Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China.
-
摘要: 雅山岩体是华南地区著名的富含钽铌矿的稀有金属花岗岩。从早阶段到晚阶段花岗岩中的云母的Li、F和Rb2O含量逐渐升高,其类型变化为“黑鳞云母→Li-云母→锂云母”。锆石的Zr元素被Hf、U、Th、Y和P等元素的置换比例随着岩浆演化程度升高而增大。云母和锆石矿物成分变化特征与全岩体系的Zr/Hf、Nb/Ta比值不断下降而F、Li和P2O5含量逐渐升高的趋势一致,将可以用于指示岩浆演化程度。在岩浆演化过程中不断富集的P、F、Li元素增加了熔体中非桥氧数(NBO),促使钽-铌元素在岩浆中的溶解度加大而逐渐富集,在最晚阶段的黄玉锂云母花岗岩具有最高的Ta、Nb元素含量。因此,雅山花岗岩具有较高的F、Li、P2O5含量是其岩浆演化及其Ta-Nb富集的重要机制。西华山花岗岩中的云母与雅山花岗岩中的锂云母相比,具有明显较低的F、Li、Rb2O含量,表明西华山花岗岩的岩浆演化程度相对低于雅山花岗岩。西华山花岗岩中的钨富集与流体作用密切相关,体系氧逸度的降低促使了钨成矿。因此,岩浆演化程度的不同可能是造成华南稀有金属花岗岩发生不同成矿作用(如Ta-Nb矿和W矿)的重要原因。Abstract: The Yashan granites are typical rare-metal granites in South China and famous for enriched tantalum-niobium deposit. From early to late units of the Yashan granites, the micas varied in the types of "protolithionite→Li-mica→lepidolite" corresponding to increasing Li, F and Rb2O concentrations. The proportion of Zr substituted by other elements (e.g., Hf, U, Th, Y and P) in the zircons was also elevated during magmatic evolution. The variations of micas and zircons are consistent with the whole rock geochemical trends of decreasing Zr/Hf and Nb/Ta ratios but increasing F, Li and P2O5 contents in the Yashan granites, indicating that both the micas and zircons could be as indicators of the extent of magmatic evolution. Ta and Nb were gradually concentrated in the rocks during magmatic evolution because the non-bridging oxygens (NBOs) generated by F, Li and P would promote the dissolution of niobium and tantalum in the melts, so the latest unit of topaz-lepidolite granites has the highest Ta and Nb. Therefore, high concentrations of F, Li and P2O5 are important for Ta-Nb enrichment and magmatic evolution in the Yashan granites. The micas in the Xihuashan granites contain lower F, Li and Rb2O than the lepidolite in the Yashan granites, indicating that the extent of evolution in the Xihuashan granites is less than that in the Yashan granites. The enrichment of tungsten in the Xihuashan granites was closely related to fluid activity. The decline of oxygen fugacity in the melts also triggered the deposit of tungsten in the Xihuashan granites. Therefore, the extent of magamtic evolution would be important mechanism of diverse mineralizations (e.g., Ta-Nb deposit and tungsten deposit) in the rare-metal granites in South China.
-
Key words:
- Rare-metal granites /
- Tantalum-niobium deposit /
- Tungsten deposit /
- Micas /
- Zircons /
- Magmatic evolution /
- South China
-
[1] Belkasmi M, Cuney M, Pollard PJ and Bastoul A. 2000. Chemistry of the Ta-Nb-Sn-W oxide minerals from the Yichun rare metal granite (SE China): Genetic implications and comparison with Moroccan and French Hercynian examples. Mineralogical Magazine, 63(4): 507-523
[2] Cˇern P, Meintzer RE and Anderson AJ. 1985. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. The Canadian Mineralogist, 23(3): 381-421
[3] Cˇern P, Chapman R, Teertstra DK and Novák M. 2003. Rubidium-and cesium-dominant micas in granitic pegmatites. American Mineralogist, 88(11-12): 1832-1835
[4] Dostal J and Chatterjee A. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology, 163(1-4): 207-218
[5] Gong QJ, Cen K and Yu CW. 2002. Experimental study on supercritical phenomena of WO3 solubility in NaCl-H2O system. Science in China (Series D), 46(7): 664-671
[6] Gong QJ, Yu CW and Zhang RH. 2004. Physical chemistry study on the ore-forming process of Shizhuyuan tungsten-polymetallic deposit. Earth Science Frontiers, 11(4): 617-625 (in Chinese)
[7] Horng WS, Hess PC and Gan H. 1999. The interactions between M5+ cations (Nb5+, Ta5+, or P5+) and anhydrous haplogranite melts. Geochimica et Cosmochimica Acta, 63(16): 2419-2428
[8] Horng WS and Hess PC. 2000. Partition coefficients of Nb and Ta between rutile and anhydrous haplogranite melts. Contributions to Mineralogy and Petrology, 138(2): 176-185
[9] Hu SX, Sun ZM, Yan ZF, Xu KQ and Tu GC. 1986. An important kind of metallogenic model related to the tungsten, tin and granophile elements deposits connected with metasomatic alteration. In: Xu KQ and Tu GC (eds.). Relationship Between Geology and Metallogeny of Granites. International Granite Geological and Metallogenic Relationship Discussion. Nanjing University, 1982. Nanjing: Jiangsu Techology Press, 346-358 (in Chinese)
[10] Huang XE and Xu ZH. 2005. Metasomatism of Jiangxi Yashan granite body and metallogenic relationship between it and rare metals. Jiangxi Nonferrous Metals, 19(4): 1-4 (in Chinese with English abstract)
[11] Huang XL, Wang RC, Chen XM, Chen PR and Liu CS. 1998. Constrast between the high-P subtype and low-P subtype of F-rich granites in South China. Geological Review, 44(6): 607-617 (in Chinese with English abstract)
[12] Huang XL, Wang RC, Chen XM, Hu H and Liu CS. 2002. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China. The Canadian Mineralogist, 40(4): 1047-1068
[13] Keppler H and Wyllie PJ. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contributions to Mineralogy and Petrology, 109(2): 139-150
[14] Keppler H. 1993. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contributions to Mineralogy and Petrology, 114(4): 479-488
[15] Li J, Zhong JW, Yu Y and Huang XL. 2013. Insights on magmatism and mineralization from micas in the Xihuashan granite, Jiangxi Province, South China. Geochimica, 42(5): 393-404 (in Chinese with English abstract)
[16] Lin WW and Peng LJ. 1994. The estimation of Fe3+ and Fe2+ contents in amphibole and biotite from EPMA data. Journal of Changchun University of Science and Technology, 24(2): 155-162 (in Chinese with English abstract)
[17] Linnen RL. 1998. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F: Constraints for mineralization in rare metal granites and pegmatites. Economic Geology, 93(7): 1013-1025
[18] Liu Y and Liu HC. 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica, 25(6): 552-558 (in Chinese with English abstract)
[19] London D, Morgan GB, Babb HA and Loomis JL. 1993. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200MPa (H2O). Contributions to Mineralogy and Petrology, 113(4): 450-465
[20] Mysen BO, Ryerson FJ and Virgo D. 1981. The structural role of phosphorus in silicate melts. American Mineralogist, 66(1-2): 106-117
[21] O'Neill HSC, Berry AJ and Eggins SM. 2008. The solubility and oxidation state of tungsten in silicate melts: Implications for the comparative chemistry of W and Mo in planetary differentiation processes. Chemical Geology, 255(3-4): 346-359
[22] Pesquera A, Ruiz JT, Crespo PPG and Velilla N. 1999. Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (Cáceres, Spain). American Mineralogist, 84(1-2): 55-69
[23] Pollard PJ and Taylor RP. 1991. Petrogenetic and metallogenic implications of the occurrence of topaz Li-mica granite at the Yichun Ta-Nb-Li mine, Jiangxi Province, South China. In: Pagel M and Leroy JL (eds.). Source, Transport and Deposition of Metals. Amsterdam, Balkema: Taylor & Francis, 789-791
[24] Qiu RZ, Zhou S, Chang HL, Du SH and Peng SB. 1998. The evolution of Li-bearing micas from Xianghualing granites and their ore-prospecting significance in Hunan. Journal of Guilin Institute of Technology, 18(2): 145-153 (in Chinese with English abstract)
[25] Railsback LB. 2003. An earth scientist's periodic table of the elements and their ions. Geology, 31(9): 737-740
[26] Rudnick RL and Gao S. 2003. The composition of the continental crust. In: Rudnick RL (ed.). The Crust, Treatise on Geochemistry Vol. 3. Oxford: Elsevier, 1-64
[27] Taylor SR and McLennan SM. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell
[28] Tischendorf G, Gottesmann B, Foerster HJ and Trumbull RB. 1997. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(6): 809-834
[29] Tischendorf G, Foerster HJ and Gottesmann B. 1999. The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data. Mineralogical Magazine, 63(1): 57-74
[30] van Lichtervelde M, Grégoire M, Linnen RL, Béziat D and Salvi S. 2008. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contributions to Mineralogy and Petrology, 155(6): 791-806
[31] van Lichtervelde M, Holtz F and Hanchar JM. 2010. Solubility of manganotantalite, zircon and hafnon in highly fluxed peralkaline to peraluminous pegmatitic melts. Contributions to Mineralogy and Petrology, 160(1): 17-32
[32] Wang LK, Wang HF and Huang ZL. 1999. The geochemical indicatrixes of the REE in Li-F granite liquid segregation. Acta Petrologica Sinica, 15(2): 170-180 (in Chinese with English abstract)
[33] Wang LK and Huang ZL. 2000. Experiments on Li-F Granite Liquid Segregation. Beijing: Science Press, 1-290 (in Chinese)
[34] Wang RC, Fontan F, Chen XM, Hu H, Liu CS, Xu SJ and de Parseval P. 2003. Accessory minerals in the Xihuashan Y-enriched granite complex. The Canadian Mineralogist, 41(3): 727-748
[35] Weyer S, MÜnker C and Mezger K. 2003. Nb/Ta, Zr/Hf and REE in the depleted mantle: Implications for the differentiation history of the crust-mantle system. Earth and Planetary Science Letters, 205(3): 309-324
[36] Wones DR and Eugster HP. 1965. Stability of biotite: Experiment, theory, and application. American Msineralogist, 50(9): 1228-1272
[37] Xiong XL, Zhao ZH, Zhu JC and Rao B. 1999. Phase relations in albite granite-H2O-HF system and their petrogenetic applications. Geochemical Journal, 33(3): 199-214
[38] Yin L, Pollard P, Hu SX and Taylor R. 1995. Geologic and geochemical characteristics of the Yichun Ta-Nb-Li deposit, Jiangxi Province, South China. Economic Geology, 90(3): 577-585
[39] Zhu JC, Rao B, Xiong XL, Li FC and Zhang PH. 2002. Comparison and genetic interpretation of Li-F rich, rare-metal bearing granitic rocks. Geochimica, 31(2): 141-151 (in Chinese with English abstract)
[40] 附中文参考文献
[41] 龚庆杰, 岑况, 於崇文. 2002. NaCl-H2O体系中WO3溶解度超临界现象实验探讨. 中国科学(D辑), 32(7): 562-567
[42] 龚庆杰, 於崇文, 张荣华. 2004. 柿竹园钨多金属矿床形成机制的物理化学分析. 地学前缘, 11(4): 617-625
[43] 胡受奚, 孙明志, 严正富, 徐克勤, 涂光炽. 1986. 与交代蚀变花岗岩有成因联系的钨、锡和稀有亲花岗岩元素矿床有关的一种重要的成矿模式. 见: 徐克勤, 涂光炽主编. 花岗岩地质和成矿关系. 国际花岗岩地质与成矿关系讨论会, 南京大学, 1982. 南京: 江苏科技出版杜, 346-358
[44] 黄小娥, 徐志华. 2005. 江西雅山花岗岩体交代作用及其与稀有金属的成矿关系. 江西有色金属, 19(4): 1-4
[45] 黄小龙, 王汝成, 陈小明, 陈培荣, 刘昌实. 1998. 华南富氟花岗岩高磷和低磷亚类型对比. 地质论评, 44(6): 607-617
[46] 李洁, 钟军伟, 于洋, 黄小龙. 2013. 赣南西华山花岗岩的云母成分特征及对岩浆演化与成矿过程的指示. 地球化学, 42(5): 393-404
[47] 林文蔚, 彭丽君. 1994. 由电子探针分析数据估算角闪石、黑云母中的Fe3+, Fe2+. 长春地质学院学报, 24(2): 155-162
[48] 刘颖, 刘海臣. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25(6): 552-558
[49] 邱瑞照, 周肃, 常海亮, 杜绍华, 彭松柏. 1998. 湖南香花岭花岗岩含锂云母类演化及其找矿意义. 桂林工学院学报, 18(2): 145-153
[50] 王联魁, 王彗芬, 黄智龙. 1999. Li-F花岗岩液态分离的稀土地球化学标志. 岩石学报, 15(2): 170-180
[51] 王联魁, 黄智龙. 2000. Li-F花岗岩液态分离与实验, 北京: 科学出版社, 1-290
[52] 朱金初, 饶冰, 熊小林, 李福春, 张佩华. 2002. 富锂氟含稀有矿化花岗岩质岩石的对比和成因思考. 地球化学, 31(2): 141-151
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0