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Abstract
 We examine the equilibrium effort levels of individual players and groups in a
contest in which two groups compete with each other to win a group-specific public-good
prize, the players choose their effort levels simultaneously and independently, and the
winning group is determined by the selection rule of all-pay auctions.  We first prove
nonexistence of a pure-strategy Nash equilibrium, and then construct a mixed-strategy
Nash equilibrium.  At the Nash equilibrium, the only active player in each group is a
player whose valuation for the prize is the highest in that group; all the other players
expend zero effort; and the equilibrium effort levels depend solely on two values the
highest valuation for the prize in each group.
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1.  Introduction

 A contest is a situation in which individual players or groups compete with one

another by expending irreversible effort to win a prize.  In a group contest, if a prize is a

public good within a group, we call it a group-specific public-good prize.  Contests

involving group-specific public-good prizes are easily observed.  Consider, for example, a

situation in which the government first decides whether to regulate a monopoly and then

decides which firm to be the monopolist.  In each stage, there is competition.  In the first

stage, firms potential monopolists lobby for the unregulated monopoly while 

consumer groups lobby for the regulated monopoly.   In the second stage, after knowing1

the government's decision on the form of the monopoly, the firms compete against each

other to win the monopoly.  The prize for each firm in the first-stage competition is a

group-specific public good: if a firm wins its prize, the unregulated monopoly, then all of

the firms enjoy being candidates for the unregulated monopoly.  The prize for each

consumer group is also a group-specific public good: if a consumer group wins its prize,

the regulated monopoly, then all consumers enjoy the lower price.

 Other examples of contests with group-specific public-good prizes include

competition between domestic and foreign firms to obtain governmental trade policies

favorable to them, R&D competition between consortiums, election campaigns between

political parties, and competition between local governments to invite business firms into

their districts.

 The purpose of this paper is to examine the equilibrium effort levels of individual

players and groups in such contests.  To do so, we consider the following contest.  Two

groups compete with each other to win a group-specific public-good prize.  The individual

players choose their effort levels simultaneously and independently.  Each player's effort is

irreversible.  The winning group is determined by the selection rule of all-pay auctions a

group which expends more effort (or submits a higher group-bid) than its rival wins the
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prize with certainty.  Each player's valuation for the prize is publicly known and the

valuations may differ across the individual players.

 We first show that no pure-strategy Nash equilibrium exists.  Then, constructing a

mixed-strategy Nash equilibrium, we show that the equilibrium effort levels of individual

players and groups depend solely on two values the highest valuation for the prize in

each group.  This implies that the equilibrium effort levels are independent of the number

of players, the sum of valuations, and the distribution of valuations in each group, as long

as changes in these do not change the highest valuation for that group.  We also show that,

at the mixed-strategy Nash equilibrium, there are only two active players, one for each

group; each active player is one who has the highest valuation for the prize in his group;

and all the other players except these two expend zero effort.   We argue that the free-rider2

problem occurs at the equilibrium since, in each group, a highest-valuation player obtains

the greatest gross marginal payoff, while all members including him experience the same

marginal cost.

 Katz et al. (1990), Ursprung (1990), Baik (1993), Riaz et al. (1995), and Baik and

Shogren (1998) also study contests with group-specific public-good prizes.  Among them,

Baik (1993) and Baik and Shogren (1998) are closely related to this paper.  The main

difference is that their rules of selecting the winning group differ from the rule in this

paper their probability-of-winning functions are continuous while our function is

discontinuous.  According to our selection rule, the group which expends the largest effort

wins the prize with certainty.  Interestingly, however, the main result in Baik (1993) and

Baik and Shogren (1998) is similar to ours: the equilibrium effort levels of individual

players and groups depend solely on two values the highest valuation for the prize in

each group.

 Hillman and Riley (1989) and Baye et al. (1996) consider a contest in which many

individual players compete with one another by expending irreversible effort to win a

private-good prize, and the winner is determined by the selection rule of all-pay
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auctions a player who submits the highest  bid wins the prize with certainty. individual

They show that no pure-strategy Nash equilibrium exists.   They also show that, if top two3

players (according to valuation for the prize) have  valuations than the third, thengreater

there exists a unique mixed-strategy Nash equilibrium at which only the top two players

are active and all the other players expend zero effort (or bid zero) with probability one.

Note that we also obtain the two-active-player result.  In this paper, however, the two

active players are not top two players (according to valuation) in the contest.  They consist

of a highest-valuation player .in each group

 This paper is related to the literature on the private (also called, voluntary)

provision of public goods the literature which deals with situations in which public

goods are financed by voluntary contributions of individuals (see, for example, Olson,

1965; Olson and Zeckhauser, 1966; Bergstrom et al., 1986; Gradstein et al., 1994; Varian,

1994; Vicary, 1997; Boadway and Hayashi, 1999).  Indeed, in this paper, the players in

each group play a game of the private provision of a public good they choose their effort

levels noncooperatively to win their public-good prize.  We show that, as is often the case

with the private-public-goods-provision literature, the free-rider problem arises.  The free-

rider problem in this paper is the severest form in that, in each group, all the players except

a highest-valuation player are free riders.

 This paper is also related to the literature on mechanism design, particularly,

designing mechanisms for the provision of public goods.  Papers in this literature include

Groves and Ledyard (1977), Jackson and Moulin (1992), Kleindorfer and Sertel (1994),

Bag and Winter (1999), Deb and Razzolini (1999), and Saijo and Yamato (1999).  Based

on our model, one could propose the "all-pay-auction mechanism" for the provision of

group-specific public goods.  According to the mechanism, the government auctions off a

group-specific public good;  all individual players in participating groups or communities4

submit their bids noncooperatively; the government collects all the bids and provides the

public good for the group which submits the highest group-bid for the public good; and the
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collected money goes to the general fund of government revenues.  The main idea of this

proposed mechanism is to finance a group-specific public good partly or fully by

auctioning it off.

 The paper proceeds as follows.  Section 2 develops the model.  Section 3 first

proves the nonexistence of a pure-strategy Nash equilibrium, and then finds a mixed-

strategy Nash equilibrium at which there is just one active player in each group.  Section 4

presents two modified models in which there are many active players in equilibrium.

Finally, Section 5 offers our conclusions.

2.  The model

 Consider a contest in which two groups, 1 and 2, compete with each other for a

prize.  Group consists of risk-neutral players who expend effort to win the prize,i m  i

where 1.  Each player's effort is irreversible each player cannot recover his effortmi   

expended whether or not his group wins the prize.  Let represent the effort levelx  ik

expended by player in group and let represent the effort level expended by all thek i X  i

players in group , so that .  Effort levels are nonnegative and are measured ini X xi ik
m

k
œ �i

=1

units commensurate with the prize.  The winning group is determined by the selection rule

of all-pay auctions.  Let ( , ) denote the probability that group wins the prize whenp X  X i i 1 2

the groups' effort levels are  and .  The probability-of-winning function (also called,X X1 2

the contest success function) for group  is then:i

   p X  X X Xi i j( , )  1 if   1 2 œ 

     1/2 if   (1)X Xi jœ

     0 if   ,X Xi j
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where .   (Throughout the paper, when we use  and  at the same time, we mean thati j i jÁ 5

i jÁ .)  This probability-of-winning function implies that, if a group expends more effort

than its rival, it wins the prize with certainty.  Given , this function is discontinuous atXj

X Xi jœ .

 The prize is a public good for the players in each group.  Valuations for the group-

specific public-good prize may differ across the individual players.  Each player's

valuation for the prize is positive and publicly known.  Let represent the valuation forv  ik

the prize of player in group .k i

Assumption 1.  0 2Without loss of generality, we assume that v v  for s , ... ,is is1    œ

mi.

 Let represent the expected payoff for player in group   We have then1ik  k i.

   v p X  X   x1ik ik i ik  ( , ) . (2)œ 1 2 

Although the players in each group have the same goal of winning the group-specific

public-good prize, they choose their effort levels .  Assume that all theindependently

players in the contest choose their effort levels simultaneously that is, when a player

chooses his effort level, he does not know the other players' effort levels.  We assume that

all of the above is common knowledge among the players.  We employ Nash equilibrium

as the solution concept.

3.  A mixed-strategy Nash equilibrium involving free riders

 This section first proves the nonexistence of a pure-strategy Nash equilibrium, and

then constructs a Nash equilibrium in mixed strategies.  We begin by deriving the best

response of player in group the effort level which maximizes his expectedk i 
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payoff given the other players' effort levels.  Let ( ) denote the total effort X ki

expended by group 's players except player : ( ) .i k X k X xi i ik ´ 

Lemma 1.  Given the other players' effort levels, the best response of player k in group i is

  x   X X k  if  X X k vB
ik j i j i ikœ   Ÿ  ( ) 0 ( ) %

      otherwise,0

where x  is his best response and  is an infinitesimally small positive.B
ik %

Proof.  First, consider the case where 0 ( ) .  If player  in group Ÿ X X k v k ij i ik 

expends effort which is less than ( ), his group's effort level is less than the otherX X kj i 

group's.  Then, according to (1), his group loses the prize.  It follows from (2) that his

expected payoff is negative.  If player  in group  expends effort of ( ), hisk i X X kj i 

group's effort level is equal to the other group's.  The probability that his group wins the

prize is one half and thus his expected payoff may be positive but is not maximized.  If

player  in group  expends effort of ( ) , his group wins the prize withk i X X kj i  %

certainty and thus his expected payoff is maximized.

 Next, consider the case where ( )   For any positive effort level X X k v .j i ik  

from player  in group , his expected payoff is negative.  However, if he expends zerok i

effort, his expected payoff is zero.  Therefore, expending zero effort is his best response.

 Finally, in the case where ( ) 0, his best response is zero since hisX X kj i  

group wins the prize without any effort from him.

 Using Lemma 1, we obtain the following proposition.

Proposition 1.  .There exists no Nash equilibrium in pure strategies
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Proof.  Suppose on the contrary that there is a pure-strategy Nash equilibrium, denoted by

the ( )-tuple vector of effort levels, ( , ... , , , ... , ).  Then, since eachm m x x x x1 2 11 1 21 2 N N N N
m m1 2

player's equilibrium effort level is the best response to the other players' equilibrium effort

levels, using Lemma 1, we have:

  ( )   if  0 ( ) (3)x X X k X X k vN N N N N
ik j i j i ikœ    Ÿ   %

  0    otherwise. (4)

 First, consider the case where 0.  Since every player in group  expends zeroX ii
N œ

effort, it follows from (4) that .  On the other hand, (3) says that, if a group'sX vN
j i  1

equilibrium effort level is zero, then the other group's equilibrium effort level must be .%

This implies that in the present case  must hold.  Hence, we have both X X vj j
N N

iœ %   1

and .  This leads to a contradiction, since  is an infinitesimally small positive and Xj
N œ % %

thus is smaller than .vi1

 Next, consider the case where 0 and 0.  We have:X X1 2
N N 

x X X h h iN N N
ih j iœ   ( )  for some  in group  (see (3)).  Using this, we obtain both%

X X X X1 2 2 1
N N N Nœ  œ % % and .  This leads to a contradiction.

 Therefore, there exists no Nash equilibrium in pure strategies.

 Next, we construct a Nash equilibrium in mixed strategies.  At the mixed-strategy

Nash equilibrium, as we will see, the only "active" player in each group is a player whose

valuation for the prize is the highest in that group.  All the other players except these two

expend zero effort and free ride.  The equilibrium mixed strategy for each active

player and thus his equilibrium  effort level is the same as that resulting in expected

the contest in which only those two active players compete to win the prize.
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 Let ( ) denote a cumulative distribution function of a mixed strategy ofG x xik ik ik 

player  in group and let ( ) denote the corresponding probability density functionk i g x ik ik

of .  The following lemma is useful in obtaining our main result, Proposition 2.xik

Lemma 2.  Suppose that player h in group i and player d in group j with v v  play theih jd 

mixed strategies, G x x v  for x v  and G x v v x v  onih ih ih jd ih jd jd jd ih jd jd ih( ) / [0, ] ( ) ( )/œ − œ  

the support, v  respectively.  Then, when the other players except these two active[0, ], (jd

players  use the pure strategy of , a  the best response of player t for t h in group i is) 0 ( ) ( ) Á

positive if v v  and zero if v v , and b  the best response of player z for z d  init ih it ih Ÿ Á( ) ( )

group j is positive if v v  and zero if v v .jz jd jz jd Ÿ

Proof.  First, we prove part (a).  The best response of player  in group  is a value of t i xit

which maximizes

    v X x X   x1it it ih it jd itœ  Pr[ ] ,  

where  and  represent random variables with the cumulative distribution functions,X Xih jd

G G X x X v x v vih jd ih it jd jd it ih jd( ) and ( ), respectively.  Since Pr[ ] 1 ( ) /2  (see† œ  †   2

Appendix A), we have [1 ( ) /2 ] .  The first-order conditon for1it it jd it ih jd itœ  v v x v v x2 

maximizing  is / ( )/ 1 0.  Since  is strictly concave in 1 1 1it it it it jd it ih jd it itd dx v v x v v xœ  œ

and 0, the best response of player  in group  is then (1 / ) if  andx t i v v v v vit jd ih it it ih   

zero if .v vit ihŸ

 Next, we prove part (b).  The best response of player  in group  is a value of z j xjz

which maximizes

    v X x X   x1jz jz jd jz ih jzœ  Pr[ ]  

subject to

   0 .Ÿ Ÿx vjz jd
6
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Since Pr[ ] [ (2 ) ]/2  (see Appendix B), we haveX x X v v x x v vjd jz ih ih jz jz ih jdjd  œ  2

1 1jz jz ih jz jz ih jd jz jzjdœ  v v v x x v v x{[ (2 ) ]/2 } .  The first-order conditon for maximizing 2 

(without the constraint) is / ( )/ 1 0.  Since  is strictlyd dx v v x v v1 1jz jz jz ih jz ih jd jzœ  œ

concave in  and 0 , the best response of player  in group  is thenx x v z jjz jz jdŸ Ÿ

min{ (1 / ), } if  and zero if .v v v v v v v vih jd jz jd jz jd jz jd Ÿ

 Using Lemma 2, we obtain the following proposition.

Proposition 2.  .Without loss of generality, assume that v v   Then the following11 21 

strategy profile is a mixed-strategy Nash equilibrium of the game.  a  Player  in group ( ) 1 1

plays the mixed strategy, G x x v  for x v   b  Player  in group *
11 11 11 21 11 21( ) / [0, ]. ( ) 1 2œ −

plays the mixed strategy, G x v v x v  on the support, v   c  All*
21 21 11 21 21 11 21( ) ( )/ [0, ]. ( )œ  

the other players use the pure strategy of  x  for s , . . . , m  and x  for0: 0 2 0* *
s s1 21œ œ œ

s , . . . , m .œ 2 2

Proof.  The proof concerning parts (a) and (b) is well known.  Since only two players are

active, their equilibrium strategies must be the same as those resulting in the first-price all-

pay auction with two bidders.  See Hillman and Riley (1989) or Hirshleifer and Riley

(1992, pp. 377-379) for the derivation of the Nash equilibrium of the first-price all-pay

auction with two bidders.  The proof concerning part (c) is done by Lemma 2.  Since, by

Assumption 1,  for 2, ... , , Lemma 2 implies that, given the other players'v v s mi is i1   œ

strategies specified above, the best response of player  in group  is zero.s i

 At the mixed-strategy Nash equilibrium, there are only two active players, one for

each group.  Each active player has the highest valuation for the prize in his own group.

(Recall that player 1 in each group is one of the highest-valuation players in that group.)
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All the other players except these two expend zero effort and free ride.  Note that, since

player 1 in group 2 expends positive effort with probability / , it is possible that onlyv v21 11

player 1 in group 1 a player with the highest valuation in the contest  expends  actually

positive effort.  Note also that, even though each active player has the highest valuation for

the prize in his own group, his equilibrium expected payoff can be less than other

members' due to the free-rider problem.  In other words, the "exploitation" of the highest-

valuation player by other members may occur.7

 Why does the free-rider problem occur at the equilibrium?  A plausible explanation

is that, in each group, a highest-valuation player obtains the greatest gross marginal payoff,

while all members including him experience the same marginal cost.  Given that the two

groups' effort levels are equal, when a group's effort level increases by , the players with%

the highest valuation benefit most.  Thus one of the hungriest players exerts effort while

the others wait for him to do so.

 The equilibrium mixed strategy for each active player is the same as that resulting

in the contest in which only those two active players compete to win the prize.  This

implies that the number of players, the sum of valuations, and the distribution of valuations

in each group only affect the equilibrium effort levels of individual players and groups if

changes in them lead to a change in the highest valuation for that group.  This also implies

that, to obtain the equilibrium effort levels, we only need to solve a reduced game in which

only two players, a highest-valuation player in group 1 and that in group 2, compete to win

the prize.

 Using probability-of-winning functions different from ours, Baik (1993) and Baik

and Shogren (1998) obtain similar results.  Baik (1993) considers a contest in which n

groups compete with one another to win a group-specific public-good prize, the individual

players choose their effort levels simultaneously and independently, and the probability-of-

winning function for group  takes a continuous-function form: ( , . . . , ), wherei p p X Xi i nœ 1

X  ii represents the effort level expended by all the players in group .  In Baik and Shogren
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(1998), two groups compete and the winning group is determined by a general difference-

form probability-of-winning function.

 Proposition 3 describes another interesting result.

Proposition 3.  No mixed-strategy Nash equilibrium exists at which there are only two

active players, one for each group, but only one or neither of them is a highest-valuation

player in his group.

 The proof of Proposition 3 is immediate from Lemma 2.  If an active player is not a

highest-valuation player in his group, then a highest-valuation player in that group has an

incentive to deviate he has an incentive to increase his effort level.

4.  Modified models and many active players in equilibrium

 We have shown in Section 3 that, in equilibrium, there is just one active player in

each group.  In this section, we present two modified models in which there are many

active players in equilibrium.  The first contains a sequential version of the original game

and the second contains a game with collective group-bid decisions.

4.1.  The sequential version of the original game

 Consider a game in which the players in group 1 first choose their effort levels and

then, after observing them, the players in group 2 choose their effort levels.  The players in

each group choose their effort levels simultaneously and independently.  Thus this game

contains both sequential and simultaneous parts.

 We are interested in the players' effort levels specified in a subgame-perfect

equilibrium of the game.  Let us denote them by the ( )-tuple vector of effortm m1 2

levels, ( , . . . , , , . . . , ).  Let represent the sum of the valuations of thex x x x V  S S S S
m m i11 1 21 21 2
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players in group , so that .  Suppose that .  (In Section 4, we do noti  V  v V Vi ik
k

m
œ  �

=1
1 2

i

assume Assumption 1.)  Then it is straightforward to obtain: (a) 0  for 1, . . x v kŸ Ÿ œS
k k1 1

. , , (b)  . . . , and (c) 0 for 1, . . . , . m x  x X V  x k  m1 2 211 1 1 2
8S S S S

m k  œ œ œ œ
1

 It follows from (a) and (b) that, in such an equilibrium, player  in group 1 expendsk

  x V X k V X k vS S S
k k1 2 2 11 1œ   Ÿ   Ÿ ( )  if  0 ( )

   0    otherwise,

where ( ) .  Therefore, it is easy to see that the game has numerousX k X xS S S
k1 1 1 ´ 

equilibria in which many players in group 1 are active equilibria in which they expend

positive effort.  Furthermore, it has equilibria in which all the players in group 1 are active.

4.2.  The game with collective group-bid decisions

 Consider a game in which the players in each group jointly choose their group-bid,

and then they each choose their own contributions to the group-bid.  Formally, we consider

the following four-stage game.  In the first stage, trying to maximize the sum total of their

expected payoffs, the players in each group jointly choose their group-bid.  In the second

stage, knowing their group-bid but  the other group's, the players in each group choosenot

their own contributions to their group-bid simultaneously and independently.  In the third

stage, if the sum of their individual contributions is greater than or equal to their

predetermined group-bid, the players in each group submit the group-bid; otherwise, they

bid zero.  In any case, players' contributions are not refunded.  The money left over, if any,

is used for other purposes.  In the final stage, the winning group is determined according to

(1).  We assume that all of the above is common knowledge among the players.  We

employ subgame-perfect equilibrium as the solution concept.
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 Let  represent the sum of the expected payoffs for the players in group .  UsingCi i

(2), we obtain:

   ( , ) .C 1i ik i i i
k

m
œ �

=1
1 2

i

 V p X  X Xœ

In the first stage, since the players in group  collectively choose their group-bid, , andi X  i

try to maximize the sum of their expected payoffs, , we treat them as one strategicCi

player simply called group whose expected payoff is given by .  Then the first- i Ci

stage competition becomes the first-price all-pay auction in which group 1 and group 2

participate.  Let ( ) denote a cumulative distribution function of a mixedH X Xi i i 

"strategy" of group .  Without loss of generality, assume that .  Let  representi V V B1 2  i

the group 's group-bid  in the first stage.  Then the full game has the followingi chosen

equilibrium: (a) group 1 plays the mixed strategy, ( ) /  for [0, ] and H X X V X V*
1 1 1 2 1 2œ −

group 2 plays the mixed strategy, ( ) ( )/  on the support, [0, ], andH X V V X V  V*
2 2 1 2 2 1 2œ  

(b) player  in group contributes ( / ) , where [0, ].k i x v V B B  VC
ik ik i i iœ − 2

 The proof concerning part (a) is well known.  As mentioned above, the first-stage

intergroup competition is just the standard first-price all-pay auction with two bidders

whose valuations are  and .  Then, one can refer to Hillman and Riley (1989) orV V1 2

Hirshleifer and Riley (1992, pp. 377-379) for the derivation of the Nash equilibrium of the

first-price all-pay auction with two bidders.

 Next, for the proof concerning part (b), we will show that, in their intragroup

contribution "game," the players in each group have no incentive to deviate from their

contributions specified in part (b).  Consider first player  in group 1.  Given part (a), hisk

expected payoff is given by ( ) ( )/ , when he)1 1 1 1 1 1 2 1 1 1
*
2k k k k kœ œ  v H B x v V V B V x   

contributes  and group 1 submits the predetermined group-bid , and ,x B x1 1 1 1k k k) œ 

when he contributes  and group 1 bids zero.  Then, given the contributions of the otherx1k

players in group 1, ( , . . . , , , . . . , ), his expected payoff is equal tox x x xC C C C
k k m11 11 1 1 1  1



14

v V V V x v V V V1 1 2 1 1 1 2 11k k
C

k( )/  if he contributes , it is less than ( )/  if he contributes more 

than , and it is less than or equal to zero if he contributes less than , and thus  isx x xC C C
k k k1 1 1

his best response.  It implies that, given part (a), the players in group 1 have no incentive to

deviate from their contributions specified in part (b).  Next, consider player  in group 2.k

Given part (a), his expected payoff is ( ) / , when he)2 2 2 2 2 2 2 2
*
1k k k k kœ œv H B x v B V x   

contributes  and group 2 submits the predetermined group-bid , and ,x B x2 2 2 2k k k) œ 

when he contributes  and group 2 bids zero.  Then, given the contributions of the otherx2k

players in group 2, ( , . . . , , , . . . , ), his expected payoff is equal to zero ifx x x xC C C C
k k m21 22 1 2 1  2

he contributes , it is less than zero if he contributes more than , and it is less than orx xC C
k k2 2

equal to zero if he contributes less than .  It means that, given part (a), the players inxC
k2

group 2 have no incentive to deviate from their contributions specified in part (b).

 In the above equilibrium of the game, all the players in the contest are active.  The

equilibrium contribution of player  in group  is equal to ( / )  when his groupk i v V Bik i i

actually submits a bid of B .i

5.  Conclusions

 We have examined the equilibrium effort levels of individual players and groups in

a contest in which two groups compete with each other to win a group-specific public-

good prize and the individual players choose their effort levels simultaneously and

independently.  We have modeled the contest as a first-price all-pay auction: each

individual player's effort is irreversible, a group which expends more effort than its rival

wins the prize with certainty, and the winning group pays the higher "bid," i.e., its own bid.

 We have first shown that no pure-strategy Nash equilibrium exists, and then we

have constructed a Nash equilibrium in mixed strategies.  At the mixed-strategy Nash

equilibrium, (a) if a player expends positive effort, he has the highest valuation for the

prize in his group; (b) a player whose valuation for the prize is less than the valuation of

another player in his group expends zero effort and free rides; and (c) the equilibrum effort
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levels of individual players and groups depend solely on the highest valuation for the prize

in group 1 and that in group 2.  Therefore, in this case, the equilibrium effort levels are

independent of the number of players, the sum of valuations, and the distribution of

valuations in each group, as long as changes in these do not change the highest valuation

for that group.  This implies that a new member only changes the equilibrium effort levels

if he is hungrier than all the existing members.

 Are there other types of mixed-strategy Nash equilibria in our (main) model?  Can

one obtain a mixed-strategy Nash equilibrium similar to ours when there are more than two

groups?  These are interesting questions.  We leave them for future research.
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Footnotes

1. Let us suppose, as in Baik (1999), the monopoly profits are greater with the

unregulated monopoly than with the regulated monopoly, while consumer surplus is

greater with the regulated monopoly than with the unregulated monopoly.

2. Based on the results, one may say that our contest with a group-specific public-

good prize is a "best-shot" contest a contest in which collective effort of each group is

just the effort of a highest-valuation player in the group.  We borrow the term best-shot

from Hirshleifer (1983, 1985) who discusses three ways of determining the socially

available amount of a public good: the summation rule, the weakest-link rule, and the best-

shot rule.

3. We also show that no pure-strategy Nash equilibrium exists.  However, the proof of

the result is quite different from that in Hillman and Riley (1989) and Baye et al. (1996).

The reason is that, in this paper, the winner is determined by the selection rule using

group-bids public good, not individual bids, and the prize is a group-specific , not a private

good.

4. Consider, for example, the case where the government uses an all-pay auction to

designate the location of a government institution, a government-owned corporation, or a

new highway.

5. This probability-of-winning function is extensively used in the literature on the

theory of contests.  Examples include Hillman and Samet (1987), Hillman and Riley

(1989), Ellingsen (1991), Hirshleifer and Riley (1992), Baye et al. (1993, 1996), Amann

and Leininger (1996), Krishna and Morgan (1997), Che and Gale (1997, 1998), and Clark

and Riis (1998).  For other forms of probability-of-winning functions, see Baik (1998).

6. We introduce the constraint, 0 , because Pr[ ] 1 for x v X x XŸ Ÿ œjz jd jd jz ih 

x v x  vjz jd jz jd   and thus a value of greater than  is not the player's best response.
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7. Olson (1965, pp. 3, 29, 35) coined the phrase the exploitation of the great by the

small.  In the context of Olson and Zeckhauser (1966), it means that a larger country

contributes more to international public goods than a smaller country and furthermore a

larger country contributes more than proportionately.  Or, more strictly, it means that, due

to their disproportionate contributions to international public goods, the net payoffs to a

larger country are less than those to a smaller country.  We thank one of the referees for

introducing the phrase to us.

8. Other types of subgame-perfect equilibria may exist.  For example, a subgame-

perfect equilibrium may exist in which we have 0 for 1, . . . , , andx k mS
k1 1œ œ

X x hS S
h2 2œ œ % for some  in group 2.  We ignore them for concise exposition.
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Appendix A

 We show that Pr[ ] 1 ( ) /2 .  Note that  and X x X v x v v X Xih it jd jd it ih jd ih jd  œ   2

are independent random variables since all the players in the contest choose their effort

levels independently.

Pr[ ]X x Xih it jd 

   ( ) ( )œ '
∞
∞ g x G x x dxih ih jd ih it ih

   (1/ ) ( )œ '
∞
∞ v I xjd v ih[0, ]jd

  {[( )/ ] ( ) ( )}‚    v v x x v I x I x dxih jd ih it ih v x ih v x v ih ih[0, ] ( , ]jd jd jdit it 

 (1/ )[( )/ ]  (1/ )œ    ' '
0
v x v

jd ih jd ih it ih ih jd ihv x
jd jdit

jd it


v v v x x v dx  v dx

 (1/ ) ( ) /2   /œ    v v v v x x x x vih jd ih jd it ih ih jdih
v x v

v x
: ‘ : ‘2

0
jd jdit

jd it





 (1/ )[( )( ) ( ) /2]  1  ( )/œ        v v v v x v x v x v x vih jd ih jd it jd it jd it jd it jd
2

   1 ( ) /2 ,œ  v x v vjd it ih jd
2

where ( ) is the indicator function of a set .I AA †
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Appendix B

 We show that Pr[ ] [ (2 ) ]/2 .  Note that  andX x X v v x x v v Xjd jz ih ih jz jz ih jd jdjd  œ  2

Xih are independent random variables since all the players in the contest choose their effort

levels independently.

Pr[ ]X x Xjd jz ih 

   ( ) ( )œ '
∞

∞ g x G x x dxjd jd ih jd jz jd

  [(1 / ) ( ) (1/ ) ( )]œ  '
∞
∞ v v I x v I xjd ih jd ih v jd{0} (0, ]jd

  {[( )/ ] ( ) ( )}‚  x x v I x I x dxjd jz jd v x jd v v jd jd[0, ] ( x , ]jd jd jdjz  jz

  (1 / )( / )  (1/ )[( )/ ]  (1/ )œ    v v x v v x x v dx  v dxjd ih jz jd ih jd jz jd jd ih jd
v x v

v x
' '

0
jd jdjz

jd jz




  (1 / )( / )  (1/ ) [( )]  (1/ )œ    v v x v v v x x dx  v dxjd ih jz jd ih jd jd jz jd ih jd
v x v

v x
' '

0
jd jdjz

jd jz




  (1 / )( / )  (1/ ) /2  /œ    v v x v v v x x x  x vjd ih jz jd ih jd jz jd jd ihjd
v x v

v x
: :2

0
‘ ‘jd jdjz

jd jz





  [ (2 ) ]/2 ,œ  v v x x v v2
jd ih jz jz ih jd

where ( ) is the indicator function of a set .I AA †
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