate the gradient flows, i.e., the solutions of the
differential equations

ξ̇ = −∇̃ξF (ξ).

Such flows correspond to the trajectories associated to infi-
nite step size, when the gradient can be computed exactly.



5.1 Polynomial Optimization in R

In this section we study some simple examples of polyno-
mial optimization in R. Let f be a real-valued polynomial
function, we choose a monomial basis {xk}, k > 0, so that
any polynomial can be written in compact form as

fk =
k∑

i=0

cix
i . (45)

We consider the case of quadratic functions, where k = 2 in
Eq. (45), so that f2 = c0+c1x+c2x

2. In order for quadratic
functions to be lower bounded and this admit a minimum,
we need to impose c2 > 0. We consider the one dimensional
Gaussian N (µ, σ) distribution parametrized by µ, σ, and de-
note by F (µ, σ) the stochastic relaxation of f with respect to
N . Represented as an exponential family, N (µ, σ) is a two-
dimensional exponential family, with sufficient statistics T

given by X and X2.
Let c = (c1, c2)

T, in the η parameters the vanilla and
natural gradient read

∇ηF (η) = ∇η

2∑

i=1

ciEη[X
i] = ∇η(c1µ1, c2E11)

T = c ,

∇̃ηF (η) = Iη(η)
−1∇ηF (θ) .

The vanilla and natural gradients in θ are

∇θF (θ) = Covθ(f,T ) =
2∑

i=1

ci Covθ(X
i,T ) = I(θ)c ,

∇̃θF (θ) = Iθ(θ)
−1∇θF (θ) = c .

Since f belongs to the span of the {Ti}, so that for any ini-
tial condition q in N (µ, σ) the natural gradient flows in any
parametrization weakly converge to the δ distribution over
the minimum of f , given by x∗ = − c1

2c2
. Such distribution

belongs to the closure of the Gaussian distribution and can
be identified as the limit distribution with µ = − c1

2c2
and

σ → 0. In Fig. 1 we represented an instance of this exam-
ple, where f = x − 3x2. Notice that the flow associated to
the vanilla gradient in η is linear in (µ, σ) and stops at the
boundary of the model, where it reaches the positivity con-
straint for σ. All other trajectories converge to the global
minimum, and natural gradient flows defines straight paths
to the optimum.

We move to the case where the polynomial fk has higher
degree. We do not consider the case when k = 3 since f3
would not be lower bounded, and study the polynomial for
k = 4, so that f4 = c0+c1x+c2x

2+c3x
3+c4x

4. Notice that
f4 doest not belong anymore to the span of the sufficient
statistics of the exponential family, and the function may
have two local minima in R. Similarly, the relaxation with
respect to the one dimensional gaussian family N (µ, σ) may
admin two local minima associated to the δ distributions
over the local minima of f .

Vanilla and natural gradient formulae can be computed in
closed form, indeed in the exponential family higher order
moment E[Xk] can be evaluated recursively as a function of
η, by expanding E[(X−E[X])k] using the binomial formula,
and then applying Isserlis’ theorem for centered moments,
cf. [14].

In the η and θ parameters the vanilla gradients read

∇ηF (η) = c+
k∑

i=3

ci∇ηEη[X
i] ,

∇θF (θ) = I(θ)c+

k∑

i=3

ci Covθ(X
i,T ) ,

while natural gradients can be evaluated by premultiplying
vanilla gradient with the inverse of the Fisher information
matrix.

In Fig. 2 we plotted different trajectories for the case
f = 6x+8x2 − x3 − 2x4. We can notice two different basins
of attraction, so that the trajectories associated to the nat-
ural gradient flows converge to either one or the other local
minima depending on the initial condition. As in the case of
f2 vanilla flows in η converge to the boundary of the model
where σ → 0, and trajectories are not straight in (µ, σ).

5.2 Polynomial Optimization in R
n

The examples in the previous subsection can be easily
generalized to the case of polynomial functions in R

n.
In Fig. 3 we studied the case where f = x1 + 2x2 − 3x2

1 −
2x1x2 − 2x2

2. In this example, the multivariate Gaussian
distribution is a 5−dimensional exponential family, for this
reason we plot the projections of the flows onto µ = (µ1, µ2),
and represent the level lines of f instead of those of F (µ,Σ).
This explains while trajectories appear to self intersect in the
projected space, which would be impossible for any gradient
flow over N . However, since f is a quadratic function, we
are guaranteed that the natural gradient flows converge to
the δ distribution over the unique global optimum of f for
any initial condition.

6. CONCLUSIONS
This paper focuses on the study of the geometry of the

multivariate Gaussian distribution, and more generally of
models in the exponential family from the perspective of
stochastic relaxation. We discussed two alternative parame-
terizations to the mean vector and covariance matrix for the
multivariate Gaussian distribution, namely the natural and
expectation parameterizations of the exponential family. We
derived variable transformations between each parameteri-
zation and the formulae for the natural gradients. Since the
natural gradient is invariant with respect to the choice of
the parameterization, following the natural gradient in any
of these parameterizations is equivalent from the point of
view of the optimization.

On the other side, by exploiting the specific properties of
each parameterization, and the relationship between Fisher
information matrices, we can define alternative algorithms
for natural gradient descent. In particular, by parametrizing
the Gaussian distribution in the natural parameters we have
the advantage of a meaningful representation for lower di-
mensional sub-models of the Gaussian distribution, together
with closed formulae for the inverse of the Fisher information
matrix, which allow to easily evaluate the natural gradient.
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Figure 1: Vanilla vs natural gradient flows for E[f ], with f = x − 3x2, evaluated in η and θ parameters and represented in
the parameter space (µ, σ). Each figure represents the flows for different initial conditions. The flows are evaluated solving
the differential equations numerically. The level lines are associated to Eµ,σ[f ].
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Figure 2: Vanilla vs natural gradient flows for E[f ], with f = 6x + 8x2 − x3 − 2x4, evaluated in η and θ parameters and
represented in the parameter space (µ, σ). Each figure represents the flows for different initial conditions. The flows are
evaluated solving the differential equations numerically. The level lines are associated to Eµ,σ[f ].
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APPENDIX

A. COMPUTATIONS FOR THE FISHER IN-

FORMATION MATRIX
In this appendix we included the derivations for the Fisher

information matrix in the different parameterizations.

A.1 Mean and Covariance Parameters
Since ∂iµ = ei, we have Iµ = Σ−1. As to IΣ, first notice

that

∂ijΣ =

{
eie

T
i , if i = j ,

eie
T
j + eje

T
i , otherwise,



so that for k 6= l ∧m 6= n, we obtain

[IΣ]klmn =
1

2
Tr
(
Σ−1(∂klΣ)Σ

−1(∂mnΣ)
)

=
1

2
Tr
(
Σ−1(eke

T
l + ele

T
k )Σ

−1(eme
T
n + ene

T
m)
)

=
1

2
Tr
(
2eT
l Σ

−1
eme

T
nΣ

−1
ek + 2eT

kΣ
−1

eme
T
nΣ

−1
el

)

= e
T
l Σ

−1
eme

T
nΣ

−1
ek + e

T
kΣ

−1
eme

T
nΣ

−1
el

= σkmσln + σlmσkn .

In the remaining cases, when k = l = m = n and k = l⊻m =
n, the computations are analogous, giving the formulae in
Eq. (24) and (25).

A.2 Natural Parameters
In the following we derive the Fisher information matrix

in the natural parameters by taking the Hessian of ψ(θ) in
Eq. (12). We start by taking first-order derivatives, i.e.,

∂iψ(θ) = −
1

2
e
T
i Θ

−1θ , (46)

∂ijψ(θ) =
1

4
θTΘ−1(∂ijΘ)Θ−1θ −

1

2
Tr

(
−
1

2
Θ−1∂ij(−2Θ)

)

=
1

4
θTΘ−1(∂ijΘ)Θ−1θ −

1

2
Tr(Θ−1(∂ijΘ)) (47)

Notice that

∂ijΘ =

{
eie

T
i , if i = j ,

eie
T
j + eje

T
i , otherwise,

so that as in Eq. (20), we have

η = −
1

2
Θ−1θ ,

E =
1

4
Θ−1θθTΘ−1 −

1

2
Θ−1 .

Next, we take partial derivatives of Eq. (46) and (47), and
since ∂kl∂ijΘ = 0, we get

∂i∂jψ(θ) = −
1

2
e
T
i Θ

−1
ej ,

∂i∂klψ(θ) =
1

2
e
T
i Θ

−1(∂klΘ)Θ−1θ .

Let Λkl = Θ−1(∂klΘ)Θ−1, for k 6= l we have

Λkl = Θ−1(eke
T
l + ele

T
k )Θ

−1

= Θ−1
ele

T
kΘ

−1 +Θ−1
eke

T
l Θ

−1

= 4(Σele
T
kΣ+ Σeke

T
l Σ) .

In the remaining case, when k 6= l, the computations are
analogous, giving the formulae in Eq. (27), (28) and (26).

∂kl∂mnψ(θ) = −
1

2
θTΘ−1(∂klΘ)Θ−1(∂mnΘ)Θ−1θ+

+
1

2
Tr
(
Θ−1(∂klΘ)Θ−1(∂mnΘ)

)
.

Let Λklmn = Θ−1(∂klΘ)Θ−1(∂mnΘ)Θ−1, for k 6= l ∧m 6= n

Λklmn = Θ−1(eke
T
l + ele

T
k )Θ

−1(eme
T
n + ene

T
m)Θ−1

= Θ−1
eke

T
l Θ

−1
eme

T
nΘ

−1 +Θ−1
eke

T
l Θ

−1
ene

T
mΘ−1+

Θ−1
ele

T
kΘ

−1
eme

T
nΘ

−1 +Θ−1
ele

T
kΘ

−1
ene

T
mΘ−1

= −8(Σekσlme
T
nΣ + Σekσlne

T
mΣ + Σelσkme

T
nΣ+

+ Σelσkne
T
mΣ) .

In the remaining cases when k = l = m = n, k = l ∧m 6= n
and k 6= l ∧m = n, the computations are analogous, giving
the formulae in Eq. (31), (32) and (26).

Finally, λklmn = Tr
(
Θ−1(∂klΘ)Θ−1(∂mnΘ)

)
, we have for

k 6= l ∧m 6= n

λklmn = Tr
(
Θ−1(eke

T
l + ele

T
k )Θ

−1(eme
T
n + ene

T
m)
)

= 2eT
l Θ

−1
emenΘ

−1
ek + 2eT

kΘ
−1

emenΘ
−1

el

= 8eT
l Σeme

T
nΣek + 8eT

kΣeme
T
nΣel .

In the remaining cases, when k = l = m = n and k = l⊻m =
n, the computations are analogous, giving the formulae in
Eq. (29), (30) and (26).

Next, we derive an equivalent formulation for the Fisher
information matrix based on covariances. From Eq. (33), we
have that the elements of the Fisher information matrix in θ

can be obtained from the covariances of sufficient statistics.
Moreover, from the definition of covariance, we have

Covµ,Σ(Xi, Xj) = σij ,

Covµ,Σ(Xi, XkXl) = Eµ,Σ[XiXkXl]+

− Eµ,Σ[Xi]Eµ,Σ[XkXl] ,

Covµ,Σ(XkXl, XmXn) = Eµ,Σ[XkXlXmXn]+

− Eµ,Σ[XkXl]Eµ,Σ[XmXln] .

The definition of first- and second-order moments in terms
of mean vector and covariance matrix are straightforward,

Eµ,Σ[Xi] = µi

Eµ,Σ[XiXj ] = σij + µiµj .

In order to evaluate third- and forth-order moments we use
Isserlis’ theorem [14] after centering variables by replacing
Xi with Xi − Eµ,Σ[Xi], which gives

Eµ,Σ[XiXkXl] = µiσkl + µkσil + µlσik + µiµkµl ,

Eµ,Σ[XkXlXmXn] = σknσlm + σkmσln + σklσmn+

+
∑

{τ(k)}{τ(l)}{τ(m)τ(n)}

στ(k)τ(l)µτ(m)µτ(n)+

+ µkµlµmµn ,

where {τ (k)}{τ (l)}{τ (m)τ (n)} denotes the combinations of
the indices k, l,m,n without repetitions, where indices have
divided into three groups, {τ (k)}, {τ (l)} and {τ (m)τ (n)}.
Finally, by using the formulae for higher-order moments in
terms of mean and covariance we obtain

Covµ,Σ(Xi, XkXl) = Eµ,Σ[XiXkXl]− Eµ,Σ[Xi]Eµ,Σ[XkXl]

= µkσil + µlσik ,



and

Covµ,Σ(XkXl, XmXn) = Eµ,Σ[XkXlXmXn]+

− Eµ,Σ[XkXl]Eµ,Σ[XmXn]

= µnµlσkm + µkµmσln + µmµlσkn + µnµkσlm+

+ σkmσln + σlmσkn .

The results are summarized in Eq. (35), (36), (37) and (34).
Notice that for k 6= l, Tkl = 2XkXl, and thus Covµ,Σ(Ti, Tkl) =
2Covµ,Σ(Xi, XkXl), we introduced the coefficients akl and
aklmn to compensate for the constant.

A.3 Expectation Parameters
In the following we derive the Fisher information matrix

in the expectation parameters by taking the Hessian of ϕ(η)
in Eq. (17). We start by taking first-order derivatives, i.e.,

∂iϕ(η) =
1

2
Tr
(
(E − ηηT)−1∂i(ηη

T)
)

(48)

∂ijϕ(η) = −
1

2
Tr
(
(E − ηηT)−1(∂ijE)

)
(49)

Notice that

∂ijE =

{
eie

T
i , if i = j ,

1
2

(
eie

T
j + eje

T
i

)
, otherwise,

so that, as in Eq. (21), we have

θ =
1

2

[
Tr
(
(E − ηηT)−1(eiη

T + ηeT
i )
)]

i

=
(
E − ηηT

)−1

η ,

Θ = −
1

2

[
Tr
(
(E − ηηT)−1(eie

T
j + eje

T
i )
)]

ij

= −
1

2

(
E − ηηT

)−1

.

Next, we take partial derivatives of Eq. (48) and (49).
Since ∂kl∂ijE = 0 and ∂i∂j(ηη

T) = eie
T
j + eje

T
i , we have

∂i∂jϕ(η) =
1

2
Tr
(
(E − ηηT)−1∂i∂j(ηη

T)+

+(E − ηηT)−1∂i(ηη
T)(E − ηηT)−1∂j(ηη

T)
)

=
1

2
Tr
(
(E − ηηT)−1(eie

T
j + eje

T
i )+

+(E − ηηT)−1(eiη
T + ηeT

i )(E − ηηT)−1(ejη
T + ηeT

j )
)

= e
T
i (E − ηηT)−1

ej + (E − ηηT)−1ηηT(E − ηηT)−1+

+ (E − ηηT)−1ηT(E − ηηT)−1η ,

which gives the definition of Γ in Eq. (39), (40) and (38).
For k 6= l we have

∂i∂klϕ(η) = −
1

2
Tr
(
(E − ηηT)−1∂i(ηη

T)(E − ηηT)−1(∂klE)
)

= −
1

2
Tr
(
(E − ηηT)−1(eiη
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i )×

× (E − ηηT)−1(eke
T
l + ele

T
k )
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= −e
T
i (E − ηηT)−1

eke
T
l (E − ηηT)−1η

− e
T
i (E − ηηT)−1

ele
T
k (E − ηηT)−1η+

= −e
T
i Σ

−1
eke

T
l Σ

−1η − e
T
i Σ

−1
ele

T
kΣ

−1η ,

while for k = l

∂i∂kkϕ(η) = −e
T
i (E − ηηT)−1

eke
T
k (E − ηηT)−1η

= −e
T
i Σ

−1
eke

T
kΣ

−1η ,

which gives the definition of Kkl in Eq. (41), (42) and (38).
Finally, for k 6= l ∧m 6= n we have

∂kl∂mnϕ(η) =
1

2
Tr
(
(E − ηηT)−1(∂klE)(E − ηηT)−1(∂mnE)

)

=
1
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Tr
(
(E − ηηT)−1(eke

T
l + ele

T
k )×

× (E − ηηT)−1(eme
T
n + ene

T
m)
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= e
T
n(E − ηηT)−1

eke
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em

+ e
T
m(E − ηηT)−1

eke
T
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em

= e
T
nΣ

−1
eke

T
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em + e

T
mΣ−1

eke
T
l Σ
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em .

In the remaining cases the computations are analogous,
giving the definition of κklmn in Eq. (43), (44) and (38).


