[go: up one dir, main page]
More Web Proxy on the site http://driver.im/


A Rapid Model Adaptation Technique for Emotional Speech Recognition with Style Estimation Based on Multiple-Regression HMM

Yusuke IJIMA
Takashi NOSE
Makoto TACHIBANA
Takao KOBAYASHI

Publication
IEICE TRANSACTIONS on Information and Systems   Vol.E93-D    No.1    pp.107-115
Publication Date: 2010/01/01
Online ISSN: 1745-1361
DOI: 10.1587/transinf.E93.D.107
Print ISSN: 0916-8532
Type of Manuscript: PAPER
Category: Speech and Hearing
Keyword: 
emotional speech,  speaking style,  style estimation,  multiple-regression HMM,  style adaptation,  speaker adaptation,  

Full Text: PDF(711.9KB)>>
Buy this Article



Summary: 
In this paper, we propose a rapid model adaptation technique for emotional speech recognition which enables us to extract paralinguistic information as well as linguistic information contained in speech signals. This technique is based on style estimation and style adaptation using a multiple-regression HMM (MRHMM). In the MRHMM, the mean parameters of the output probability density function are controlled by a low-dimensional parameter vector, called a style vector, which corresponds to a set of the explanatory variables of the multiple regression. The recognition process consists of two stages. In the first stage, the style vector that represents the emotional expression category and the intensity of its expressiveness for the input speech is estimated on a sentence-by-sentence basis. Next, the acoustic models are adapted using the estimated style vector, and then standard HMM-based speech recognition is performed in the second stage. We assess the performance of the proposed technique in the recognition of simulated emotional speech uttered by both professional narrators and non-professional speakers.


open access publishing via