
Context Switching and Scheduling in C--

Shawn Hsiao

Olushola Olateju

May 11, 2000

Abstract

We present a framework for preemptive threads in C--. We describe the front- and back-end runtime

system support requirements of our model. Our model extends the current C-- framework with new

services. In particular, we suggest two extensions to the back-end runtime interface: a mechanism for

saving the state of a suspended execution and a revised mechanism for resuming the state of a

suspended execution. We demonstrate the plausibility of our model for the simplest case and conjecture

on its extensibility to the general case.

1.0 Introduction

Most high level programming languages available today offer some notions of concurrency. In order to

support concurrency in C--, the level of front- and back-end support must be determined carefully. The

guiding principle is to have C-- provide the mechanisms and let the higher level programming languages

use these mechanisms in their own runtime system to implement different policies. We are interested in

exploring the exact mechanisms that should be provided in C-- for high level programming languages to

implement concurrency, especially threads. In a language like C, threads are created by function calls

and giving entry points – which are other functions. In a language like Newsqueak [7][8], threads are

created by statements; it similarly uses functions as an entry point. These higher level policies should not

be limited by C--‘s mechanism. For example, C-- should not limit the thread creation interface to functions

only. A thread system could be either preemptive or non-preemptive. A thread in a preemptive thread

system may be interrupted at periodic intervals and designated points, at which point control is

transferred to another thread by the scheduler. In a non-preemptive system, a change in control occurs

only when the currently executing thread relinquishes control to the scheduler or to another named

thread.

This paper presents a runtime framework for preemptive threads in C--. In particular, we will explore the

capacity of the current C-- back-end to support our preemptive thread model and provide modifications to

the current back-end runtime system or suggest new services where necessary. The thread framework

presented in this paper is largely based on the POSIX thread model. The current C-- back-end

specification suggests a partial framework for non-preemptive threads. We demonstrate the plausibility of

our framework with a simple model. We conjecture that proving the simplest case – two C-- threads

multiplexed within an OS thread – implies the plausibility of extending the simple model into a more

general one.

C-- [3][4][5][6] is a portable assembly language that provides an abstraction of hardware. The primary

motivation behind C-- is to enable a front-end runtime system to implement high level services while using

C-- as a code generator. The C-- framework separates policy from mechanism. The front-end runtime

system writer determines the policy, while the back-end runtime system provides the mechanism. C--

employs a runtime interface that allows the inspection or modification of the state of a suspended

execution. In addition, C-- is desirable because:

• It does not exhibit some of the deficiencies of C as an assembly language; in particular the difficulty of

implementing tail-call optimizations and the unknown stack frame layout (since a C compiler can

layout its stack frames as it pleases)

• It can perform tasks that can not be done in C e.g. garbage collection with registers

• It allows the front-end to determine the cost model

• It reduces and could, perhaps, eliminate the need for virtual machines

Some of the more interesting C-- features include:

• It supports only the minimum machine data types. Since all hardware may not support all data types,

it is important for the front-end to know beforehand the data types supported by the underlying

hardware

• Variables are abstractions of registers – when a variable of some type is declared, it could potentially

fit in a register

• C-- attempts to put all variables in registers; if there are no registers available, the variable is stored in

memory

• C-- supports procedures with multiple return values and general tail calls

The rest of this paper is structured as follows; we discuss our primary underlying assumptions in section 2

and present the front- and back-end services in sections 3 and 4. We give a demonstration of the basic

system in section 5, discuss some outstanding issues in section 6, and conclude with a quick summary in

section 7.

2.0 Assumptions

Before getting into the details of our model, it is necessary to clarify our assumptions about the services

provided by our front-end framework and the back-end C-- runtime interface.

The Back-end runtime system maintains the thread local state. The thread local state (hereon

referred to as the thread control block, TCB) holds information pertinent to a thread. The front-end and

back-end have different views of a thread. The front-end is primarily concerned with how to context

switch and schedule a thread. However, the front end is not concerned with information regarding the

layout of the thread stacks and registers. The front-end TCB holds a pointer to the back-end TCB and

some other data structures that could affect the thread policy like the thread priority, age, name, etc. The

thread creation process typically involves the front-end allocating a chunk of memory – some of which it

keeps for itself – and the rest is passed to the back-end runtime system. The back-end TCB structure is

responsible for maintaining the layout of the memory passed to it. The layout would typically include the

thread stacks, registers, and activation records. Since, we are not concerned with the back-end’s view of

a thread we assume that one exists. The following code represents a simple front-end TCB structure:

/* thread control block for front-end runtime */
struct front_end_tcb {

struct tcb back_end_tcb; /* C-- runtime tcb */
int priority;
int age;
 :
 :

};

All C-- threads are polite. Most system calls, whether on Unix or other platforms, block (or suspend) the

calling threads until they complete, and continue its execution immediately following the call. Some

systems also provide asynchronous (or non-blocking) forms of these calls; the kernel notifies the caller

through some kind of out-of-band method when such a system call has completed. Asynchronous

system calls are generally much harder for the programmer to deal with than blocking calls. Our primary

objective does not include the provision of a robust thread system that is resilient against malicious

threads. We therefore assume that threads will not block the whole system by blocking signals or

executing system calls that will block indefinitely.

3.0 Front-end Services

Having stated the assumption we made in our thread framework, we now focus our attention on the

services provided by the front-end runtime system.

3.1 Operating System Support

In order to perform a context switch, we need the operating system to provide support that periodically

interrupts the currently executing thread. These periodic interrupts give the scheduler a chance to

schedule other threads. Unix defines a set of signals for software and hardware conditions that may arise

during the normal execution of a program. The signal facilities found in SVR4 and 4.4BSD were designed

around a virtual-machine model, in which system calls are considered to be the parallel of machine’s

hardware instruction set. Signals are the software equivalents of traps or interrupts, and signal-handling

routines perform the equivalent function of interrupt or trap service routines. By default, signals are

delivered on the runtime stack of the process. However, 4.4BSD and SVR4 provide a mechanism for the

delivery of signals on an alternative stack – through the sigaltstack call. Our framework adopts the

4.4BSD model – setting the delivery of signals on a separate stack. When a C-- program is launched, it

needs to call the front-end runtime system to setup the thread system. These setup requires the

initialization of several components; period timer, signal mask, and the data structure that will hold each

thread’s status:

int Thread_init() {
struct itimerval period;
struct sigaction sa;
/* set up interrupts interval and period */
period.it_value.tv_sec = 0;
period.it_value.tv_usec = 100000;
period.it_internal.tv_sec = 0;
period.it_internal.tv_usec = 100000;

/* setup alternative stack */
sa.sa_flags = SA_ONSTACK;
/* interrupt handler */
sa.sa_handler = interrupt_handler;
if (sigaction(SIGVTALRM, &sa, NULL) < 0) {

/* error checking code */
return 0;

}
/* Setup signal delivery on separate stack */
sigaltstack(&old, &new);
setitimer(ITIMER_VIRTUAL, &period, NULL);

:
}

The it_value field in an itimerval structure specifies the amount of time in seconds (tv_sec) and

microseconds (tv_usec) to the next timer interrupt. The values in the it_interval field are used to

reset the it_value field when the timer expires. Thread_init arranges for the timer interrupt to occur

every 100ms.

Our model uses a VIRTUAL timer as compared to a REAL timer. The VIRTUAL timer decrements only

when the process is running. We are not sure if this is a better solution because if a thread goes sleeps

indefinitely, the whole process will be blocked (see section 6.1 for a discussion on dealing I/O and system

calls that may block). On the other hand, the REAL timer decrements in real-time, even when the

process is not running. This might be a problem when the system is overloaded and the process gets a

small fraction of the CPU. In POSIX, system calls interrupted by a signal cause the call to be terminated

prematurely and an “interrupted system call” error to be returned. The model requires that the thread

programmer carefully examine the code returned from a system call to ensure it was completed and

restart it if necessary. 4.4BSD provides a better mechanism through the sigaction system call, which

can be passed a flag that requests that system calls interrupted by a signal be restarted automatically

wherever possible and reasonable. We felt the responsibility of ensuring the completion of interrupted

system calls may be rather cumbersome for the thread programmer.

An alternative way to setup timer interrupts is using the alarm() system call. However, this is made

obsolete by setitimer and only works with second granularity. On most Unix system, the default timer

granularity is 10ms. A finer granularity can be achieved by modifying the kernel.

3.2 Interrupt Handler

The interrupt handler is called when a periodic timer expires. The semantics of signal delivery on 4.4BSD

blocks future occurrence of the same signal. This reduces the complexity of the interrupt handler but also

introduces the chance that a process may be blocked during the interrupt handler. The semantics may

be different on other platforms. We can unblock the signal by calling sigmask() – this is done in the

scheduler. The interrupt handler has two primary responsibilities: ensuring it safe to interrupt the current

executing thread, and invoking the scheduler. It is necessary for the interrupt handler to be aware of

atomic thread operations. For example, a thread should not be interrupted in the middle of a memory

allocation operation. Our framework adopts the critical-sections approach described in Cormack’s micro

kernel [1]. When the current running thread enters a critical region, it sets a global static variable

__CRITICAL__. The interrupt handler checks the value of __CRITICAL__, and if it is set, returns

immediately and thus ignores the current timer interrupt. It is safe to multiplex the current thread if it is not

in a critical region. The interrupt handler then invokes the scheduler. A primary drawback of using critical

sections is the performance implications when the critical sections are too long or if a page fault occurs

while a thread is in a critical section. We discuss some of these issues in section 6.0. The code for the

interrupt handler should look like:

extern int __CRITICAL__;

void interrupt_handler(int sig, int code, struct sigcontext *scp) {
/* check if the thread is in a critical section */
if (__CRITICAL__) { return; }
scheduler(scp);
}

The sig argument carries the signal number, and code supplies additional data for some signals. The

scp argument is a pointer to a sigcontext structure that captures the current state of the machine.

3.3 Scheduler

The scheduler determines the next thread to run. The scheduler runs on the interrupt handler’s stack.

For the simplest case, we assume a single run queue that contains runnable threads. The scheduler first

takes a snapshot of the current thread using the back-end service updateTCB. It is necessary to take a

snapshot of the current thread to ensure that the thread can be resumed at the exact point where it was

interrupted. The scheduler then enqueues the interrupted thread in the run queue. The thread at the

head of the run-queue is the selected as the next runnable thread and run with a call to swtch:

struct front_end_tcb *current_thread;

void scheduler(struct sigcontext *scp) {
__CRITICAL__ = 1;
updateTCB(current_thread->back_end_tcb, scp);
runQueue->enqueue(current_thread);
current_thread = runQueue->dequeue();
sigsetmask(scp->sc_mask); /* unblocks signal */
__CRITICAL__ = 0; /* leaving scheduler */
swtch(current_thread->back_end_tcb);

}

The semantics details of runQueue->enqueue() and runQueue->dequeue() are hidden in this

example code. The scheduling policy may be implemented with different techniques. Different policies

may require other parameters to describe a thread; these parameters should be stored in the front-end

TCB. In our front-end TCB, we include thread priority and age parameters simply to demonstrate the

ease of extending the scheduler for different policies.

4.0 Back-end Services

Our preemptive thread model depends on some services provided by the C-- back-end. In particular, we

expect the C-- back-end to provide services for creating a thread, updating the state of a thread

execution, and resuming the state of a suspended execution. The current C-- back-end specification

provides InitTCB(tcb *t, int size, program_counter pc) and Resume(tcb *t) for thread

creation and resumption respectively. However, the present back-end specification does not provide

services for saving the state of an execution. We suggest the addition of such a service to the back-end

interface and describe its framework. We further suggest modifications to the Resume(tcb *t)

service, which resolves a potential stack overflow problem.

4.1 Updating the thread state

It is necessary to save the state of a suspended execution so we can resume to it later. In most cases,

the front-end runtime system has up to date information about the machine states while the back-end

runtime system may not. However, only the back-end runtime system has the knowledge on how to deal

with some thread state information like stacks and registers. The current C-- back-end interface does not

provide a clear mechanism for saving the state of the current execution. For this reason, we propose

extending the back-end interface with the addition of a function that can be used to save the state of a

suspended thread. updateTCB(tcb *t, struct sigcontext *scp) updates the state of a

suspended execution. The parameters to updateTCB are a pointer to the back-end TCB of the currently

interrupted thread and a pointer to the sigcontext structure. The sigcontext structure is the kernel’s

view of the current machine state. This structure contains, amongst other things, the program counter,

stack pointer, and frame pointer. From our viewpoint, the proposed updateTCB service provide a cheap

and easy way for the front-end runtime to communicate up to date machine state information to the back-

end runtime. On platforms that do not support sigcontext, some other notion of machine states may

exist. However, it may be impossible to implement user-level threads on platforms that do not support

any notion of machine states from the operating system’s view. We feel that this does not represent a

deficiency to our model because our primary task it to show the framework works for the simplest case

and then generalize it.

4.2 Resuming a thread

The current C-- runtime interface provides the Resume service, which is used to restart execution of a

stopped thread. Resume(tcb *t) returns an integer code that is the result of the yield code returned by

the thread when it yields control. A problem with the current Resume service is the return value, which

mandates stack preservation until Resume returns. This problem could quickly result in stack overflow

whenever we perform a context switch – it does not matter if signals are delivered on a separate or on the

process stack, stack preservation could make stack management a big issue and could potentially

overflow the process stack. For this reason, we suggest the addition of a new back-end service void

swtch(tcb *t). swtch is very similar to Resume except its semantics guarantees that it will not return.

swtch is simply an extension of Resume.

5.0 The Basic System

The following state transition diagrams (figure 1a - e) show the execution of our system for the simplest

case; two C-- threads (Thread A and Thread B) multiplexed in one OS thread. There are five logical

entities in the state transition diagrams, four of them; the interrupt handler, scheduler, Thread A, and

Thread B are within the same protection domain; the process. When a software interrupt occurs, the OS

takes control from Thread A. If Thread A is not in a critical section (__CRITICAL__ is not set), the

interrupt hander invokes the scheduler, which switches to Thread B. If Thread A is in a critical section,

then the interrupt handler returns immediately allowing Thread A to complete its critical section. The OS

invokes the interrupt handler.

OS Scheduler
Interrupt
Handler

Thread A
(running)

Thread B
(Suspended)

Figure 1a: The initial system state, we assume Thread A and Thread B were successfully created.
Thread A is the currently running while Thread B is suspended. Thread A, Thread B, and the OS run on
separate stacks. The interrupt handler and scheduler execute on the same stack, which is separate from
the OS, and thread stacks.

OS Scheduler
Interrupt
Handler

Thread A
(Suspended)

Thread B
(Suspended)

Figure 1b: The periodic timer expires and traps to the OS. Thread A is suspended while the OS calls the
interrupt handler. The interrupt handler now determines if is safe to invoke the scheduler.

OS Scheduler
Interrupt
Handler

Thread A
(running)

Thread B
(Suspended)

Figure 1c: If Thread A is in a critical then the interrupt handler returns immediately and Thread A
resumes execution. The system returns to the state depicted on Figure 1a at the next software interrupt.

OS Scheduler
Interrupt
Handler

Thread A
(Suspended)

Thread B
(Suspended)

Figure 1d: The interrupt handler invokes the scheduler if it is safe to interrupt Thread A (i.e.
__CRITICAL__ is not set)

OS Scheduler
Interrupt
Handler

Thread A
(Suspended)

Thread B
(running)

Figure 1e: The scheduler saves Thread A’s state, enqueues it and resumes Thread B.

6.0 Discussion and Issues

In this section, we discuss some of the issues we encountered while developing this model and address

some of the issues raised in our presentation.

6.1 I/O and Blocking system calls

Our model uses a VIRTUAL timer. It is possible for a thread to block the system by making system calls

like read() and write(), or even sleep(). We propose a solution to extend the system and prevent

a thread from blocking the system when it is executing system calls.

A monitor could be used to multiplex all system calls that may potentially block the system. Each time a

thread wants to make system calls that may block the system, it registers with the monitor, so the monitor

can then poll to determine if the operating system is ready to serve the system call, and thus allow the

thread to execute the system call.

For example, when a thread wants to make a system call like read() to get some data from a file

descriptor, it first marks the file descriptor as non-blocking and makes the system call. If the system call

will block, it returns immediately. Then the thread registers the file descriptor with the monitor, and goes

to the wait queue. Each time the scheduler is invoked, the monitor will get a chance to check whether the

data is ready for the thread, using select() or poll(). If the data is ready, the corresponding thread

will be put back to on the run queue. The next time the thread is scheduled to run, it will be able to read

data from the file descriptor.

This solution could resolve the problem that occurs when the system can be blocked by a single thread

executing a system call. In addition, this approach increases the processor utilization because the

system will be able to schedule other threads to run when one is being blocked.

sleep(), on the other hand, might block the system like I/O system calls. The front-end can provide

another function call, say thread_sleep(), that has the same semantics as sleep(), but without

entering the operating system kernel. thread_sleep() can be implemented as follows: when the

function is called, the scheduler puts the thread into a wait queue, and marks when the thread will

become ready again. This will not block the system and other threads can be scheduled when the

potentially blocking thread is sleeping.

All these system calls can be wrapped within other function calls, so the different mechanisms can be

transparent to users.

6.2 Other critical section techniques

We use the global variable __CRITICAL__ to guard a thread from being interrupted when it is in some

atomic operations, for example, allocating memory from the heap. In addition, it is employed to protect

the scheduler from being reentrant – to guarantee the integrity of the scheduler.

Code labels is another technique that may be used to protect the current thread from being interrupted

while it is doing some atomic operations. For example, we can arrange all functions that require atomic

execution be within one continuous memory region, and use two global variables to describe the region,

say, MONITOR and END_MONITOR. When a thread is interrupted, the interrupt handler can examine

the program counter and see if it falls within the range of the region. If it does, the thread is in an atomic

operation and should not be interrupted. All the functions to be put in the region can be implemented by

the front-end writer as front-end services. This technique is mentioned in the Cormack paper [1], also the

Hanson book [2]. Our interrupt handler can be easily modified to support this synchronization technique

as follows :

void interrupt_handler(int sig, int code, struct sigcontext *scp) {
/* check if the thread is in a critical section */

if (scp->sc_pc >= (unsigned long)_MONITOR &&
 scp->sc_pc <= (unsigned long)_ENDMONITOR) {

 return;
}

scheduler(scp);
}

If the atomic operation sequences are scattered, or in the form of RAS (Restartable Atomic Sequence),

each of these sequences can be registered with the interrupt handler, describing the start and the end of

each sequence, so the interrupt handler can store them in a table, and check if the program counter falls

in the range of those sequences each time it is called. If the interrupted thread is in a RAS, the interrupt

handler is not required to return control to the thread immediately. Instead, it can set the program counter

to the start of the sequence, so next time the thread resumes execution, it can start from the correct

position.

6.3 Stack Movement

We assume thread stack does not move in the basic system, but it is a rather draconian restriction. What

changes are required to the basic system or what should the scheduler do when a thread’s stacks are

allowed to move? For example, a copying garbage collector may want to move stacks, stacks might

overflow or underflow and trigger an overflow/underflow handler that relocates it. It is also possible that

the stack is segmented into several small chunks.

The scheduler needs to maintain thread states – it allocates memory regions so the back-end can store

thread local states and stacks. We are not sure whether the scheduler should handle the case when a

stack overflow or underflow happens. However, the stack information kept by the front-end needs to be

updated if any change to the stack takes place.

A simple solution is to have the scheduler export the data structure of the front-end thread states to, or

provide a set of interfaces to the garbage collector and stack overflow/underflow handler. These

services, garbage collector and stack overflow/underflow handler, will now be able to update front-end

thread states when necessary. They will also need to notify the interrupt handler that they require atomic

operations by using the techniques mentioned earlier.

On the other hand, the back-end runtime system might need to be notified when the stack is moved, so it

can update its own thread local states as well. This could be done by extending back-end services to

allow these changes.

6.4 Abort Critical Section

It might be a problem when a thread sets the global variable __CRITICAL__ and blocks. We have no

solution to prevent this from happening. This will stop scheduler from having a chance to interrupt the

current running (blocking) thread and schedule other threads to run. Consider an example where a

thread is in a critical section, and a page fault happens. The scheduler can not do anything until the page

fault is recovered. On a uniprocessor machine, we can do nothing except deferring the page fault

recovery. On a multiprocessor machine, we can schedule another processor to recover the page fault. In

either case, we need operating system support to notify the scheduler so it can put the thread into the

wait queue, make any other actions, and schedule others threads.

6.5 Ideas on Implementing the proposed back-end interfaces

We propose updateTCB and swtch to extend the back-end services for the context of preemptive

threads. To show the feasibility of the basic system, we describe some ideas for implementing these

interfaces.

updateTCB(tcb *t, struct sigcontext *scp) takes the thread’s local states and machine

register dumps as arguments. It then update the thread’s local state according to the machine register

dumps.

swtch(tcb *t) takes the thread’s local states as argument, and resumes the execution of the thread.

Since the interrupt handler and scheduler run on a separate signal stack, it is easier for swtch to set the

machine state back to the suspended point. There is no need to manipulate the original stack to preserve

it. swtch is very similar to Resume, they differ mainly in the semantics; Resume may return while swtch

never returns.

The envisioned implementation of Resume and swtch are similar in that they must first identify the thread

to resume or “machine state” to restore from their parameters. swtch then restores some of the registers

such as general registers, registers for frame and stack pointer so it can jump to the program counter and

continue execution as if the thread was never suspended. Resume takes a slightly different path. It too

will restore some of the registers, but it also needs to setup the thread's activation records, so that when it

calls yield(), control can be transferred back to the scheduler. We are not familiar with how this would

be done.

6.6 Supporting Multiple OS threads, run queues, and policies

Our model describes the simplest case; one OS thread, two C-- threads and a single run queue. To

make this framework useful, it is necessary to extend it to the more general case. In the situation where

we have multiple OS thread (maybe because of a multi-processor), we suggest that each OS thread run

its own scheduler and interrupt handler. Multiple OS thread can still share the same queue but that

requires using a global locking mechanism to protect the integrity of the queue. However, this could be

problematic because a thread or scheduler may hold the lock and block. For this reason, it may be better

that every OS thread maintains a separate run queue and locking mechanism. The binding of a thread

and processor may require other front- and back-end services -- which we do not discuss.

The scheduler can be easily extended to support different scheduling policies. The front-end may have to

provide services that the thread programmer can use to specify the scheduling policy.

7.0 Summary

We have shown a framework for supporting preemptive threads in C--. Our model extends the current C-

- framework with new services. In particular, we suggest and describe two simple extensions to the back-

end runtime interface: a mechanism for saving the state, updateTCB, and a revised mechanism for

resuming the state of a suspended execution, swtch. Our model describes the simplest case; two C--

threads multiplexed on an OS thread using single run queue. We conjecture that proving the simplest

case demonstrates the plausibility of our system and its extensibility to the general case.

References

[1] Cormack, G. V. 1988. A micro-kernel for concurrency in C. Software---Practice and Experience,

18(5):485--92.

[2] Hanson, David R. 1996. C Interfaces and Implementations. Benjamin/Cummings. Chapter 20:

Threads

[3] Norman Ramsey and Simon Peyton Jones. Machine-Independent Support for Garbage Collection,

Debugging, Exception Handling, and Concurrency, [Sept 1998]

[4] Norman Ramsey and Simon Peyton Jones. The C-- runtime interface for concurrency. [March 2000]

[5] Simon Peyton Jones, Norman Ramsey, and Fermin Reig. C--: a portable assembly language that

supports garbage collection, Invited talk at PPDP’99 [July 1999]

[6] Norman Ramsey and Simon Peyton Jones. A Single Intermediate Language That Supports Multiple

Implementations of Exceptions, PLDI’00. [March 2000]

[7] Pike, R. Newsqueak: A language for communicating with mice. Computer Science Technical Report

143, AT&T Bell Laboratories, Murray Hill, New Jersey, 1989

[8] Pike, R. The implementation of Newsqueak. Software practice and experience, AT&T Bell

Laboratories, Murray Hill, New Jersey

