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Abstract

A protein chain consists of a sequence of amino acids.
Each amino acid may occur several times in the chain.
Associated with each amino acid are various categorical
attributes like charged, polar, hydrophobic etc. Pro-
tein sequences are often subjected to standard sequence
analysis. Often statistical criteria are used for evalu-
ation of various protein sequence attributes. Several
queries arise during the statistical analysis of such a pro-
tein sequence which involves a segment of the protein.
We model some of these problems as generalized range
searching problems in computational geometry and pro-
vide efficient data structures and algorithms for solving
them.

1 Introduction

Proteins are long sequences of different amino acid
residues, connected through what are known as peptide
bonds. Each of the common 20 different amino acids
is respectively associated with unique side chains which
may be classified in terms of several non-orthogonal, of-
ten hierarchical, physical and chemical categories such
as size, polarity, charge, hydrophobicity etc. Apart from
specific physicochemical categories, other abstract sta-
tistical attributes such as frequency of overall or context
related occurrence or mutation probability etc are also
used to categorize protein sequences [11]. Analysis of
protein sequences is important to biologists in a vari-
ety of contexts including determination of structure and
function, phylogeny etc. It is almost universally held
that sequence of amino acids in a protein determines
its structure which in turn determines its function. It
is also observed that nature is abound with conserved
structural motifs comprising of sequences which are not
identical but have similarities in the statistical distri-
bution of amino acid attributes. In protein secondary
structure prediction methods, sequence ranges are ex-
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amined [13]. Information regarding the statistical dis-
tribution of individual amino acids or classes of amino
acids in the whole or in different parts of proteins is thus
vital for biologists [6].

1.1 Contributions

For reasons discussed above, protein sequences are of-
ten subjected to standard sequence analysis and often
statistical criteria are used for evaluation of various pro-
tein sequence properties [6]. In statistics, categorical (or
nominal) variables represent types of data which may
be divided into groups. Let us assume that a protein P
consists of a chain of amino acids P = (a1, az,...,a,).
Each amino acid may occur several times in the chain.
Associated with each amino acid are various categori-
cal attributes like charged, polar, hydrophobic etc. A
segment of a protein is a sequence (a;,@;t1,---,a;) for
1 < i < j < n. Several queries may be of interest in
the analysis of such a protein, which involves categor-
ical queries about a given segment. In the rest of this
paper, we consider such queries and provide efficient
solutions for them using techniques of generalized in-
tersection searching in computational geometry. Work
involving other computational geometry approaches to
answering queries in large chain molecules may be found
in [2, 3, 14, 15]. However those papers mostly dealt with
structural properties.

2 Generalized Intersection Searching

In a class of problems called generalized intersection
searching problems, a set of geometric objects S comes
aggregated in groups. We associate with each group an
unique color and assume that all objects of that group
have the same color. In the more common repetitive
mode variant, the problem of interest is to preprocess S
into a data structure such that given a query object g,
the colors (i.e. groups and not their individual mem-
bers) of the groups that intersect ¢ can be reported
or counted efficiently. Here, we say that ¢ intersects
a group if and only if it intersects at least one object
in the group. In the single-shot variant, the problem
of interest is to find the groups (colors) which inter-
sect. Generalized intersection searching problems arise
in many contexts where the number of groups and the
size of each group are non-constant. Note that a gener-
alized problem reduces to the standard one when each



color class has cardinality one.

Generalized intersection problems were first studied
by Janardan and Lopez in [10]. A survey in this area
may be found in [9]. In this paper, we apply solutions
for generalized intersection problems to some problems
in protein sequence analysis.

3 Querying on sequence of amino acids

3.1 Reporting distinct amino acids in a range

Consider a set of P of n points [1..n] which represents
the protein chain. Let A(i) denote the amino acid asso-
ciated with the the i-th position in the chain. We wish
to preprocess P into a data structure such that given a
query interval ¢ = [a,b], the distinct amino acids in ¢
can be reported efficiently.

If we associate with each amino acid an unique
color, the the above problem is an instance of the 1-
dimensional generalized range searching problem which
can be solved in O(n) space with O(logn-+1) query time
[10, 8] where 4 is the output size. However considering
that we are range searching on the 1-d grid, using the
solution of [1], this can be solved in O(nlogn) space
and O(loglogn + i) time. We can do better, taking
advantage of the fact that our sequence is really [1..n].
First we use the transformation technique of [8] to trans-
form the problem to a standard three-sided query on
the 2-d grid Z2. For each point p of color ¢, let pred(p)
be its predecessor in the ordering. We map point p to
the point p' = (p,pred(p)) in Z* and associate with it
the color ¢. The query interval [a,b] is mapped to the
grounded rectangle [a,b] X (—o0, a). Using the solution
of [4], we conclude:

Theorem 1 A protein chain P can be preprocessed into
a data structure of size O(n) such that given a query
range ¢ = [a,b], the distinct amino acids in P which
occur in the range q, can be reported in time O(7), where
i is the output size.

3.2 Reporting count of each distinct amino acid in
a range

The 1-dimensional generalized static type-2 counting
problem was considered in [8]: preprocess a set of col-
ored points on the z-axis such that for each color in a
given query interval ¢ = [a, b], the number of points of
that color in ¢ can be reported efficiently. For this prob-
lem, a O(nlogn) space O(logn+1i) query time solution,
where 4 is the output size was given in [8]. This space
bound was improved to O(n) in [5] with O(logn + )
query time.

In this section, we consider the following problem:
we wish to preprocess a protein chain P into a data
structure such that for each distinct amino acid in a

given query range g = [a, b], we can report the number of
occurrences of that amino acid in the range g efficiently.
Clearly this is an instance of a generalized 1-dimensional
type-2 counting problem.

The solution in [5] uses two priority search trees [12]
PST1 and PST2. PST1 is built to answer three-sided
queries of the form ¢' = [a,b] X (—00,a) and PST?2 to
answer queries of the form ¢" = [a, b] x (b, +00). We can
replace the two priority search trees PST'1 and PST?2
in the solution of [5] with T'SQ1 and T'SQ2 respectively
which are instances of the data structure of [4] for an-
swering three-sided queries. The rest of the solution
remains the same as in [5].

Theorem 2 A protein chain P can be preprocessed into
a data structure of size O(n) such that for each distinct
amino acid in a given query range ¢ = [a, b], the number
of occurrences of that amino acid in the range q, can be
reported in time O(i), where i is the output size.

4 Querying on amino acid properties

A set of amino acids .4 may be grouped according to
properties (hydrophobic, polar etc.) into various sub-
sets. The subsets may have mutually non-empty inter-
sections. Certain subsets may be contained in others.
For e.g. the set of charged amino acids is properly con-
tained in the set of polar amino acids. Also the set of
charged amino acids contains positive and negative ones.

In this section, we consider queries involving the var-
ious properties of the amino acids in a protein chain
rather than the amino acids themselves. Typical ques-
tions that can be answered using these algorithms in-
clude queries related to compositional analysis. For in-
stance a distribution of the properties in a segment of
the sequence will give an idea of whether the segment
is particularly rich or poor in certain property types.

We are given a protein chain P = (a1,as,...,a,).
Each a;, is an amino acid chosen from the set A. If
amino acid a; has r; properties, we can create a new
sequence P’ from P by substituting each instance of a;
with r; points labelled with the respective properties,
each of which we can associate with an unique color.
Then P’ is a sequence of N = E;‘Zl r; colored points,
N >n. .

Let us define Ny =0, N; = Y7_, r4. Given a range
query q = [a, b] on the sequence P, let a’ = (N,_1 +1)
and ' = N;. P’ is a sequence of colored points [1..N]
and ¢’ = [a',b] is a query interval in [1..N]. To find the
distinct properties of the amino acids in a range [a, b] C
[1..n], we can preprocess the sequence P’ using the data
structure of Theorem 1 and query with ¢' = [@/, ']

Theorem 3 A protein chain P of size n with o total
of N > n properties can be preprocessed into a data
structure of size O(N) such that given a query range



q = [a,b] C [1..n], the distinct properties of the amino
acids in P which occur in the range q, can be reported
in time O(i), where i is the output size.

When we create the sequence P’ from P by substi-
tuting amino acid instances with points labelled with
the respective properties, each of the r; points substi-
tuting for amino acid A; gets labelled with a different
property (color). Thus given a query range q¢ = [a,b],
for each distinct property (color) ¢ of the amino acids in
the range ¢ in sequence P, the number of amino acids
in the range ¢ with property c is exactly equal to the
number of occurrences of color ¢ in the range [a/,V'] in
sequence P'.

Theorem 4 A protein chain P of size n with a total
of N > n properties can be preprocessed into a data
structure of size O(N) such that given a query range
g = [a,b] C [1..n], for each distinct property c of the
amino acids in range ¢ = [a,b], the number of amino
acids in the range q having property c, can be reported
in time O(1), where i is the output size.

5 Handling a hierarchy of properties

Sets of amino acids classified according to properties
may be contained within others. For e.g. the set of
charged amino acids is a proper subset of the set of po-
lar amino acids. Such containment relationships may
be represented hierarchically in the form of a tree or a
dag (directed acyclic graph) in general. Range queries
on the protein sequence as defined in Section 4 will out-
put all distinct properties ignoring the hierarchical re-
lationships between them. However if there is an amino
acid with property “charged” and another with prop-
erty “polar” in the query range, we may simply want
to see the property “polar” in the output to the query.
Solutions based on the data structures of Section 4 will
not be output-senstive in that case. Clearly we need a
different technique. In this section, we propose output-
sensitive solutions to the protein sequence query prob-
lems in the presence of a property hierarchy mentioned
above.

Given a set of amino acids A, we define a property
DAG (directed acyclic graph) G(A) = (V, E) as follows:
V is a set of properties of the amino acids in 4. Let
u,v € V be amino acid properties. Then there is a di-
rected edge from u to v if the set of amino acids with
property u is properly contained in the set of amino
acids with property v. We also create a dummy wuni-
versal property U to which all nodes in the dag point.
We are given a protein chain P = (aq,a2,...,a,). For
a query range ¢ = [a,b], we define a property u to be
mazximal with respect to g if there are no amino acids in
the range ¢ = [a,b] in the protein sequence with prop-
erty v such that there is a directed edge from u to v in
the property dag G(A).

We would like to preprocess a protein chain P such
that given a query interval ¢ = [a, b], the distinct prop-
erties of the amino acids in the range ¢ which are max-
imal with respect to ¢ can be reported efficiently. In
preprocessing, we create a sequence P’ as in Section 4.
We also prepend and append to P’ a point each to the
left and right of the sequence colored with the universal
property U. With each point in p € P’, we associate
the following;:

e ¢(p): The color or property associated with p. This
also represents a vertex in the property dag.

e pred(p): The predecessor of p in the sequence P’
which is of the same color as p. Thus pred(p) is
a point with the same color as p, to the left of p
and the rightmost amongst all such points. If p is
the leftmost point of color ¢, then we set pred(p) =
—00.

e left(p): Amongst all points to the left of p, the
rightmost point ¢ such that there is a directed edge
from c¢(p) to ¢(t) in the property dag G(A).

e right(p): Amongst all points to the right of p, the
leftmost point ¢ such that there is a directed edge
from c¢(p) to ¢(t) in the property dag G(A).

P' is a sequence [1..N]. We map each point p € P’
to a point s = (p,pred(p),left(p),right(p)) in [1..N]*.
We give s the same color as p. Given a query interval
g = [a,b] C [1..n] we transform it into a query interval
q' = [d,b'] C [1..N] as before. Given ¢', we would like
to report ¢(p) for all colors p such that:

a <p<t

—o0o < pred(p) < a'
—oo < left(p) <a
b < right(p) < 400

We transform ¢' to a 4-dimensional hyper-rectangle
¢" in Z* defined as follows: ¢" = [a/,b'] x (—o0,a’) x
(—00,a') x (V',4+00).

The following theorem, extended from a similar result
for the 1-d colored range searching problem in [8], is
crucial to obtaining an output-sensitive algorithm:

Theorem 5 There is a mazimal point of color c in ¢'
if and only if there is a point of color ¢ in q¢"". Moreover
if there is a point of color c in q", then this point is
unique.

Theorem 5 above helps us in transforming the prob-
lem of reporting distinct properties in a range in pres-
ence of property hierarchies to a simple range searching
problem in [1..N]* which can be solved in O(N log® N)
space with O(log® N + i) query time using range trees.



The space bound can be improved to O(N log? N) by
using a priority search tree for grounded range queries
and adding two range restrictions.

Theorem 6 A protein chain P of size n with a total of
N > n properties can be preprocessed into a data struc-
ture of size O(N log2 N) such that given a query range
q = [a,b] C [1..n], the distinct properties of the amino
acids in P which occur in the range q, and are mazximal
with respect to q can be reported in time O(log® N + i),
where i is the output size.

We can transform the problem in a different way.
Given ¢' = [d', V'], we would like to report distinct colors
of points p such that

a <p<¥
—oo < left(p) < a'
b < right(p) < 400

If we transform point p to the point s =
(p,left(p),right(p)) in [1..N]® and the range ¢’ to the
hyper-rectangle ¢" = [a', V'] x (—00,a’) x (b, 4+00), the
result is an instance of the generalized 3-dimensional
range searching problem. This can be solved in
O(N log* N) space and O(log® N +1) time [8]. Alterna-
tively, since our points and hyper-rectangle endpoints
are all in [1..N]%, we can use the results of [1] to get an
O(N'*¢) space, O(loglog N + i) query time. Note that
there may be multiple points of the same maximal prop-
erty (color) ¢ that satisfies the range restrictions on p,
left(p) and right(p) shown above, but the generalized
solution for the 3-dimensional problem ensures that the
query time is output-sensitive.

Theorem 7 A protein chain P of size n with a total
of N > n properties can be preprocessed into a data
structure of size O(Nlog* N) (respectively O(N'*€))
such that given o query range ¢ = [a,b] C [l..n], the
distinct properties of the amino acids in P which oc-
cur in the range q, and are maximal with respect to
q can be reported in time O(log®> N + i) (respectively
O(loglog N +i)), where i is the output size.

6 Conclusions and further research

We have given a unified framework for solving some
problems which are of relevance in statistical analysis of
protein sequences. Existing techniques can be used to
count [5] or report only in colors which have significant
presence [7]. If instead we wish to compute a weighted
sum to indicate some score of interest, maximum count
amongst all colors in the range, maximum run for each
color in a range etc., existing solutions can be suitably
modified to solve these as well. We have implemented
the algorithms in Sections 3 and 4 to build a tool for
sequence analysis and plan to add additional queries.
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