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Preface

The High-End-Visualization Workshop is a tentatively annual meeting of active
researchers in the field of scientific visualization with application domain scien-
tists, in particular from high-performance computing. Historically it originated
from a creative workshop involving members of the Numerical Relativity Group
at the Max-Planck-Institute for Gravitational Physics in Potsdam, Germany, and
researchers of the Department for Scientific Visualization at the Zuse-Institute
Berlin, Germany, as well as astrophysicists from the Institute for Astrophysics at
the University of Innsbruck, Austria. Since its original birth in 2004 the workshop
has grown its own momentum. Each year a special focus area is featured:

• 1st High End Visualization Workshop (Austria, 2004): Numerical Relativity
Mesh Refinement Visualization Meeting ,

• 2nd High End Visualization Workshop (Austria, 2005): Multipatch Methods,

• 3rd High End Visualization Workshop (Austria, 2006): Public Relations and
Public Outreach of Scientific Visualization,

• 4th High End Visualization Workshop (Austria, 2007): Visualization of Non-
Trivial Data Structures ( (ISBN 978-3-86541-216-4) - appendix B.1,

• 5th High End Visualization Workshop (Louisiana, 2009): Remote and Col-
laborative Visualization(ISBN 978-3-86541-330-7) - appendix B.2,

• 6th High End Visualization Workshop (Austria, 2010): Design and Concept
of Visualization Frameworks (ISBN 978-3-86541-361-1).

The 6th High End Visualization Workshop has received ten paper submissions,
nine of which have been accepted for publication, three of those conditionally.
Each contribution was evaluated by at least three independent reviewers. Special
thanks go to the Markus Haider, Sabine Schindler, Gabrielle Allen and Susanne
Brenner for support of the workshop.

Werner Benger and the Organizers, November 2010

http://www.lob.de/isbn/9783865412164
http://www.lob.de/isbn/9783865413307


4



List of Contributions

1 FSSteering: A Distributed Framework for Computational Steer-
ing in a Script-based CFD Simulation Environment 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Computational Steering Architecture . . . . . . . . . . . . . . . . . 12

1.3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Runtime Execution . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Computational Steering Results . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Numerical Steering . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.2 Simulation Steering . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 17

2 Visualization Workflow for Lattice QCD 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Increasing Hardware Utilization for Peta-Scale Visualization 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Visualization Challenges . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Pipelined Task Parallelism . . . . . . . . . . . . . . . . . . . 33

3.2.2 GPU-Accelerated Parallelism . . . . . . . . . . . . . . . . . 33

3.2.3 Data Redistribution . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Dynamic Thread Management . . . . . . . . . . . . . . . . . . . . . 34

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Hybrid Cluster Communication . . . . . . . . . . . . . . . . 37

3.4.2 Irregular Hybrid Thread Scheduling . . . . . . . . . . . . . . 37

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5



LIST OF CONTRIBUTIONS

4 Portable Direct Manipulation Specification for Scientific Visual-
ization in Virtual Environments 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 High-level Interaction Definition . . . . . . . . . . . . . . . . . . . . 46
4.5 Widget-based Interaction . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Gaalet - A C++ Expression Template Library for Implementing
Geometric Algebra 55
5.1 Introduction and Previous Work . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Geometric Algebra . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.2 Expression Templates . . . . . . . . . . . . . . . . . . . . . . 57
5.1.3 Applications in Visualisation . . . . . . . . . . . . . . . . . . 59

5.2 The Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.1 Geometric Algebra Implementation . . . . . . . . . . . . . . 59

5.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 Multivector implementation . . . . . . . . . . . . . . . . . . 60
5.3.3 Operation implementation . . . . . . . . . . . . . . . . . . . 61
5.3.4 Evaluation implementation . . . . . . . . . . . . . . . . . . . 62

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 OpenWalnut – An Open-Source Visualization System 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Related Software . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Design and Architecture . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.2 Control Panel — Hiding the Module Graph . . . . . . . . . 74

6.3 Results and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Implementation of an Algorithm for Approximating the Curva-
ture Tensor on a Triangular Surface Mesh in the Vish Environ-
ment 79
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1.1 Application in Analysis . . . . . . . . . . . . . . . . . . . . . 80
7.2 Mathematic Principles . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 List of Contributions



LIST OF CONTRIBUTIONS

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 A Framework for Computing Integral Geometries in VISH using
Template Meta Programming 91

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.1.1 Mathematical Background and Motivation . . . . . . . . . . 92

8.1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2 Framework Design and Implementation . . . . . . . . . . . . . . . . 94

8.2.1 Visualization Environment and Data Model . . . . . . . . . 94

8.2.2 The Integration Module . . . . . . . . . . . . . . . . . . . . 94

8.2.3 Streamline Implementation . . . . . . . . . . . . . . . . . . . 98

8.2.4 Pathlines Implementation . . . . . . . . . . . . . . . . . . . 99

8.2.5 Material-Line Implementation . . . . . . . . . . . . . . . . . 100

8.2.6 Time Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.3.1 CFD Visualization of a Stirred Tank . . . . . . . . . . . . . 101

8.3.2 Time Measurements . . . . . . . . . . . . . . . . . . . . . . 101

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9 Improved Visualisations of 3D Volumetric Data through Point-
wise Phong Shading Based on Normal Mapping 107

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.2.1 Lighting and Shading . . . . . . . . . . . . . . . . . . . . . . 109

9.2.2 Phong shading . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.2.3 Direct volume rendering . . . . . . . . . . . . . . . . . . . . 111

9.3 Improving the 3D experience . . . . . . . . . . . . . . . . . . . . . . 112

9.3.1 Shading and depth perception . . . . . . . . . . . . . . . . . 113

9.3.2 The shading procedure in detail . . . . . . . . . . . . . . . . 114

9.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 117

10 Visualization of Data from Integral Field
Spectroscopy and the P3d Tool 123

10.1 Integral Field Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 123

10.2 IFS Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A List of Reviewers 133

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria

7



LIST OF CONTRIBUTIONS

B Previous High-End Visualization Workshops 135
B.1 The 4th High-End Visualization Workshop . . . . . . . . . . . . . . 135
B.2 The 5th High-End Visualization Workshop . . . . . . . . . . . . . . 136

8 List of Contributions



Article 1

FSSteering: A Distributed
Framework for Computational
Steering in a Script-based CFD
Simulation Environment

Christian Wagner1,2, Markus Flatken1, Michael Meinel1,
Andreas Gerndt1, Hans Hagen2

1German Aerospace Center, Braunschweig, Germany
2University of Kaiserslautern, Germany

christian.wagner@dlr.de, markus.flatken@dlr.de,

michael.meinel@dlr.de, andreas.gerndt@dlr.de,

hagen@informatik.uni-kl.de

In order to get insight into interesting flow phenomena, the traditional
work-flow of computational fluid dynamics (CFD) consists of setting up
and computing the flow field followed by a consecutive post-processing
analysis. Only after this analysis one can identify parameters that may
have been set wrongly in a configuration stage. Once these param-
eters are corrected, another time-consuming loop has to be started.
To identify inadequate parameter settings already during the simula-
tion run, online monitoring concepts were introduced. Combined with
computational steering methods, parameter values can additionally be
adjusted which eventually reduces the number of required iterations to
yield satisfactory results.

At the German Aerospace Center, a comprehensive framework called
FlowSimulator has been developed to offer a generic Python-based in-
terface for the management of CFD simulations. It can easily be en-

9



1.1. INTRODUCTION

hanced by add-ons. One of these extensions is FSSteering which is
described in this paper in more detail. As a computational steering en-
vironment, FSSteering provides functionalities essential for interactive
visualization and explorative analysis. Besides existing computational
steering environments and frameworks, a user-centred and domain-
specific view is proposed. Existing functionality can be reused without
rewriting simulation code to enable for effective steering in CFD.

To be more efficient, components of the architecture are distributed
across different resources. Whereas the CFD simulation typically runs
on a parallel supercomputer, the visualization is carried out on a high-
performance virtual reality system which allows interactive data ex-
ploration. The post-processing in between can be performed on the
supercomputer or on a separate parallelization cluster. But it is also
possible to switch between different existing post-processing toolkits.
This is just possible because of the very flexible configuration manage-
ment of the distributed steering framework. We will demonstrate the
steering capabilities and the system flexibility by two current research
examples. An outlook for future steps concludes this paper.

1.1 Introduction

In order to gain insights into complex flow situations, computational simulation is
a common tool for modern engineers. Therefore, a computational fluid dynamics
simulation is set up involving necessary parameters. After solving by a cluster or
supercomputer post-processing algorithms are applied to generate visual feedback.
Many parameters chosen wrong can only be identified at that point and potentially
the simulation has to be done again with tweaked parameters. With iteration
times of days or even weeks methods with higher productivity are desirable for
providing quick research insights. Therefore, being able to check if a simulation
was setup properly and is still on track is important. If possible, changes to guide
the simulation should be applied during runtime.

To tackle this situation, computational steering systems were developed to
interact with ongoing simulation runs. Most of the computational steering en-
vironments available are enhanced visualization tools and concentrate on data
management providing meaningful visualizations. Complicated instrumentation of
simulation codes is needed to make data available to those systems. Contrary,
computational steering frameworks concentrate on easy simulation coupling with
minimalistic interfaces. Visualization and analysis have to be implemented by the
user. However, main drawback of both approaches is that all steerable parameters
as well as callable methods have to be known at compile time.

10 Article 1. FSSteering: A Distributed Framework for Computational Steering in a
Script-based CFD Simulation Environment



1.2. RELATED WORK

In this paper, we introduce a domain-specific approach heavily depending on an
existing scripting environment. We developed the computational steering environ-
ment FSSteering as an extension to the German Aerospace Center’s computational
fluid dynamics system FlowSimulator. For this reason, simulation scripts can be
made steerable without internal knowledge by users. Nearly no instrumentation
and data conversion is needed. Furthermore, steering commands to be executed are
mostly interpreted by the FSSteering extension. Therefore, domain-specific tasks
provided by the FlowSimulator environment can be executed or parameters can
be changed during runtime without either being known to the simulation script or
having to be implemented by CFD engineers . For example, the underlying mesh
of any CFD simulation can be changed and adapted during runtime resulting in
better simulation convergence without changes to the simulation setup or script.

Since CFD data are multi-modal with complex features, we coupled our systems
with VRFlowVis, an explorative visualization systems including a parallel post-
processing system.

The remaining paper is structured as follows: In the next section, related work
in the field of computational steering environments and frameworks is reflected
including an overview of FlowSimulator and VRFlowVis. Then, the developed
FSSteering architecture is presented. In section 1.4, two steering examples are
shown, followed by final conclusion and future work.

1.2 Related Work

Since steering simulations is of interest for many years now, a lot of work has
been done. An overview of earlier systems can be found in [Mulder et al., 1998].
Online monitoring is essential to identify in what kind a simulation has to be
steered. Therefore, most steering systems concentrate on visualization or are even
enhanced visualization tools, like [Parker et al., 1997] and [Eickermann et al.,
2005]. Native frameworks like [Jenz & Bernreuther, 2010] are available to enable for
computational steering, but having high adaptation overhead to specific problems.
[Coulaud et al., 2003] uses XML descriptions of simulation scripts to handle data
and concurrency at instrumentation points. Only few existing systems try to tackle
domain-specific requirements, one CFD-specific is [Kreylos et al., 2002].

The FlowSimulator is an open and efficient framework to unify massively par-
allel and multidisciplinary CFD simulations independantly from the tools incor-
porated [Meinel & Einarsson, 2010]. This is achieved by a layered approach. The
FlowSimulator DataManager (FSDM) forms the common backbone and provides
a common interface to store and exchange data in memory. Written in C++ it
provides a number of classes that hold structured data typical for CFD-related
numerical simulations. Using the automatic interface generator SWIG [Beazley,

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria
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1.3. COMPUTATIONAL STEERING ARCHITECTURE

1996] all of FSDM’s interfaces are also provided in Python.
Explorative and interactive visualization is supported using the VRFlowVis

application, a visualization frontend for steady and unsteady CFD data sets based
on ViSTA and ViSTA FlowLib [Schirski et al., 2003]. ViSTA allows the frontend
to scale from simple desktop systems to high-end immersive VR environments.
ViSTA FlowLib is a specialized library that provides particular interaction meth-
ods [Wolter et al., 2007a][Wolter et al., 2006] and efficient rendering techniques for
working with time-dependent CFD data.

The rendered features are extracted from the raw data and mapped to visual-
ization components by a post-processing application based on Viracocha [Gerndt
et al., 2004][Wolter et al., 2007b]. It is decoupled from the visualization frontend
and distributed to High Performance Computing (HPC) resources, preferably the
same resource used by the simulation to be steered. Visualization features are ex-
tracted in parallel, and as soon as first results are available the extracted geometry
data is sent back to VRFlowVis to be rendered.

1.3 Computational Steering Architecture

The developed computational steering architecture aims on enabling computa-
tional fluid dynamics simulations to be steered with little impact on already ex-
isting simulation scripts. Therefore, FSSteering was developed as an extension to
the FlowSimulator system providing easy access to existing functionality and cou-
pling simulation scripts with parallel post-processing back-end as well as front-end
systems.

In the target work-flow different connected computing systems are involved,
c.f. figure 1.1. A supercomputer or cluster system is supporting a set of simulation
tasks in batch-processing. To steer one of the running simulations on-demand dif-
ferent front-end and back-end systems need to be attached in a flexible connection
topology dealing with heterogeneous networks.

1.3.1 System Architecture

The overall FSSteering-architecture can be seen in figure 1.2.
Although FSSteering makes use of the scripting interface offered by FlowSimu-

lator, performance-critical tasks need to be implemented efficiently. For this reason,
a core module provides connection handling and data transfer methods. Access to
these functions is provided by lightweight APIs. The Python-API is also bound
to the FlowSimulator-API allowing inheriting its functionality and providing it to
the connected applications via command requesting.

Both, Python- and C++-API, are used in the runtime examples in section 1.4.

12 Article 1. FSSteering: A Distributed Framework for Computational Steering in a
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1.3. COMPUTATIONAL STEERING ARCHITECTURE

Figure 1.1: CFD simulations can be connected by multiple post-processing and
front-end visualization systems on-demand. TCP/IP- as well as MPI-connections
can be used for data communication.

1.3.2 Runtime Execution

At runtime a steerable simulations act as servers waiting for connections by clients.
Clients again can act as servers allowing arbitrary connection topologies.

A connected client sends commands to the simulation server and waits for re-
sponse. A set of predefined system commands exists for registration and updating
variables and sending geometry or field data over connections. Calling domain-
dependent FlowSimulator functionalities like mesh adaptation offer the possibil-
ity to change simulation behavior without being implemented in the application
scripts in the first place. All commands unknown to FSSteering are assumed to be
user-commands and are returned to the caller, e.g. the simulation script. For sim-
ple handling commands are represented as Python dictionaries including necessary
parameters and are mapped to dictionaries of strings in the C++-API. Commands
are sent through the system in a serialized representation. The interpretation oc-
curs when triggered by the simulation.

The execution of commands is based on message queues. For command exe-
cution with centralized request management [Esnard et al., 2004] a simple, yet
efficient synchronization scheme is used. All commands are gathered at a clients
master node and are send to the servers master node. When a simulation triggers
the processing of upcoming commands, the server broadcasts all new commands
to the servers slaves. This choice perfectly fits to the single program multiple data
programming model used in FlowSimulator scripts.

Special care was taken managing different connections in order to provide a flex-
ible connection topology. Although command communication is always gathered

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria
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1.3. COMPUTATIONAL STEERING ARCHITECTURE

Figure 1.2: FSSteering ’s main functionalities are implemented in the core module
and made accessible by lightweight APIs. The Python-API can also use functions
of FlowSimulator.

and scattered through the master nodes this does not hold for data communica-
tion. As depicted in figure 1.3, additional to 1-to-1 connection via master to master
connection it is possible to establish n:m connections, where each server node is
connected to an arbitrary client node. This setting is used in the steering examples
of section 1.4. For general purposes, geometry and field data can be sent as raw
binary data, the VTK file-format is also supported.

14 Article 1. FSSteering: A Distributed Framework for Computational Steering in a
Script-based CFD Simulation Environment



1.4. COMPUTATIONAL STEERING RESULTS

(a) 1:1-connection: Data and commands are
gathered at master nodes and redistributed
to slave nodes.

(b) n:m-connection: While commands are
gathered and redistributed, data is dis-
tributed in parallel.

Figure 1.3: Commands are always gathered and redistributed in master nodes. For
data, each data node can be connected to arbitrary client nodes.

1.4 Computational Steering Results

This section demonstrates the effective usage of FSSteering in two examples. A
FlowSimulator simulation running on four computational nodes is made steerable
using the FSSteering Python-API. The parallel post-processor Viracocha connects
to the computational nodes via parallel data channels, one to each simulation
node. Simulation and post-processor are controlled using a ViSTA front-end. In
this setup we will show two frequent steering applications.

1.4.1 Numerical Steering

Since the underlying simulation mesh is essential for numerical convergence to
physical meaningful results, the additional possibility to influence the mesh during
runtime can prevent restarting simulation runs. Figure 1.4 shows the effect of
additional adaptation runs initiated in the FlowSimulator environment. Note, that
no additional code adjustment are needed since mesh adaptation is one of the
algorithms provided in FlowSimulator and FSSteering.

1.4.2 Simulation Steering

Contrary to the first example, this example shows how a simulation script is en-
riched with user-defined code, see figure 1.5. The used simulation script has the
ability to change aileron, rudder and elevator angles in a synthetic aircraft model.

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria
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1.4. COMPUTATIONAL STEERING RESULTS

(a) Initial mesh. (b) Adapted mesh.

Figure 1.4: For an initial computational mesh (a) background adaptation is trig-
gered improving numerical correctness.

FSSteering ’s abilities to schedule user-defined steering commands during runtime is
used to successfully deform the mesh. Mesh deformation is controlled and viewed
by the front-end application. Two wire-frame and a virtual reality view of the
front-end is shown in figure 1.5.

(a) Initial configuration. (b) Changed angle. (c) Explorative view with
changed angle in VR front-
end.

Figure 1.5: In simulation steering a command to change elevator angle was trig-
gered, (a) and (b). The influence on the flow field is analyzed in the explorative
visualization environment, (c).

16 Article 1. FSSteering: A Distributed Framework for Computational Steering in a
Script-based CFD Simulation Environment



1.5. CONCLUSION AND FUTURE WORK

1.5 Conclusion and Future Work

In this paper we presented FSSteering, a flexible computational steering environ-
ment. As an extension to the FlowSimulator framework domain-specific needs of
CFD engineers are addressed. A flexible connection and data management be-
tween the simulation on the one hand and front-end as well as post-processing
back-end modules on the other hand was demonstrated. Existing FlowSimulator
functionalities are inherited and can be used with very little programming effort.
Simulation-specific functions can be added by users with a convenient Python-API.
The combination with an existing parallel post-processor and a virtual-reality en-
vironment provides a rich set of analysis and explorative tools.

To serve typical batch processing systems running many simulations at the
same time, future work will include management of running simulations to allow
for a convenient selection of which simulation to steer. For simulations running with
high counts of computational nodes additional data redistribution and streaming
methods are needed to provide quick insights. Further research includes investiga-
tion of adequate interaction techniques in the front-end visualization to allow best
usage of the functionalities provided for CFD simulations steered with FSSteering.

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria
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Article 2

Visualization Workflow for
Lattice QCD

Brian Schinazi, Yaoqian Zhong, Massimo Di Pierro
School of Computing, College of Computing and Digital Media, DePaul University

243 S Wabash Avenue, Chicago, IL, USA

Vis is a web based application that implements Software as a Ser-
vice for Lattice QCD computations. Lattice QCD is a numerical ap-
proach to the mathematical model that descrbes quarks and gluons,
the consituents of protons, neutrons and many other composite par-
ticles. Lattice QCD computations are implemented as Markov Chain
Monte Carlo. Vis allows to store this data, explore it, schedule comput-
ing jobs using a local or remote PBS cluster, and schedule visualization
jobs using VisIt as back-end. All the major operations of Vis can be
performed via the web-based interface as well as scripted. Vis provides
an access control mechanism and strong security features. It is a sin-
gle platform that may allow physicists to collaborate better by sharing
their data online.

2.1 Introduction

Lattice QCD [Massimo Di Pierro, 2006] is a numerical approach to the study
of quarks, the elementary constituents of protons, neutrons and other forms of
matter. In 1968, the study of physics reached a turning point when the structure
and interactions of all known particles were described by a single mathematical
expression, known as the Standard Model Lagrangian [Novaes, 1999]. Since that
time, predictions based on the Standard Model have been extremely accurate, and
have been able to account for the results of every high energy physics experiment.
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Still, physicists continue to explore nature at smaller and smaller scales and to look
for a breakdown of the model, manifested as a discrepancy between predictions
and experiments. This would be a major discovery.

The part of the Standard Model that describes quarks specifically is called
Quantum Chromodynamics [Altarelli, 2002]. This constitutes perhaps the most
fascinating part of the Standard Model, as quarks are the only elementary particles
subject to the strong nuclear force – a highly non-linear interaction that allow
quarks to bind together in complex structures. Practically all of the composite
particles we see in experiments are made up of quarks.

The goal of Lattice QCD is twofold: to compute from first principles the prop-
erties (such as masses and lifetimes) of these composite particles, and to extract
fundamental parameters of QCD (such as particles’ masses) from a comparison of
theory with experiment.

Typical computations consist of taking a small portion of space (10−15m of
side) and its evolution over a short period of time (10−23s ), and then performing
a Markov Chain Monte Carlo (MCMC) simulation of all of its possible evolutions
( 1000 histories). We call the data saved at each MCMC step a gauge configu-
ration. Next, correlation functions are measured over all simulated evolutions of
the system. It can be proven that such an algorithm is equivalent to simulating a
quantum-mechanical system. Finally, observable quantities are extracted from the
correlation functions.

Until recently, visualization techniques have not been used in the study of
QCD. The main reason is that the objects being computed have no obvious cor-
respondence with physical 3D objects. The content of the portion of space which
is simulated contains purely random data, since each data set is just a step of a
MCMC. The physics is encoded in the probability distribution used to generate
the MCMC, and not in the data itself.

We believe that there are some useful applications of visualization techniques
to Lattice QCD: they can be used for didactic purposes, they can be used to better
understand the behavior of the MCMC algorithms, and they can be used to detect
certain types of error in the computation.

One type of error we are interested in is a systematic one: the possible long
auto-correlation of topological charge distribution. The portion of space-time that
is simulated contains a field that can be thought of as the chromo-electro-magnetic
field of gluons, the particles that mediate interactions between quarks (analogous
to the electro-magnetic field being represented by photons, but in this case having
three types of charges). One can also associate a local topological charge density
to the field. It should be noted that these fields all live in 4D and therefore must
be projected on to 3D in order to be visualized.

The elementary steps of Lattice QCD algorithms are local and, for typical
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Figure 2.1: Screenshot of the stream view, including the MC history for the average
plaquette and a list of files in the stream.

Figure 2.2: Screenshot of the processing view, showing information about the pro-
cessing of files in a stream, including the status of the computations and the
algorithm that was used.
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2.2. IMPLEMENTATION

production computations, they do not significantly change the total topological
charge. The question, therefore, is whether or not they change the local topological
charge density. If they do not, then the computation is biased because the MCMC
must get stuck in a topological sector and is not sampling properly. Visualization
techniques can be applied in this case, because we have, for example, been able to
use them to show that the answer is yes – typical production computations are in
fact not stuck in a topological sector.

Our goal is to automate the workflow of physicists working with this data and
allow them to:

• store and share gauge configuration for multiple MCMC streams.

• schedule computing jobs for each stream, in particular the computation of
the topological charge density.

• visualize the topological charge density (and other derived fields) using iso-
surfaces and/or volume plots.

• interact with the data using a web interface (rotate the topological charge
and change visualization parameters).

2.2 Implementation

Vis, at its core, is a web application for storing collections of datasets and schedul-
ing computations on the files in the sets. A set here is a MCMC stream, and the
files in the set are the gauge configurations. Computations can be numerical al-
gorithms and/or visualizations. The computations are submitted via an available
Portable Batch System installation and can be parallel jobs.

Users can create an account in the system, login, and perform operations such as
creating a new stream, uploading files into the stream, scheduling computations,
searching and downloading streams submitted by other users, and viewing the
results of computations performed on streams already in the system.

Some computations are scheduled automatically when data is uploaded, be-
cause new files need to be explored in order to detect their structure, they must be
converted to a standard format, and then analyzed to extract some basic physical
parameters that are important for cataloging the file and detecting possible errors.

Individual files can be very large (100M-1GB each) and therefore it may not
be practical to upload them via the web interface, which does not support pausing
and resuming. To avoid this problem, the system provides an alternate upload
mechanism. When a new stream is created, a security token is issued to the user.
The user can utilize a provided program to automatically upload every file from a
local folder, authenticating via the downloaded token.
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Figure 2.3: Screenshot showing widget that allows limited manipulation of visual-
ized datasets.

Figure 2.4: Using the browser-based interface, the user can set parameters for the
visualization and then submit the job for processing.
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2.3. SUMMARY

The algorithm that computes the topological charge density generates out-
put in VTK format. These files can, to a limited extent, be manipulated via the
browser using a JavaScript widget that displays isosurfaces at 60% of the dataset’s
minimum and maximum values.

The user can choose a visualization angle, specify additional parameters, and
then schedule a full visualization job to generate a high-res image.

The web interface was built using web2py [Di Pierro, 2010]. We utilize mat-
plotlib [Hunter et al., 2010] for 2D plotting and VisiIt for 3D visualization of
volume plots and iso-surfaces, although we are exploring the possibility of moving
to Vish [Benger, 2010] for the latter.

2.3 Summary

At this point Vis is primarily in the prototype stage, because it is hosted on a
small PC and lacks the computing resources and bandwidth to transfer and store
very large files. However, the program is fully functional and has been used to
process some streams of gauge configurations that are made freely available by
various groups via the NERSC archive [U.S. DOE, 2010].

Visualization algorithms can help physicists gain new insights into the physics
of QCD, and Lattice QCD computations in particular. Our hope is that Vis can
lower the barrier of entry, and enable physicists to look more deeply into their
data. Vis can be downloaded from: https://launchpad.net/qcdvis
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Increasing Hardware Utilization
for Peta-Scale Visualization

Paul A. Navrátil1, Donald S. Fussell2, Calvin Lin2

1Texas Advanced Computing Center
2Department of Computer Science

The University of Texas at Austin
Austin, Texas 78712

The dawning of the petascale era of scientific computing has brought
with it the challenge to analyze incredible amounts of data. Because
it is infeasible to move such data away from the supercomputers that
produce them, visualization and data analysis software must be per-
formed on the actual supercomputers themselves. Visualization appli-
cations, however, are not currently designed to take full advantage of
the computational resources on modern supercomputers nor to operate
under their stricter per-core memory limits. To explicitly leverage both
process- and thread-level parallelism and to utilize graphics hardware-
based computation acceleration, many solutions have been proposed
that would require significant reimplementation or replacement of ex-
isting software. Unfortunately, it is not clear that such wholesale change
is desirable or even possible.

We instead propose an incremental path to migrating visualization
software onto petascale machines while achieving high utilization of all
computing resources available. Our library-based approach comprises a
set of MPI extensions that elevate graphics hardware to first-class enti-
ties with respect to data movement and communication, a fine-grained
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thread scheduling library that enables dynamic and adaptive task- and
data-parallel processing on both CPUs and attached devices such as
GPUs, and a library that dynamically blocks incoming data to sizes
appropriate for the target machine architecture. This software infras-
tructure will provide a viable path for enhancing current software to
allow improved efficiency on multicore CPU-GPU cluster-based archi-
tectures with reasonable programming effort while supporting future
hardware innovations.

3.1 Introduction

Scientific visualization has traditionally been a second-class supercomputing prob-
lem, a task that could be shipped to a small machine with graphics hardware after
the “real” task of performing some large-scale simulation was complete. However,
as simulations produce ever larger volumes of data as output, this approach is no
longer feasible because there is insufficient bandwidth for shipping terabytes—and
soon petabytes—of data off of the supercomputer. Thus, high end visualization
must now run on the same HPC hardware that produces the data, and visualiza-
tion has become an HPC application in its own right.

HPC hardware typically consists of a distributed memory supercomputer whose
nodes have shared memory multi-core chips and, increasingly, a set of attached
GPUs. Indeed, given the energy and price/performance benefits of GPUs, we
are increasingly seeing clusters of GPUs where the GPU is the primary com-
pute engine. Unfortunately, HPC applications typically make poor use of this dis-
parate hardware. Some solutions focus solely on utilizing the GPU [Dolbeau et al.,
2007, Strengert et al., 2008]; other solutions attempt to exploit both CPUs and
GPUs but are limited to a single node; while still others recognize the need for
a hybrid model such as MPI/OpenMP [Lusk & Chan, 2008, Rabenseifner et al.,
2009] or MPI/Pthreads [Pfeiffer & Stamatakis, 2010] that distinguishes between
the distributed memory and shared memory components of the hardware but ig-
nores GPUs. High-end visualization software is further behind the adoption curve.
Most “parallel” visualization applications utilize only CPU-hosted, thread-based
parallelism; few exploit process-based parallelism [Childs et al., 2005, Kitware,
2010a]; and no general application broadly applies hybrid design [Vo et al., 2010].
To further complicate matters, visualization is often irregular both in its data
structures and its access patterns.

Given this landscape, we believe that peta-scale visualization will only be vi-
able if we are able to significantly increase its utilization of the available hardware.
To solve this problem, we propose to design and develop GAMPI, an extension of
MPI that gives programmers seamless access to both CPUs and GPUs. GAMPI
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provides a hybrid model in which programmers use MPI-like facilities to move data
and perform computations across the various distributed memory nodes; within
a node programmers can use threads with a default thread scheduler for both
CPUs and GPUs, or for more irregular computations, programmers can use an ex-
panded thread interface to obtain improved dynamic scheduling across both CPUs
and GPUs. More specifically, this expanded thread interface allows programmers
to provide a flexible resource-aware priority scheme, to dynamically dice tasks
into smaller pieces to improve load balance, and to use a set of synchronization
primitives that have extremely lightweight implementations. Finally, because pro-
grammers are typically unaware of the performance benefit of blocking data, we
propose a library that dynamically reformats data into blocks that are appropriate
for the target machine.

Our approach offers several benefits. First, it is a comprehensive solution that
incorporates all available hardware resources. Second, because it builds upon MPI
rather than CUDA or OpenCL, GAMPI offers an incremental development path for
the large base of existing MPI applications. Third, this incremental development
path allows programmers to use existing tools and programming environments,
rather than having to learn a new language and its associated tool chain.

The remainder of this position paper describes in more detail the challenges
facing high-end visualization (Section 2), the need for supporting dynamic variable-
grained thread management (Section 3), and contrasts our approach with prior
work (Section 4) before briefly concluding.

3.2 Visualization Challenges

There are several challenges to performing visualization on supercomputers. First,
many visualization and analysis packages are sequential programs that cannot
exploit the massive parallelism available in supercomputing clusters. Second, visu-
alization operations and their internal data formats are typically not designed for
the tight memory limits of HPC production systems; thus, a single node cannot
hold both the data and the additional overhead from the visualization application.
Third, the packages that do run on clusters do not parallelize their visualization
pipeline: To obtain sufficient RAM to support in-core processing of the largest
data sets, supercomputer nodes must be allocated with a single process per node,
leaving many cores idle that could be included in the visualization and analysis
work.

Available memory per-core might be the largest limiting factor for hardware
utilization. Due to the per-core memory limits on current machines, HPC codes
typically use algorithms and data structures highly-optimized to reduce memory
consumption. Unfortunately, visualization applications have yet to broadly adopt
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Figure 3.1: This figure shows the memory overhead incurred by isosurfacing and
volume rendering under VisIt and ParaView, two popular VTK-based visualiza-
tion applications. Each dataset was visualized using 128 processes on the TACC
Longhorn cluster.

this practice. Figure 3.1 demonstrates the memory overhead of two popular VTK-
based applications [Childs et al., 2005, Kitware, 2010a] when performing isosur-
facing and volume visualization several datasets:

Brain Aneurysm — 5123 shorts, 256 MB (128 blocks × 2 MB)

Synthetic Sphere — 10243 floats, 4096 MB (128 blocks × 32 MB)

Dark Matter Density — 20483 integers

• SILO format — 33280 MB (512 blocks × 65 MB)

• VTK format — 44544 MB (512 blocks × 87 MB)

When running these applications on a supercomputer with limited memory per
core, this data expansion requires the use of fewer processes per node and thus
leaves processors idle unless the application can exploit thread-based parallelism.
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These challenges lead to poor node utilization, particularly for large-scale data.
Yet, there are opportunities to improve the utilization with evolutionary changes
to the current software infrastructure.

3.2.1 Pipelined Task Parallelism

Current generation VTK-based applications such as ParaView and VisIt provide
coarse-grained parallelism based on a streaming model of dataflow through a set of
visualization filters. This is a very flexible scheme that allows easy reconfiguration
of the system to various visualization tasks and is natural to parallelize at the gran-
ularity of the individual filters. Given the basic streaming assumption, fine-grained
parallelism is achieved using SIMD approaches. While these are easily adapted to
SIMT for GPU implementations, they do not extend well to irregular computa-
tions that would more naturally rely on fine-grained multithreading. Extensions
like Hyperflow [Vo et al., 2010] and VTKEdge [Kitware, 2010b] give coarse-grained
threading, but lack the fine-grained control to maximize data-parallel processing
of in-core data.

Our approach supports both dynamic and flexible thread scheduling, which
allows an application to adapt the thread allotment to process additional data or to
pipeline tasks as appropriate for the resources available. This automatic flexibility
allows a single codebase to adapt to various computing platforms, particularly the
node configurations across various supercomputers on which a codebase will be
executed.

3.2.2 GPU-Accelerated Parallelism

With the explosion of GPGPU algorithms and the increasing frequency with which
GPU devices are installed in large-scale clusters, GPU-accelerated visualization op-
erations have become a viable means to achieve improved performance. As with the
CPU case above, however, visualization algorithms will benefit from fine-grained
control over the threads running on a graphics device. GPU thread schedulers are
optimized for a regular and balanced distribution of work across threads. Thus they
are not ideally suited for for irregular visualization algorithms, such as isosurfacing
or streamlining, where the workload depends on the classification of the data at
each particular block. Further, the load can vary dynamically as the input criteria
to the visualization operation change, such as during data exploration. Here too,
we expect fine-grained thread control to increase GPU utilization by providing a
seamless environment to swap among task kernels within a single über-kernel
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3.2.3 Data Redistribution

Data that has been blocked for efficient computation within a simulation does
not always match the best blocking for visualization. If the visualization runs on
the same hardware, the block size should be reduced to include the visualization
application overhead; if it runs on different hardware, the blocking may need to be
redone entirely for efficient data use. The blocking should also consider the higher
levels of the memory hierarchy, including the CPU caches and any GPU memory.
In addition, visualization algorithms keep data in an internal representation that
typically is not optimized for the hardware where the application is running.

We propose to dynamically reblock data to fit upper levels of the memory hi-
erarchy to achieve higher memory utilization and therefore improved application
performance. This operation is straight-forward for data in regular data, which
we can reblock automatically, but it can be significantly more complex for un-
structured or multi-resolution data. For these more complex formats, we provide
the user a reblock function to guide data reallocation. We expect to increase the
capability of our automated reblocking functions as our library matures.

3.3 Dynamic Thread Management

Our thread management library is designed to support workloads that contain a
mix of task parallelism and data parallelism and that have variable, dynamically
changing granularity. Our model supports any shared memory system, and the
focus for this project is to improve scheduling both for multicore CPUs and for
GPU-style throughput-oriented architectures. Our primary goal for these platforms
is to enable irregular computations to achieve levels of parallel efficiency compa-
rable to those achievable by traditional, more regular workloads. Because GPUs
and other throughput-oriented machines make heavy use of multithreading to hide
memory latency, it is critical that we schedule such workloads to make effective
use of all critical hardware resources, even when the demand on different system
resources (e.g. processors, buses, memory system) can change dynamically. For
example, in a computer game that includes a physics simulation as well as a ren-
derer (among other tasks), the dynamic nature of the physics simulation (e.g., the
increasing effect of an explosion) would cause our scheduler to adapt its schedule
in response to the physics simulation’s increased use of memory bandwidth.

Such adaptive scheduling can quickly become extremely complex, and it be-
comes quite burdensome when undertaken explicitly by a programmer. Current
generation GPUs solve this problem by optimizing for the regular case; thus, they
provide simple hardware-based thread schedulers, but these have proven inflexible,
particularly when used on irregular tasks for which the hardware was not originally
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designed, leading to seriously suboptimal performance on such computations [Aila
& Laine, 2009]. Our system provides a relatively simple to use software library that
allows the programmer to tune a much more flexible scheduler for performance on
a given application while not having to write low-level code to perform the thread
management directly themselves.

Our scheme works by identifying three separate mechanisms for thread syn-
chronization. The first is for hierarchical, or parent-child dependences between
threads. Our scheduler provides an operation called dicing that allows a thread to
be cut into smaller pieces and replaced by finer-grained threads, thereby improving
load balance. Our task management scheme and the synchronization among the
threads is carefully managed using wait-free synchronization methods to provide
minimal performance degradation in this case.

We also provide two levels of locks for more general dependences, which are
likely to be found at more coarse-grained levels of the system. There are two classes
of such locks, short-lived and long-lived, which are distinguished declaratively by
the programmer, primarily on the basis of whether or not full-blown mutual ex-
clusion is expected to be required among the threads in question. If it is, then
long-lived locks must be used; otherwise short-lived locks can be employed with
lower overhead.

Another key feature of our system is the ability to assign dynamic priorities
to threads. We have a two-level priority scheme to allow threads from multiple
independent processes to be handled concurrently. The high order portion of a
thread’s priority is that of its parent process; this portion of the priority is simply
a number assigned statically at load time. The low order portion is derived from
a priority specification provided by the application programmer in the form of
a function rather than a single number. The priority function has as parameters
availability levels of various critical system resources. These can include available
memory bandwidth, storage availability at various levels of a memory hierarchy,
communication bandwidths at various points in the system, and of course available
computational resources. These resources vary in their availability as computations
proceed, and the variables reflect the instantaneous availability of these resources.
This priority scheme allows our runtime system to compute a thread priority dy-
namically whenever a scheduling decision needs to be made, which allows efficiency
gains by dynamically tailoring task scheduling priority to resource availability.

Finally, our system allows programmers to tailor the overall scheduling policy
for a process by specifying rules that are optimized for that computation. For
advanced programmers this allows a great degree of control over scheduling without
requiring them to build the entire scheduling infrastructure; at the same time, this
system still allows their computation to share resources with other computations
as appropriate. For programmers who do not wish to take advantage of this ability,
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Figure 3.2: Ambient occlusion on an eight core Intel Xeon chip for a range of
workloads (4 to 512 spherical samples). For both curves, efficiency is computed
using a highly optimized sequential baseline. Our system (top curve) is roughly
75% more efficient than the commonly used Screen Space Tiling approach.

a flexible generic policy is provided as a default.

We have implemented our initial system on a number of multicore CPU plat-
forms in addition to porting it to Intel’s internal Larrabee (now Knights Ferry)
and to a Sony PlayStation 3. Our initial testing of the system on a multicore CPU
has shown that very high levels of parallel efficiency can be achieved with relatively
little programming effort. In Figure 3.2, we show efficiency scaling for an irregular
ray-tracing style graphics computation (ambient occlusion [Zhukov et al., 1998]) on
an 8 core Intel Xeon machine. Against a highly optimized sequential baseline, our
efficiency is significantly higher than that of a commonly-used parallel algorithm
for such tasks. Because our scheme is significantly more flexible in scheduling work
on the machine than the fixed parallelism strategy, we see a high level of efficiency
without the detailed programming effort needed to build a scheduler directly as
part of the parallel application. We predict additional benefit can be achieved for
throughput architectures like the GPU.

We have recently been using our library to support the development of new
research code for advanced rendering tasks. Our experience has been that the
library greatly facilitates the rapid development of code that shows surprisingly
high levels of parallel efficiency, even in its early stages of development. Since our
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computations are similar in many ways to a number of scientific applications, we
believe that this bodes well for the use of the library as a smooth upgrade path to
much higher levels of performance at the node level of a scalable supercomputer.

3.4 Related Work

This section distinguishes our proposed work with prior work. We divide related
work into two parts: work that facilitates communication across hybrid cluster
environments; and work that performs thread scheduling, both for heterogeneous
computing environments and for graphics-hardware devices.

3.4.1 Hybrid Cluster Communication

The growing number of GPU clusters has motivated research into effective data
movement and communication across a distributed set of GPUs. Currently, the
vendor libraries for graphics-hardware computing lack support for distributed
hardware environments. While research has begun in this area, the majority of
work adapts GPU kernels to run across a cluster, either by implementing MPI-
like communication for the GPU kernel [Fan et al., 2008, Moerschell & Owens,
2006, Strengert et al., 2008, Stuart & Owens, 2009] or by virtualizing the cluster
to appear either as a unified system [Barak et al., 2010, Duato et al., 2010] or
as a global partitioned address space [Zheng et al., 2010]. In contrast, cudaMPI
[Lawlor, 2009], uses a host-based MPI-like syntax to enable data movement be-
tween distributed graphics devices, though the library only moves data between
GPUs and supports only one graphics device per host. Our approach also uses a
host-based MPI-like syntax to facilitate migration of CPU-only codes to include
graphics-hardware acceleration, though our approach permits data movement be-
tween a host and non-local devices and supports clusters with multiple devices per
host.

3.4.2 Irregular Hybrid Thread Scheduling

Hybrid parallelism, combining both process- and thread-level parallelism across
a distributed cluster, has been a popular research area in supercomputing for
over a decade, though the majority of published work targets regular computation
(for example, StarPU [Augonnet et al., 2009]). Here, we discuss work on multi-
threading for irregular computation, either on the CPU or GPU.

Thread scheduling for irregular programs has been studied in some depth (for
recent examples see e.g. [Kulkarni et al., 2008, Mendez-Lojo et al., 2010]), but we
are aware of only one work specifically targeting multithreading in visualization
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applications: HyperFlow [Vo et al., 2010] seeks to include coarse-grained task and
data parallelism to the VTK framework [Kitware, 2010b] and VTK-based appli-
cations. This library specifically targets data streaming operations and does not
enable the fine-grained, adaptive parallelism of our approach.

Graphics hardware typically schedules threads in a round-robin fashion appro-
priate for graphics workloads. Round-robin scheduling is not ideal for irregular
workloads, and there have been several efforts to create a more flexible schedul-
ing environment within the limits of both the hardware itself and the exposed
hardware interface. One strategy merges kernels at compile-time to allow dynamic
scheduling of the individual kernels at runtime [Guevara et al., 2009, Tzeng et al.,
2010]. Another strategy builds work hierarchies to balance workloads across GPU
processors [Lauterbach et al., 2009, Luo et al., 2010]. A third approach [Gregg
et al., 2010] builds host and device versions of targeted functions and dynamically
selects between them according to system state and profiling data.

3.5 Conclusion

We propose a library-based approach that supports the evolutionary upgrade of
existing HPC visualization tools to peta scale by allowing more efficient use of
nodes comprising multicore CPU-GPU hybrids. Our aim is to reduce programming
effort in such upgrades by giving programmers a common API that allows them
to manage fine-grained thread level parallelism on both the CPU and the GPU of
such nodes. Our system handles resource-aware thread scheduling, dynamic thread
granularity, reblocking of data, and resource sharing among multiple multithreaded
processes by providing library extensions of the MPI library on which current
large scale visualization systems are implemented. Our experiences with the use of
our thread and resource management libraries on single shared-memory multicore
systems suggest that we can achieve parallel efficiencies comparable to those of the
best hand-tuned code with much lower programming effort. We expect to achieve
similar efficiencies by incorporating our approach into scalable distributed-memory
visualization applications.
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Direct manipulation is an important component of exploratory scien-
tific visualization because it provides a suitable user interface for spatial
inputs. However, its realization is challenging because of the diversity
of input devices and the lack of reuseability. We propose an abstraction
of direct manipulation by decoupling the low-level interaction ground-
work from high-level declarations of interaction behaviors. Then, we
describe how recurring interaction patterns in scientific visualizations
can be distilled into 3D widgets, which can be operated as well in
virtual environments as in desktop setups. Finally, we show how the
proposed concept improves the implementation process of exploratory
scientific visualization.

4.1 Introduction

Exploratory visualization complements powerful visualization algorithms in the
analysis of scientific data in which not every aspects of the data is known in detail.
An explorative visualization method comprises three main components: (1) a real-
time visualization algorithm, (2) a user interface to interactively define the input

43



4.2. RELATED WORK

parameters for the visualization algorithm – the interaction interface, (3) a link
between the algorithm and the user interface, defining the mechanism to adjust
the visualization to the current given parameters – the mediator.

Earlier work on the interaction interface proposed 3D visualization widgets
which provide a natural control interface in the visualization environment. Al-
though this work led to promising results, the improvement of this kind of inter-
actions is troubled by the high complexity of realizing new interaction ideas. High
requirements on the performance, numerous possibilities of setup for data flow
from interaction devices to assigned actions and variation of the devices are some
of the obstructing factors. Thus, reusable parts of existing interaction techniques
are valuable because they provide the building blocks for more sophisticated tech-
niques. The goal of this work is not only to increase the reusability of recurring
interaction techniques, but also to assure the portability across a large variety of
available input devices, e.g. desktop-based mouse or 6-DOF pointer.

Our contributions comprise the following steps: (1) We introduce an interaction
vocabulary to decouple the declaration of interaction techniques from specific input
devices. (2) We show how an interaction interface is constructed from reusable
components which are distilled from recurring interaction patterns for scientific
visualization. (3) We describe example use cases which demonstrates the applica-
tion of the proposed construction, performed by diverse participants throughout
the development cycles of interactive scientific visualization.

After reviewing related work in the next section, an overview of the pro-
posed approach is described in Section 4.3. The proposed solution for a device-
independent declaration of interaction is then described in Section 4.4. Based on
this, the construction of interaction in scientific visualization will be specified in
Section 4.5. Section 4.6 shows the results achieved up to now by describing some
use cases. The last section discusses the benefits and limitations of the proposed
concepts and provides pointers for future work.

4.2 Related Work

In [Bowman et al., 2004] 3D direct manipulation techniques are described as a
class of interaction metaphors by which the user can select and directly manipulate
virtual objects with her hands. Some advantages of applying direct manipulation in
scientific visualization are reported in [Bryson, 2005]. Alongside the natural ways
of interaction, the near-real-time responsiveness is mentioned as a main advantage
of direct manipulation interfaces.

In most cases the objects occurring in scientific visualization are representing
abstract entities by mapping them to geometric primitives. Visualization widgets
have emerged as an appropriate tool to allow direct manipulation of visualization
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objects. Bowman et al. [Bowman et al., 2004] defined a 3D widget as a special-
ized object which is artificially added to the environment, providing a selectable
instance that can be used to control the environment.

One of the first realizations of direct manipulation for scientific visualization
is the Virtual Windtunnel [Bryson & Levit, 1991]. They introduced a tool called
bubbler, which allows the user to place seed points for the computation of streaklines
directly into the ”virtual flow”. Extending this idea, Herndon et al. proposed the
Probe, Rake and Hedgehog widgets [Herndon & Meyer, 1994].

Recognizing that the lack of reusability causes the underutilization of 3D in-
teraction, Conner et al. described a framework for designing, implementing and
using 3D widgets [Conner et al., 1992], in which two behavioral aspects of widgets
are distinguished: dependencies and controllers. In [Ray & Bowman, 2007] an ap-
proach for reusable 3D interaction techniques by inserting a software layer between
the application code and the software toolkit is proposed. An idea of generalizing
input devices – defining the virtual devices – is introduced in [Foley & Wallace,
1974] . Another approach focuses more on the semantic of the interaction, defining
an interaction language [Kamran & Feldman, 1983]. The design of the proposed
interaction vocabulary is based on these ideas.

[Kok & van Liere, 2007] describes an approach that utilizes the widget imple-
mentation of the Visualization Toolkit (VTK).We decided not to build our inter-
action framework around VTK’s 3D widgets. First, because they are not designed
to be operated by 3D interaction devices. Thus, although it is possible to extend
VTK such that it can be operated with various kind of input devices, this ap-
proach does not scale well as the complexity of the 3D interaction grows, e.g. due
to the usage of more sophisticated 3D selection methods to compensate device’s
jittering. Second, because VTK is less suitable for performance critical visualiza-
tion algorithms, and in particular, time-varying datasets. In such cases, special
data structures and rendering algorithms are required, e.g. to ensure appropriate
time-management and efficient data processing.

4.3 Overview

Generally, a visualization application is built on a VR toolkit and a visualization
toolkit. The term VR toolkit does not imply that the application has to run on
virtual reality hardware, but rather points to the core function of VR toolkits: to
encapsulate the handling of different types of display environments and drivers for
various input devices. The visualization toolkit, e.g. VTK, provides basic function-
ality required to generate visual primitives from the input data.

The flow of user input data from the VR toolkit through the application to a
visualization algorithm is depicted in figure 4.1. Although a VR toolkit typically
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takes over the task of configuring input devices, it does not imply that the visu-
alization widgets automatically become independent from the setup of the input
devices. A naive approach would introduce unnecessary device dependencies at
the application level, impeding the reuse of the interaction implementation. For
instance, the signals from 2D mouse and 6-DOF pointer would have to be dis-
tinguished in the application code. Consequently, one single interaction behavior
requires more than one implementations, which is hard to maintain and error-
prone. For this problem, we propose a high-level interaction definition (the red
arrow in figure 4.1) which is described in section 4.4.

The second part of the proposed construction is built on top of the high-level
interaction definition. This ensures code-reuse at the levels of general-purpose 3D
interaction, of the widget-construction and of the recurring interactive visualization
methods. The blue arrow in figure 4.1 illustrates the location of our solution which
is described in section 4.5. Overall, the resulting reusable elements can be ordered
as a software layer between the application and the software toolkits (the grey box
in figure 4.1).

4.4 High-level Interaction Definition

As well in [Foley & Wallace, 1974] as in [Kamran & Feldman, 1983] an abstrac-
tion of interaction tasks is proposed in order to encapsulate the development of
interaction techniques from specific input devices. In this abstraction, a set of fun-
damental interaction tasks is defined, each of which can be referred by a meaningful
name that describes its behavior.

This concept is comparable to the concept of low-level and high-level pro-
gramming paradigms. While the low-level programming languages, e.g. assembler,
operate on hardware-specific abstraction level, high-level programming languages
encapsulate the hardware details. Furthermore, the high-level languages comprise
elements that are easier to understand than the low-level ones, providing a more

Figure 4.1: Components of the proposed construction: high-level interaction defi-
nition (the red arrow, section 4.4), elements of widget-based interaction (the blue
arrow, section 4.5), reusable elements for visualization applications (the grey box).
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convenient interface to define complex behaviors.

We convey the concept of programming languages to the 3D interaction tech-
niques by characterizing it in the context of interaction development. A low-level
definition of interaction behaviors has little abstraction from device’s instruction
set, e.g. “button 1 is pressed”, and thus, has strong dependencies to the config-
ured input device. On the contrary, a high-level definition hides the device-specific
operation, and therefore, establishes the portability across various input devices.
Furthermore, it intensifies the use of elements from natural language, thus, improv-
ing the human readability of the definition, e.g. “select button” instead of “button
1”. In return, a high-level definition stimulates the development of user-oriented
behavior because the programmable elements are more human-oriented than those
of the low-level interaction definition.

Buiding a high-level definition on top of an appropriate low-level definition
is a common practice in the context of programming languages. In this regard, a
high-level interaction definition should be built on a low-level interaction interface,
which is provided by VR toolkits. Furthermore, as the specifications of high-level
programming languages comprising the language’s basic elements and approriate
defined syntax, a high-level interaction definition interface also have to be specified
by a set of basic high-level interaction elements which are to be combined according
to certain rules in order to build 3D interaction techniques.

The Interaction Vocabulary formalizes the input data flow from a VR toolkit
to a visualization application (see figure 4.2). This formalization is build on the
basic concept of data flow network, which is successfully used in many VR systems,
e.g. [de Haan & Post, 2008]. While the vocabulary is defined by visualization appli-
cations (red colored boxes in figure 4.2), an adapter (grey colored boxes) is required
to configure the data flow from a specific VR toolkit. Hence, the defined vocab-
ulary encapsulates the dependencies of a visualization application from a specific
VR toolkit, such that exchanging the underlying VR toolkit would only require
the re-routing of input data flow from the adapter to the specified vocabulary.

The vocabulary is defined by a set of input ports, each of which must hold a
type and must be assigned a name. The type of a port describes the kind of input
information that is required by the application of this port, while its name serves
as an identifier that indicates its role in user interaction. Thus, the type of a port
can be considered as its “syntax” and the name as its “semantic”.

The set of typed and named ports is specified by a visualization application as
its interaction groundwork. Based on required basic input information type which
is relevant for controlling visualization parameters with widgets, we propose fol-
lowing port types: boolean (e.g. the state of input device’s button), integer number
(e.g. a selection from a discrete set), real-valued number, 6-DOF (a 3D position
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Visualization Application

VR Toolkit Vis Toolkit

Vocabulary

Ports:

Typed (6-DOF, boolean)  à syntax

Named (poiter, selection) à semantic

Figure 4.2: The interaction vocabulary defines typed and named input ports (red
colored boxes). A VR toolkit-specific adapter (grey colored boxes) is required.

and a 3D orientation). It should be noted that these port types rather describe
recurring types of 3D interaction components than categorize the types of signals
produced by various input devices. Thus, a port of type 6-DOF can be fed by input
signals from 2D mouse, analog sticks or a 6-DOF device. Furthermore, the signals
from an analog stick, for instance, can alternatively be mapped to control a linear
continuous interval which results in a port of type real-valued number.

The following input ports frequently occur in widget-based interactions: (1)
A pointer (6-DOF) comprises the 3D position and direction of a pointing device.
(2) A selection (boolean) transmits a button press action expressing a selection
command of currently active object. (3) A viewer (6-DOF) provides an interface
to transmit the current viewer position and direction, which typically comes from
a head tracking device in a virtual environments setup. Its output can be used for
methods that depend on the viewer’s position and orientation.

We implemented this idea by using XML setup files which describe a directed
acyclic graph made up of nodes and edges. A node may describe (1) an input data
source, which is implemented by the device driver, (2) a transitional instance, e.g.
to transform or filter the data values, or (3) the data sink, i.e. the interaction part
of the target visualization application. An edge in the graph defines the data flow
between two existing nodes by means of a directed connection.

The following simplified code snippet exemplifies such an XML-based setup for
a 2D mouse as a 6-DOF pointer. First, we defined three nodes: (1) the input data
source “mouse” which routes the signal from the device driver, (2) a node “3d
mouse” which converts a 2D position to a 3D position and 3D direction according
to a certain algorithm, and (3) the data sink “application”.
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<node name="mouse" type="DriverSensor">

<param name="driver" value="MOUSE"/>

</node>

<node name="3d mouse" type="3DMouseTransform">

<param name="displaysystem" value="MAIN"/>

<param name="viewport" value="MAIN_VIEWPORT"/>

</node>

<node name="application" type="application_context"/>

Then, we define the directed connection between above defined nodes. In the
code snippet below we route the 2D signal from the 2D mouse driver to the trans-
former node, then use the generated 6-DOF information(i.e. orientation and posi-
tion) as an input for the application. The last line defines the mouse’s left-button
as the “select”-button in the target application.

<edge fromnode="mouse" tonode="3dmouse"

fromport="X_POS" toport="x_pos"/>

<edge fromnode="mouse" tonode="3dmouse"

fromport="Y_POS" toport="y_pos"/>

<edge fromnode="3dmouse" tonode="application"

fromport="orientation" toport="pointer_ori"/>

<edge fromnode="3dmouse" tonode="application"

fromport="position" toport="pointer_pos"/>

<edge fromnode="mouse" tonode="application"

fromport="LEFT_BUTTON" toport="select"/>

A single application may be configured by several setup files, each of which may
describe an interaction aspect, such as pointer, selection, etc. Thus, in practice,
changing a device setup can be achieved by simply loading different XML files. Our
implementation is based on the ViSTA Virtual Reality Toolkit which is avaiable
at http://sourceforge.net/projects/vistavrtoolkit.
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4.5 Widget-based Interaction

Based on [Conner et al., 1992] and [Bowman et al., 2004] we define a widget as an
object which is artificially added into the environment to allow interactions directly
inside the environment. Hence, the components of a widget are: (1) a geometric
representation of the widget state, e.g. its position and shape, (2) a definition of
the widget behavior which specifies the mapping of incoming information from the
input ports (e.g. triggered button ) to assigned actions.

Most existing implementations of visualization widgets do not clearly struc-
ture the assigned actions. For instance, a widget controlling a parameter set for
a visualization algorithm includes in its behavior definition the following actions:
the update of its state, the adjustment of its geometric representation, the com-
putation of the visualization algorithm and also the rendering of the resulting
depiction. Hence, reuse of individual components is compromised. The recurring
widget-based interaction behaviors would have to be re-implemented for each new
combination with visualization algorithms.

We propose to explicitly restrict the influence of a widget’s behavior so that it
can only directly manipulate its own state. For example, the behavior definition of
a box widget that facilitates a selection of a volume-of-interest contains only the
resize of the widget’s box geometry and not the resize of the selected subvolume.
The following descriptions explain the process of combining the proposed widget
construction with visualization algorithms.

Based on our observation, we distinguish three roles in the development of
widget-based visualizations (see figure figure 4.3): (1) An interaction developer
designs and implements 3D interaction techniques, including widgets. (2) A visu-
alization developer designs and improves interactive visualization algorithms, and
combines the algorithm with existing widgets. (3) An application developer builds
in existing combinations of widget and visualization algorithm – widget aggregates

apply widget aggregate

combine widget and visualization algorithm

define new interaction technique

Application developer

Visualization developer

Interaction developer

  
  
  
  
 l
e

v
e
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f 
a

b
s
tr

a
c
ti
o

n

Figure 4.3: The development process of a widget-based interactive visualization.
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Visualization Application

VR Toolkit Vis Toolkit

Interaction

Router
Widget

F: Widget à Vis. Params

Visualization Algorithm

Figure 4.4: Components of widget-based interactive visualization

– into the visualization applications.

The above description of development steps reveals three logical modules of
widget-based interactive visualization (see figure 4.4): (1) a widget module, (2) a
real-time visualization algorithm, (3) a mapping module which maps the widget
output to the input parameters for the visualization algorithm. Furthermore, an
interaction router is defined to preprocess input data transmitted by the interac-
tion vocabulary such that the data is routed to the appropriate widget.

The widget module is structured based on the Model-View-Controller pattern
for graphical user interfaces. The widget model provides the unique definition of the
widget’s geometry and other internal states, e.g. the width, height and depth of a
box widget. The widget view defines the representation of a widget according to its
state. The observer design pattern ensures that the view is immediately adjusted
as soon as a model modification occurs. The widget controller is the part of a
widget that receives input data from the interaction router and converts the input
to assigments that modify the model. To determine the possible interfaces, e.g.
move or resize widget, a set of selection targets is defined as part of the controller.

To map the widget-based interaction to the control of visualization param-
eters, a link between the widget and the appropriate visualization to be con-
trolled is defined by using the mediator behavioral pattern (see the component
”F : Widget→ V is.param” in figure 4.4).

4.6 Use Cases

We demonstrates the usage of the proposed widget construction with two use cases
in which the same plane widget can be reused and combined with two different
visualization algorithms (see figure 4.5).

A direct manipulation for volume exploration is often realized by providing an
interactive volume slicer. For the interaction part, a plane widget offers a suitable
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Figure 4.5: Plane widget as interactive slicer (left) and particle-seeder(right).

user interface to position the slicing plane and define its normal vector. The visu-
alization algorithm that generates the slice is not the focus of this work, but its
non-trivial implementation should be combinable with other user interfaces. Thus,
taking out the dependencies between a visualization algorithm and its controlling
user interface by using a mediator profits both the reusability of the interaction
widget and the visualization algorithm. In this use case, the mediator transforms
the plane model’s attributes to the appropriate input parameter for the volume
slicing algorithm.

The same plane widget as described in the previous use case can also be ap-
plied to establish a 3D interaction to position a quad-formed particle seeder. The
manipulation of the quad’s normal remains exactly equal as described above. The
mediator between both components is then defined to translate the quad area to
the area where particle seeds are released into the flow. With the mediator encap-
sulating the dependencies between the interaction and visualization algorithm to
compute particle traces, not only the existing plane widget can be reused, but also
the particle tracer can be combined with other seeders.

4.7 Discussion

We proposed an interaction vocabulary to allow high-level interaction definition,
which encapsulates device-specific operations. The interaction ports define the type
and the name of available high-level elements, which enable a human-readable
definition of interaction behavior. Because the interaction vocabulary has a static
set of port types, interpreting applied high-level elements to the underlying low-
level elements can be accomplished by lightweight operations. Thus, it does not
introduce any disturbance to the interaction performance.

To establish reusable components in the development of interactive visualiza-
tions, we proposed a construction that allows independent development of widget-
based interaction techniques and visualization methods. The link between both
elements is then established by a mediator.
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4.7. DISCUSSION

Although the proposed construction theoretically allows other port types ap-
part from 6-DOF and boolean in the interaction vocabulary, we still have no expe-
rience in its application. Furthermore, an evaluation of the vocabulary for a wide
range of device configurations, e.g. two-handed tracked devices, is regarded as an
important future work.

Acknowledgements

This work is partially funded by the German Federal Ministry of Education and
Research (BMBF) under grant 03SF0326A.

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria

53



BIBLIOGRAPHY

Bibliography

[Bowman et al., 2004] Bowman, D. A., Kruijff, E., LaViola, J. J., & Poupyrev, I.
(2004). 3D User Interfaces: Theory and Practice. Addison-Wesley.

[Bryson, 2005] Bryson, S. (2005). Direct Manipulation in Virtual Reality. In C. D.
Hansen & C. R. Johnson (Eds.), The Visualization Handbook. Elsevier.

[Bryson & Levit, 1991] Bryson, S. & Levit, C. (1991). The Virtual Windtunnel:
An Evironment for the Exploration of Three-Dimensional Unsteady Flows. In
Proceedings of Visualization ’91 (pp. 17–24).

[Conner et al., 1992] Conner, B. D., Snibbe, S. S., Herndon, K. P., an Robrt
C. Zeleznil, D. C. R., & van Dam, A. (1992). Three-Dimensional Widgets.
In Proceedings of the Symposium on Interactive 3D Graphics (pp. 183–188).

[de Haan & Post, 2008] de Haan, G. & Post, F. H. (2008). Flexible Architecture
for the Development of Realtime Interactive Behavior. In Proceedings of the Soft-
ware Engineering and Architectures for Realtime Interactive Systems (SEARIS)
(pp. 71–75).

[Foley & Wallace, 1974] Foley, J. D. & Wallace, V. L. (1974). The Art of Natural
Graphic Man-Machine Conversation. IEEE, 62(4), 462–470.

[Herndon & Meyer, 1994] Herndon, K. P. & Meyer, T. (1994). 3D Widgets for
Exploratory Scientific Visualization. In UIST ’94: Proceedings of the ACM Sym-
posium on User Interface Software and Technology (pp. 69–70).

[Kamran & Feldman, 1983] Kamran, A. & Feldman, M. B. (1983). Graphics Pro-
gramming Independent of Interaction Techniques and Styles. SIGGRAPH Com-
puter Graphics, 17(1), 58–66.

[Kok & van Liere, 2007] Kok, A. J. & van Liere, R. (2007). A Multimodal Virtual
Reality Interface For 3D Interaction with VTK. Knowledge and Information
Systems, 13(2), 197–219.

[Ray & Bowman, 2007] Ray, A. & Bowman, D. A. (2007). Towards a System for
Reusable 3D Interaction Techniques. In Proceedings of Virtual Reality Software
and Technology (VRST) 2007 (pp. 187–190).

54 Bibliography



Article 5
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Geometric Algebra is a universal mathematical language, used in many
scientific areas. Its graded structure inherits different mathematical
concepts. Gaalet (Geometric Algebra ALgorithms Expression Tem-
plates) enables the implementation of Geometric Algebra in an ele-
gant and concise way in the programming language C++. By using
expression templates techniques and accomplishing grading operations
at compile time, algorithms and expressions implemented with Gaalet
yield good runtime performance.

5.1 Introduction and Previous Work

5.1.1 Geometric Algebra

Brief Introduction

Geometric Algebra can be defined as a non-degenerate Clifford Algebra over the
reals, although this definition may vary in publications from different authors. The
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5.1. INTRODUCTION AND PREVIOUS WORK

term “Geometric Algebra” was coined by David Hestenes, the “godfather” of Ge-
ometric Algebra. He fostered the usage of Geometric Algebra as a common mathe-
matical language, as Geometric Algebra does inherit a lot of different concepts, for
example the complex numbers, quaternions and the exterior (Grassmann) algebra,
the latter being a foundation of Clifford and Geometric Algebra. David Hestenes
[Hestenes & Sobczyk, 1984], [Hestenes, 1999] published some important books on
this subject.
Following the definition above, we define a Geometric Algebra

G(p, q) ≡ C`p,q(R) (5.1)

with non-degenerate metric tensor signature (p, q) (square of basis vector e1..p
2 = 1,

ep+1..q
2 = −1), Clifford Algebra C`p,q(R) over the real numbers R.

This definition may also be extended to a degenerate metric tensor, resulting in
more freedom. On the other side, some theorems David Hestenes formulated for
Geometric Algebra hold only for the non-degenerate signature case.

A brief introduction to Geometric Algebra might be given by discussing the
geometric product. The geometric product

eiej =

{
ei ∧ ej , i 6= j

eiej = ±1 , i = j
(5.2)

of two basis vectors ei, ej either generates another graded element of the algebra
or it produces a scalar, depending on the algebra’s signature. The graded element
generated by the geometric product of two different basis vectors is called a basis
2-blade, or basis bivector, of three different basis vectors a basis 3-blade, or basis
trivector, and so on. A scalar is a 0-blade. All these basis blades can be scaled by
a coefficient and summed up, which produces a general multivector of the algebra
(e.g. A = a0 + a1e1 + a2e2 + a12e1 ∧ e2 ∈ G(2, 0)).
By using specialised multivectors and developing theorems on their operations,
expressions can be handled in a coordinate free manner. Important types of mul-
tivectors are k-vectors, which contain basis blades of the same grade k.

For a more sophisticated introduction to Geometric Algebra, we would like
to refer the reader to literature of David Hestenes [Hestenes & Sobczyk, 1984],
[Hestenes, 1999], Chris Doran and Anthony Lasenby [Doran & Lasenby, 2003], as
well as Leo Dorst et al. [Dorst et al., 2007].

Implementation

It is a common notion that algorithms developed or described in Geometric Alge-
bra take an elegant and compact form, compared to conventional algebras. On the
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other side, Geometric Algebra algorithms often tend to yield a worse runtime per-
formance if implemented naively. (For some examples, see [Skala & Hildenbrand,
2009].)
There has been research going on about the implementation of Geometric Alge-
bra expressions and algorithms, mainly concerning the problem to maintain the
elegant algorithm description of Geometric Algebra in the implementation, while
overcoming common performance issues.
In the next lines, common implementation frameworks for geometric algebra will
shortly be described. It will be distinguished between external frameworks, i.e.
code generators, which are not embedded into a specific programming language,
as well as internal frameworks, i.e. libraries for a specific language.
External frameworks tend to offer high runtime performance by exploiting the cir-
cumstance that grading in Geometric Algebra expressions are fixed, thus grading
can be handled beforehand and only multivector coefficients are subject to runtime
computations.
Gaalop [Hildenbrand et al., 2010] uses an Geometric Algebra specific language
(CLUScript) for the description of expressions and algorithms and compiles these
descriptions for certain target languages and platforms. It additionally applies
heavy simplifications to expressions on the multivector coordinate basis and can
examine whole algorithms for optimisations purposes.
Gaigen [Fontijne, 2006] can produce optimised implementations of Geometric Al-
gebra elements and operations for certain target languages. It specialises the im-
plementation of Geometric Algebra for a certain metric and generates an imple-
mentation in form of a library the programmer can use.
There are libraries available for specific programming languages, modelling the
Clifford algebra or Geometric Algebra. To our knowledge, these libraries deal with
the grading of Geometric Algebra elements at runtime, thus producing a certain
overhead. In the following a short assortment of C++ libraries are listed.
GluCat [Leopardi, 2007] is a templated library and models Clifford algebra over
the reals of arbitrary dimension and arbitrary signature in accordance with its au-
thor. It has been originally designed to be used with other generic C++ libraries.
C++ MV [Bell, 2004] models Clifford algebra over the reals of up to 63 dimensions.
Its grading implementation is quite sophisticated.

5.1.2 Expression Templates

Expressions Templates is a technique to describe expressions as types in the pro-
gramming language C++. Templates form the generic part of C++, which enables
the programmer to define a C++ class or functions using template arguments. Lat-
ter can be types or integer constants, thus the programmer does not know these
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+

* c

a b

(a) Expression tree

typedef

addition<

product<

a_type,

b_type>,

c_type> expr;

(b) Expression type in
C++

a_type a;

b_type b;

c_type c;

auto expr = a*b+c;

(c) Definition via op-
erator overloading

Figure 5.1: Expression a∗b+c: Modelled with expression tree (left), implementation
type in C++ (middle) and concise definition of an expression, enabled by operator
overloading (right). (Note upcoming standard C++0x keyword auto.)

types or constants when defining the class or function. Not until the templated
class is used with template arguments to declare an object, or the templated func-
tion is called with template arguments.
Figure 5.1 shows an expression tree, modelling an example expression and how the
C++ templated class type might look like. It is defined by nesting templated, unary
or binary operator classes as template arguments into parent operator classes.
These templated operator classes are the nodes of the expression tree, with the
special case of an end node, which might be an algebra element, e.g. a real num-
ber or a vector, as well as another predefined expression. Using the expression
templates technique in conjunction with operator overloading allows for writing
expressions in C++ in a concise, domain-specific form.
Expression Templates model the concept of lazy evaluation, thus an expression
must not be evaluated when it is defined. This enables the compiler to handle
the whole expression at compile time, inlining function calls and avoiding creation
of temporary values. Vector-valued expressions can be evaluated on a coordinate
basis, without creating temporary vectors. Using expression templates result in
potentially faster code compared to a naive implementation, as Todd Veldhuizen
[Veldhuizen, 1995] or David Vandevoorde [Vandevoorde & Josuttis, 2003] show.
Both developed the expression template technique independently.
Recently Jochen Härdtlein et al. [Härdtlein et al., 2009] published advanced expres-
sion templates techniques, which, along others, reduce the complexity of expression
templates, both on the implementation side and in the depth of nested template
classes, which reduces compile time. This is done by applying the curiously re-
curring template pattern (CRTP) mechanism to the definition of expression tree
nodes.
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5.1.3 Applications in Visualisation

Important applications of Geometric Algebra algorithms are in Computer Graph-
ics, Physics and Engineering. Especially the domain of visualisation takes advan-
tage of Geometric Algebra, with a lot of potential for future work in this domain.
See for example proceedings in [Skala & Hildenbrand, 2009].

As an example for an application in visualisation, we would like to refer to the
problem of camera navigation in a visualisation framework. Werner Benger et al.
[Benger et al., 2009] describe a Geometric Algebra algorithm used for camera nav-
igation in the VISH [Benger et al., 2007] visualisation framework. The algorithm
rotates a camera located at a point defined by position vector P ∈ R3, looking
at a point defined by position vector L ∈ R3, around the view direction vector
t = L− P about an angle ϕ ∈ R. This is simply described by the rotor

Rt = e−
1
2
ϕ( t

|t|)
?

, (5.3)

denoting the rotation of the camera.
The magnitude |t| is used to normalise the view direction vector t. The star in
the expression ( t

|t|)
? denotes the dual operator, yielding the plane normal the nor-

malised view direction vector t
|t| in form of a bivector. Multiplying the bivector

by the negative half rotation angle and operating the exponential function on it
yields the camera rotation about angle ϕ, denoted by rotor Rt. Benger et al. claim
that this formulation is considered to be very simple compared to respective for-
mulations using matrix and linear algebra.
A rotor R in Geometric Algebra is similar to a quaternion and may describe the
rotation of a rigid object. For example, in order to rotate vector a using rotor R,
the sandwich product RaR−1 can be applied.

5.2 The Motivation

5.2.1 Geometric Algebra Implementation

Implementations of Geometric Algebra algorithms created with help of the exter-
nal frameworks Gaalop and Gaigen have shown to yield good runtime performance.
Nevertheless, we think that their programming language independence can have
negative impact on the development process of software using Geometric Algebra
algorithms, although this opinion might be well countered by others. To make the
reasons for this opinion clear, the implementation process of a Geometric Algebra
algorithm and its integration into software is shortly discussed, both when using
Gaalop and Gaigen.
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As input, Gaalop explicitly uses a Geometric Algebra specific language, called
CLUScript, for the description of Geometric Algebra algorithms and expressions.
Compiling such algorithms or expressions written in CLUScript, Gaalop gener-
ates optimised code snippets for supported target languages. These code snippets
don’t represent the underlying coordinate-free description of a Geometric Algebra
algorithm or expression anymore, but come in form of optimised code of a coor-
dinate based evaluation. Furthermore, these code snippets have to be manually
integrated into the actual software implementation. Beside the additional manual
work of connecting generated code snippets with the application code, debugging
of algorithms might get very hard. Note that there is already work going on to
overcome these problems in form of a compiler driver [Charrier & Hildenbrand,
2010], similar to the NVIDIA CUDA Compiler Driver.
Gaigen generates specialised libraries for a specific Geometric Algebra in terms of
its metric. As far as we know, Gaigen doesn’t use operator overloading for C++,
so the algorithm implementation lack a concise way of writing. There is still run-
time overhead due to grading operations, which can be optimised out by profiling
(analysis at runtime), with the cost of additional development work.
The C++ libraries GluCat and MV C++ must in general deal with grading of Ge-
ometric Algebra elements at runtime, thus keep a disadvantage concerning runtime
performance.

5.3 Our Approach

5.3.1 Overview

Our approach is to combine Geometric Algebra and Expression Templates. It
is presumed that the types of the input multivectors to an algorithm is known
when implementing the algorithm. Thus grading of Geometric Algebra elements
doesn’t have to be handled at runtime, but can be done beforehand. The idea is
to use the metaprogramming capabilities of C++ templates in conjunction with
the Expression Templates technique in order to handle grading at compile time.
What remains at runtime are the computations with multivector coefficients, in
an efficient way which the expression templates technique provides.

5.3.2 Multivector implementation

A multivector class consists of an array of arbitrary size for storing coefficients of
a multivector, and a templated list of integer constants, mapping the coefficients
to basis blades, as well as member functions for accessing coefficients. The integer
list, mapping coefficients to basis blades, allows for storing only the needed coef-
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ficients in a multivector. This is sometimes referred to as compressed multivector.
Note that at runtime, only the coefficients are accessed, and the constant map is
normally only used for grading operations at compile time.
A bitmap representation for basis blades, as described amongst others by Daniel
Fontijne [Fontijne, 2007], is used in order to store them in a templated constant
integer list. A bit denotes a specific basis vector, the combination of bits denote
the outer products of basis vectors, thus basis blades, for example:

001b ≡ e1, 010b ≡ e2, 100b ≡ e3, 101b ≡ e1 ∧ e3 = e13

Note the strict order of outer product operands. For example bitmap 101b rep-
resents e1 ∧ e3, not e3 ∧ e1. Because the outer product of vectors anticommutes,
the latter case can be represented with a sign flip in the coefficient (a13e1 ∧ e3 =
−a13e3 ∧ e1).
So a definition of a multivector object in Gaalet, for example an rotor R =
a0 + a12e1 ∧ e2 + a23e2 ∧ e3 + a31e3 ∧ e1 ∈ G(3, 0), looks like this:

typedef gaalet::algebra<gaalet::signature<3,0> > em;

em::mv<0,3,5,6>::type R = {a0, a12, -a31, a23};

5.3.3 Operation implementation

Unary and binary operations are implemented like shown by Härdtlein et al.
[Härdtlein et al., 2009], with additional routines for return type determination.
This means that Gaalet determines the type of the resulting multivector object,
that is the basis blades it contains, depending on the multivector operand types.
For example the geometric product ab ∈ G(3, 0) of two vectors a = 〈a〉1, b = 〈b〉1
results in a multivector containing the basis blades of a rotor: ab = 〈ab〉0 + 〈ab〉2.
In Gaalet, this would look like:

typedef gaalet::algebra<gaalet::signature<3,0> > em;

em::mv<1,2,4>::type a = {1,2,3};

em::mv<1,2,4>::type b = {3,4,5};

std::cout << "ab: " << a*b << std::endl;

The output of this example would be:

ab: [ 26 -2 -4 -2 ] { 0 3 5 6 }

The integers in the curly brackets denote the basis blades contained in the resulting
multivector.
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5.3.4 Evaluation implementation

An important aspect of expression templates is their lazy evaluation capabilities.
This is illustrated by implementing the camera rotation algorithm described in
section 5.1.3:

//Pseudoscalar for G(3,0):

em::mv<7>::type I = {1.0};

//Position vector declaration of camera and look-at point:

em::mv<1,2,4>::type L, P;

//Camera rotation angle:

double phi;

...

//View direction vector expression defined and evaluated:

em::mv<1,2,4>::type t = L - P;

//Expression defined, not evaluated:

auto S_t = t * !magnitude(t) * I;

//Expression defined, including another expression:

auto R_t = exp(-0.5*phi*S_t);

...

//Rotating vector definition:

em::mv<1,2,4>::type a = {0.0, 0.0, -1.0};

//Expression defined and evaluated into multivector:

auto b = eval(grade<1>(R_t*a*(~R_t)));

Without using the grade<1>()-operation, the resulting multivector type of b

would be { 1 2 4 7 }, thus including the pseudoscalar type. Because a sandwich
product like R t*a*(~R t) returns a pseudoscalar coefficient of zero, we can filter
it out by using the grade<1>()-operation. This results in a multivector type { 1

2 4 }, and a pseudoscalar coefficient is never computed.

In general, expressions can depend on the multivector the result is stored in,
for example in an iteration. Because the coefficients of that multivector might be
cross accessed, the result of an evaluated expression must first be stored into a
temporary multivector, the content of which has then to be moved or copied into
the storing multivector. This procedure is implemented in the multivector mem-
ber function operator=() and the global function eval(), latter if used with an
existing multivector the result is stored in.
If the global function eval() is used for initialising a newly constructed multivec-
tor, the compiler should generate code that stores the resulting coefficients directly
into the newly constructed multivector. The constructor of a multivector, taking
an expression for evaluation as argument, also stores the evaluated coefficients
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directly into the newly allocated multivector. Both procedures are used in the ex-
ample shown above.
The programmer might know that it is safe to store coefficients directly to an
existing multivector. He might then use the function assign() as well.

5.4 Results
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Figure 5.2: Comparing benchmarks of different implementation methods using
different compilers: GCC 4.4.4 and Intel C++ Compiler 11.1

While elegance of implemented code might be now and then in the eye of the
beholder, we can do performance measures of implementations. In figure 5.2 we
show comparing benchmarks of different implementation methods of two artificial
problems. Compared are the two different procedures of expression evaluation in
Gaalet, either storing resulting coefficients directly to an existing multivector or
firstly to a temporary multivector, and a respective hand-coded implementation on
a coordinate basis. Two different compilers are used for compiling and optimising
code: GNU Compiler Collection 4.4.4 and Intel C++ Compiler 11.1.
The benchmarked problem shown in figure 5.2a is a simple vector addition of the
form c = c + a + b − a − b + a + b − a − b − c with a, b, c ∈ R12, conducted 107

times. Of interest here is the optimisation capabilities of the Intel compiler if us-
ing the function assign() for expression evaluation. In other respects, the Gaalet
implementation and the handwritten implementation yield roughly the same per-
formance.
In figure 5.2b, a benchmark of the problem a = bab̃ (the tilde denotes a reverse
operation) with a = 〈a〉1 + 〈a〉3, b = 〈b〉0 + 〈b〉2 and a, b ∈ G(3, 0) is shown,
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conducted 108 times. Here the function assign() is not considered, but two hand-
written implementations: One without a symbolic optimisation on a coordinate
basis (“handcoded”) and one with (“optimised”). One aspect this benchmarks
shows, is the dependency of implementation performance, whether handwritten or
with Gaalet, on compiler optimisations: The Intel Compiler yields more variance
in the performance of different implementations then the GNU Compiler.

5.5 Summary

Geometric Algebra is a universal mathematical language with a graded structure
based on the exterior algebra. For the implementation of Geometric Algebra al-
gorithms or expressions, the grading operations produce a certain overhead when
done at runtime. In general the grading operations can be accomplished before-
hand. Gaalet does the grading operations at compile time by extending the concept
of expression templates to grade type determination of a resulting multivector. This
is done by metaprogramming using C++ templates, so no external tool is needed
besides a C++ compiler (this includes the CUDA device code compiler), resulting
in good performance of the Geometric Algebra implementations, while preserving
its compact form.
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In the last years a variety of open-source software packages focusing
on visualization of human brain data have evolved. Many of them are
designed to be used in a pure academic environment and are opti-
mized for certain tasks or special data. The open source visualization
system we introduce here is called OpenWalnut. It is designed and
developed to be used by neuroscientists during their research, which
enforces the framework to be designed to be very fast and responsive
on the one side, but easily extendable on the other side. OpenWalnut is
a very application-driven tool and the software is tuned to ease its use.
Whereas we introduce OpenWalnut from a user’s point of view, we will
focus on its architecture and strengths for visualization researchers in
an academic environment.

6.1 Introduction

The ongoing research into neurological diseases and the function and anatomy of
the brain, employs a large variety of examination techniques. The different tech-
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niques aim at findings for different research questions or different viewpoints of a
single task. The following are only a few of the very common measurement modal-
ities and parts of their application area: computed tomography (CT, for anatomical
information using X-ray measurements), magnetic-resonance imaging (MRI, for
anatomical information using magnetic resonance esp. for soft tissues), diffusion
weighted MRI (dwMRI, for directed anatomical information for extraction of fiber
approximations), functional MRI (fMRI, for activity of brain areas indicated by the
blood-oxygen-level dependence (BOLD) effect) and electroencephalography (EEG,
for activation of certain brain areas indicated by electric fields).

Considering the different applications, it is evident that, for many research
areas, only a combination of these techniques can help answering the posed ques-
tions. To be able to analyze data measured by the different techniques, a tool that
can efficiently visualize different modalities simultaneously is needed. The software
(called OpenWalnut) we present in this paper aims at exactly this task. It does
not only allow to display different modalities together but also provides tools to
analyze their interdependence and relations.

Throughout the paper, we describe the general software architecture, its in-
teractive multi-modal visualization capabilities, and how these make it especially
suitable for the task of multi-modal analysis of measurements of the human brain.
To obtain a first overview of the context we review some related software.

6.1.1 Related Software

There exist several visualization packages that are similar to OpenWalnut in some
aspects or that are designed for similar application areas as OpenWalnut. Of the
packages we are aware of, MeVisLab ([MVL, 2010]) and Amira ([Amira, 2010]) are
the programs that come closest to OpenWalnut. Both are based on the principle of
data flow networks and provide a graph widget that allows the user to manipulate
this graph directly. While there is a free version of MeVisLab which provides a
large subset of the tool’s rich feature set, there exist three different variants of
Amira. In addition to the two commercial variants of Amira that slightly differ in
focus, there is an academic version developed at the Zuse Institute Berlin, which
is freely available for collaborating institutes.

Another open-source tool for visualization of biomedical data is developed at
the Scientific Computing Institute (SCI) at the University of Utah. It is part of a
larger framework for simulation and visualization called SCIRun ([SCIRun, 2010]).
Similar to Amira and MeVisLab it is based on a data flow network.

A major difference of OpenWalnut compared to these tools is the visibility
and use of the data flow network (called module graph in OpenWalnut) to users.
As the complexity of module graphs can grow very fast, its construction yields
a fast increasing barrier for the user. In contrast to other open-source tools (like
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MeVisLab and SCIRun), OpenWalnut can hide this complexity completely from
the user and is, therefore, also suitable for scientists who simply want to use
visualization tools for their data but are not familiar with or do not want to
deal with the visualization internals. SCIRun provides so-called power apps to
hide this complexity of the data flow environment. These, and similar macros
in MeVisLab are very helpful to provide simple user interfaces for special tasks.
However, they still have to be created with a script that uses the network in the
background. Later in this paper we will describe how OpenWalnut combines the
best out of two worlds: on the one hand, it provides an easy-to-use graphical user
interface (inspired by ParaView [Ahrens et al., 2005]), making it a plug-and-play
visualization tool. On the other hand, it provides an optional direct access to the
data flow network.

Another package for analyzing imaging data of the human brain is FSL ([FSL,
2008]). It consist of a number of loosely coupled tools and a main GUI for starting
sub-tools that serve different tasks like image registration, image visualization,
and segmentation. The last application we want to mention here is MedINRIA
([MedINRIA, 2009]), which also provides modules for brain visualization, fiber
tracking, and processing of tracking data. All of these tools are integrated in a
common windows as user interface, where the window adapts to the chosen task.

Another approach has been chosen by Kindlmann in the teem ([teem, 2009])
library. It is not a visualization tool in the sense that it does not provide an inter-
active graphical user interface, but rather provides a large number of algorithms
that are useful for the analysis and visualization of medical imaging data. Its
command-line interface communicates through pipes and allows to build simple
visualization pipelines and store intermediate data as well as final images in files.
As it provides a C interface as well and as it is published under a free software
license, other tools, similar to OpenWalnut, can benefit directly from teem’s data
processing capabilities.

The choice for developing OpenWalnut from scratch came out of the needs of
the neuroscientists at the Max Planck Institute for Human Cognitive and Brain
Sciences (MPI CBS) in Leipzig: For their research, they wanted an open-source
tool, that is usable for people not familiar with data flow networks and allows for
multi-modal visualization of the human brain in a single, coherent environment.
Unfortunately, none of the above mentioned tools could fulfill all these needs for
them.

Finally, it should be mentioned that there exist even more visualization tools
that have a somehow similar approach concerning the user interface but are fitted
to other user communities (i.e. not bio/neuro/medical). Examples are Vish [Benger
et al., 2007], Mayavi [Enthought Inc., 2010], and the very popular ParaView [Ahrens
et al., 2005].
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6.2 Design and Architecture

OpenWalnut’s design was mainly steered by two criteria: Firstly, it has to be a
powerful and easily expandable framework for visualization researchers allowing
them to implement algorithm prototypes and ideas quickly and easily while, sec-
ondly, providing an intuitive graphical user interface for neuroscientist researchers
who include OpenWalnut in their daily research tasks. Whereas the first criterion
asks for a flexible and extendible framework, the second criterion introduced the
need for a high level of interactivity and responsiveness of the application.

To achieve these ambitious goals, it is important to split functionality and inter-
face. Known and famous in the context of object-oriented programming ([Gamma
et al., 1994]) this principle allows a powerful and complex framework under the
hood of a simple interface, the GUI in our case. This way, the addition of new
modules to the system does not require any changes in the GUI or other parts
of the software as they are integrated using abstract interfaces and provide their
parameters, settings, and I/O information using a standardized interface. To fur-
thermore allow the user to modify data, tune algorithm parameters, or simply load
and execute new algorithms while other algorithms are running, a multi-threaded
approach is nearly unavoidable. Modules and parts of the basic framework should
be able to work independent of each other. We avoid the data pull principle, also
known as polling, wherever possible, because it causes many synchronization is-
sues. We strongly focus on the push approach. Thus, data changes are not queried
by parts of the program, but they are propagated automatically whenever a change
occurs. Figure 6.1 illustrates the architecture of our medical visualization system
called OpenWalnut and its algorithm-centric layout which is illustrated in the next
section in more detail.

6.2.1 Architecture

This section covers the details of the software architecture, which is shown on
an abstract level in Figure 6.1, and its implementation. The core parts provide
the graphics engine, all basic data handling facilities, and basic mathematical and
utility functions to the modules. The kernel with the modules and the module
management is stacked on top of it and provides the actual interface implemen-
tation used to map the module graph structure and its properties to an end-user
interface. From the module-programmer’s point of view, the framework is designed
entirely based on the aim to make programming easy and to enable us to achieve
results in a minimum of time. The data structures provided for module parame-
ters and data exchange allow the modules to provide information using data and
parameters in a very abstract fashion without any knowledge of the actual user
interface or other modules in the module graph. Therefore, the programmer can
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Figure 6.1: Software architecture. The graphical user interface sits on top of the
kernel and maps the module graph and its properties to GUI elements. The mod-
ules utilize the core functionality and are handled by the kernel.
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focus on module programming, only; no boilerplate code is needed for any kind of
GUI interaction or graphics setup.

Graphics Engine

Starting bottom-up, let us first have a closer look at the graphics engine. The
graphics engine mainly provides an interface to OpenSceneGraph ([OSG, 2010]).
OpenSceneGraph is designed to be used in multi-threaded environments and pro-
vides most of the tools and structures required for creating and modifying graphics
data. It contains tools to manage large triangle meshes, textures, shaders, and en-
capsulates most current features of OpenGL ([Khronos, 2010]). This ensures a
maximum of flexibility during module development. One example of our exten-
sions of OpenSceneGraph in the Graphics Engine are flexible color maps: They
can simply be added to any other kind of rendering data, be it geometrical data
or not. It automatically manages the loaded data volumes used for color-mapping,
their ordering, blending factors, or the actual color map of each volume. This helps
the module programmer to provide surface coloring in a clean and straight-forward
way and fulfills the basic requirement to quantitatively analyze data.

Data Handler

The data handler provides the different kinds of data sets and data structures.
Besides this, the data handler provides supportive algorithms for analyzing data
or spatial partitioning of volume data. For example, the data handler provides the
tools to convert and scale volume data to be used as texture. These textures and
scaling information are then used by the color-mapping facility in the graphics
engine to provide proper color mapping for loaded data on arbitrary graphical
scene graph elements.

Due to the strong focus of OpenWalnut towards medical, especially neurological
data, most volumetric data is stored using an implicitly defined grid. Besides this
regular three-dimensional data, other kinds of grid structures exist. OpenWalnut
provides an abstract kind of grid which can be used to implement nearly all other
kinds of grid structures. As the grid is stored implicitly, additional transformations
are stored inside the grid to ensure that the orientation of a volume in space is
right according to the dataset or previously applied registration algorithms.

Additionally, the data handler provides the input and output interfaces to read
and write datasets from and to files.

Kernel and GUI

The core component of OpenWalnut is the kernel. It accommodates running mod-
ules, organizes them in a data flow network (or module graph), and handles all
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operations thereon. The most interesting part in the kernel is how modules get
integrated into the system. Generally, modules do not have any knowledge about
the GUI or other modules in the graph and run in their own thread. Besides this,
the literal meaning of graphical user interface might confuse at this point. The
task of the GUI, in our case, is mainly to provide the interface to the kernel and to
the module graph including its properties. This might be a real graphical represen-
tation as OpenWalnut provides but can also be a simple command-line interface
or a script interface that do not provide graphical output. This is essentially pos-
sible due to the abstract command-like interfaces provided in the kernel. In the
next paragraph, we will introduce the module graph, the module’s communication
possibilities, and how this interacts with the GUI.

A module has exactly one possibility to interact with other modules residing
in the kernel. Modules can define so called connectors. These connectors define
the input and output channels of a module and define the exact type of data this
connector supports. This ensures that modules always get the right kind of data
to the correct input, are notified of changes to their input, and can update their
output data which may be intermediate data structures or graphics stored in the
scene graph. This way, changes in one module propagate along the graph and
wake up directly depending modules allowing them again to process the new data.
The typed connectors allow the kernel to decide whether module inputs match
to a module output. The kernel uses this to provide facilities to the GUI to get
lists of compatible connections in other modules or other connection possibilities.
The kernel uses this information to create a so called combiner which represents
the connection or module creation request. This combiner is the abstraction used
by the GUI to display those options. As each module and connector provides its
name, icon, and description text, the GUI can automatically create a button or
menu entries using this information. As module instantiation can take a while,
especially if a module does some costly initialization, applying a combiner is done
asynchronously. While the kernel processes a combiner, it uses callbacks to inform
the GUI about its progress and possible state changes. As mentioned earlier, the
whole architecture is designed to use the push mechanism to propagate data, states,
and other information. The kernel makes heavy use of this and provides callback
and signaling mechanisms for nearly all possible operations. This ensures that the
kernel does not need to be polled somehow.

The remaining task is the communication of module parameters and other set-
tings to the user. During the design process, we always avoided that modules have
to know the GUI or need to specify their GUI representation directly. Modules
therefore are equipped with a mechanism called properties. These properties en-
abled the module developer to simply define parameters or settings without any
knowledge of their representation. A module can, for example, define a property
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of type double with a name and a description associated with it. In addition,
it can define constraints, for example that it only accepts positive values, to ex-
actly define valid values. The interesting part here is, that it is up to the GUI
to decide about the graphical representation of those parameters. To stick with
the double-precision floating-point property example, the GUI can decide whether
a slider or a text box is more appropriate for a property depending where it is
displayed. It therefore mainly uses the constraints defined on a property. Another
example would be a property representing a four-times-four matrix that can be
represented by sixteen text fields or by several sliders defining rotation, scaling,
and translations. Whenever the user modifies a property in the GUI, the property
automatically checks whether the new value is valid by using the before-mentioned
property constraints. If the value is invalid, the property rejects it and the GUI
can somehow show it to the user. If the value is valid, it gets set for the prop-
erty and the automatic change-propagation ensures that all observers, especially
the module owning the property, are notified about the value change. A module
can then wake up from its sleep state to handle the new value. It is also pos-
sible to use these properties directly in scene graph nodes in conjunction with
OpenSceneGraph’s callback mechanism to directly modify graphical entities. As
the properties implement the observable pattern, they can be used in a variety of
ways.

With an increasing amount of fine-grained algorithm implementations in mod-
ules, the complexity of needed GUI interaction increases tremendously if results of
algorithms need to be reused as input for other modules. To circumvent the prob-
lem, OpenWalnut provides module containers. These containers can accommodate
multiple modules and forward their connectors and properties. This allows a mod-
ule container to look and behave like a normal module. The module programmer
can re-combine modules in a certain way to map a work-flow or visualization use-
case without revealing the underlying complexity. This, on the one hand, hides
complexity from the user and, therefore, makes the software more intuitive and,
on the other hand, allows programmers to reuse existing modules and algorithms.

6.2.2 Control Panel — Hiding the Module Graph

As mentioned above, OpenWalnut hides its module graph by default. Instead,
user interaction is performed using a tree widget in the control panel (right in
Figure 6.2). While this tree still allows complete access to the module graph for
advanced users (not described in this paper), it provides a simplified interface to
OpenWalnut’s functionality for users who are not interested in the graph. The tree
widget acts similar to that of ParaView [Ahrens et al., 2005]: In the first level of the
tree the loaded data sets are shown. The branches below indicate the modules that
were applied to the data or other modules in higher levels of the tree. To adjust
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Figure 6.2: Left: OpenWalnut’s default GUI. It mainly is split in three areas. The
navigation windows on the left showing axial, coronal and sagittal slices through
the anatomy which allow easy orientation inside the data. The main 3D view
contains the scene itself. Most of the user-interaction with several modules and
data can be done in the control panel on the right. It represents how the modules
are wired to each other with their connectors and provides an intuitive panel for
changing a module’s properties. Right: The GUI can be highly customized.

settings of a specific module, a user selects the module and the properties of the
module appear in the “Settings” widget below. Clicking onto a module also has a
second use: It updates the toolbar (top row in Figure 6.2) to show only the modules
whose input connectors fit the output connectors of the selected module. Thus, the
toolbar always presents all currently applicable modules to the user. Clicking an
icon in the toolbar adds the corresponding module in a branch below the currently
selected module in the tree and executes the module. To ensure consistency, only
leafs in the tree can be removed. This ensures that no module looses the modules
it depends on. Removing a module undoes all effects that have been caused by the
module.

6.3 Results and Conclusion

Today, OpenWalnut is a visualization tool heavily used by the Max Planck Insti-
tute for Human Cognitive and Brain Sciences and the Max Planck Institute for
neurological research. Besides the usage as a pure visualization tool, it is also a
powerful and handy framework for visualization researchers. In this paper, we gave
an overview of OpenWalnut’s architecture and design which mostly is interesting
from the visualization researcher’s point of view. We have shown that OpenWalnut
uses several abstract methods to allow modules to communicate and process data.
For visualization researchers, this minimizes efforts and allows them to focus on
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Figure 6.3: Two screenshots showing OpenWalnut’s selection tools. On the left,
regions of interest (ROI) have been used to select a part of the corticospinal tract
of a fiber-tract dataset. On the right, the navigation slices have been used to select
and view a slice in a DTI dataset in which superquadric tensor glyphs are shown
([Hlawitschka et al., 2008]).

development of novel algorithms.

The module-graph allows the arbitrary combination of modalities even among
multiple subjects, which makes it a very handy tool for neuroscientists during
their research tasks for inter-subject and/or multi-modal analyses. The graphical
user interface only provides the editing features for the module graph and can
provide very distinct GUI elements for the module graph representation or the
representation of module parameters and settings. This way, the GUI can be seen
as a generalized view on top of the functionality of OpenWalnut. The GUI itself is
designed to be clean, structured and easy to understand but it provides advanced
elements for experienced user.

As OpenWalnut is completely open source, it can be used, extended, and cus-
tomized by everyone to fulfill their needs and provides a framework for testing and
implementing algorithms in a very easy way. Unlike other software tools, the strict
coding standard and documentation standard ensures a consistent code style and
a very detailed documentation of the involved classes. An extensively documented
example module helps developers to directly start programming own modules. It
is ideal for researchers in the area of visualization and a nice and intuitive tool for
visualization users.

The website http://www.openwalnut.org provides a lot of information, screen-
shots, and source code.
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Finding local surface properties of a generated mesh is an essential
component in applications across several fields. Specifically, Gaussian
curvature provides intrinsic geometric information of local shape char-
acteristics on a surface. It finds use in mesh applications like 3-D
scanned image noise smoothing, feature recognition, and data analysis.
An algorithm was developed for the Vish environment to approximate
the shape operator from the curvature tensor using only lists of tri-
angle vertex positions and individual vertex positions. The algorithm
is based on a curvature tensor approximation method developed by
Gabriel Taubin and does not need information about the mesh edges
to be provided explicitly in the calculation. From the curvature ten-
sor, the principle directions and curvatures can be found and used to
calculate the Gaussian curvature and mean curvature at each vertex.
Using this information, an application is given where the curvature is
used to analyze mixing on the surface of a fluid ’virtual bubble.’
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7.1 Introduction

Development of a Vish-specific algorithm that takes a mesh surface as an input
and returns a field of curvature values is an important foundation in the devel-
opment of new visualization modules. In current practice, curvature calculation
is essential to feature detection and noise filtering of sampled three dimensional
geometry and to the detection and analysis of medical images. With the broad
scope of polyhedral surfaces in computer graphics in industrial and biomedical
engineering, robotics, and several other fields, it is a start for where Vish may
find itself in years to come. Here, curvature finds a novel use in the analysis of
Computational Fluid Dynamics (CFD) time surfaces [Bohara et al., 2010]. The
time surface is a virtual bubble constructed from seed points in a CFD generated
vector field [Benger et al., 2009]. It can be seen as a higher dimensional extension
of timelines, where a continuous mesh surface constructed from the seed points
evolves over time. Being able to visualize a changing surface in a large data model
has advantages in observing fluid movement and mixing over timelines. Where
timelines are effective in displaying the trajectory and rotation of a particle, time
surfaces give a more intuitive visualization of the effects of the time dependent
vector field and of the movement of multiple particles in relation to each other.

7.1.1 Application in Analysis

The time surface was intially developed to visualize a simulation of stirred tank
data to help improve mixing efficiency of the stirring process [Bohara et al., 2010].
Without a means to quantify the mixing, conclusions about the effectiveness of the
stirred tank had to be made via visual inspection of the time surface. In general,
mixing is the combining of two or more substances into one mass with a thorough
blending of the constituents. So how can we quantify this?

Surface shape information at each vertex is useful in representing the mix-
ing on the time surface because the variation of a vertex position relative to its
neighboring vertices can be quantified. If the curvature of a vertex is initially zero
then changes in magnitude abruptly, it signifies a quick movement of the particles
around the vertex in relation to its neighbors. Unfamiliar particles will then come
into contact as a result of replacing the particles that have just moved away. So
while the curvature itself does not represent the mixing of the fluid locally, but the
change of curvature does. When evaluating over a finite mesh, it is important to
compute intrinsic information about the surface so that nominal values of the in-
formation will not be dependent on the mesh refinement. The Gaussian curvature
is an intrinsic invariant of the surface as opposed to the extrinsic invariant mean
curvature; it does not depend on its embedding, and a mesh approximation will
only become more accurate with a higher refinement.
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7.2 Mathematic Principles

In this application, the method looks to find the shape operator at some point
p defined on a surface S. The shape operator, or Weingarten map, is a type of
extrinsic curvature that is a linear operator on the tangent space at each point p
on the surface S. At any point, it is equal to the Jacobian of N, the function that
yields the unit vectors normal to the surface. To calculate this on a grid vertex,
the contribution from each edge attached to the vertex must be averaged. Along
this edge where the normal vectors at two adjacent points are given, the difference
of the normal vectors dNk = Nk

0 − Nk
1 with respect to each coordinate direction

dxi = xi0 − xi1 can be found. In three dimensions,

Jki =

 dN
dx1
dN
dx2
dN
dx3

 =

 dN1

dx1
dN2

dx1
dN3

dx1
dN1

dx2
dN2

dx2
dN3

dx2
dN1

dx3
dN2

dx3
dN3

dx3

 =
dNk

dxi
(7.1)

where Jki is the Jacobian along this edge vector given by x0 − x1. The projection
of the surface Jacobian on to the tangent plane can be computed if two vectors
tangent to the surface, ~u and ~v, are given where ~u, ~v, and the normal vector at
p, form an orthonormal basis on the surface. This shape operator in the surface is
equal to

S =

(
J(u, u) J(u, v)
J(v, u) J(v, v)

)
=

(
κ11
p κ12

p

κ21
p κ22

p

)
(7.2)

where the operation J( · , · ) is of the form J(u, u) = utJu and J(u, v) = utJv.
The shape operator can also be defined using the Metric Tensor, I = Ixxdx

2 +
2Ixydxdy + Iyydy

2, and the Extrinsic Curvature, II = IIxxdx
2 + 2IIxydxdy +

IIyydy
2, coordinate description of the tangent space at the surface S at p. Using

the coefficients of the first and second fundamental forms

S =
1

det I

(
IIxxIyy − IIxyIxy IIxyIyy − IIyyIxy
IIxyIxx − IIxxIxy IIyyIxx − IIxyIxy

)
where det I = IxxIyy − I2

xy, the area of the surface element. The result for both
formulations is a 2× 2 symmetric matrix where the eigenvalues are just the prin-
ciple curvatures at some p on S. Accordingly, the determinant is the Gaussian
curvature and half the trace of the shape operator is the mean curvature. To find
the directional curvature at some point with a defined shape operator in direction
~T defined in surface coordinates, the following operation is performed

κp = S(T, T ) =
(
t1 t2

)( κ11
p κ12

p

κ21
p κ22

p

)(
t1
t2

)
(7.3)

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria

81



7.2. MATHEMATIC PRINCIPLES

where ~T = t1T̂1 + t2T̂2 is a tangent vector on S at p. T̂1 and T̂2 are the principle
directions on S at p when the shape operator is diagonal and forms an orthonormal
basis of the tangent space. If the normal vector N at p is added to this orthonormal
basis, eqn. (7.3) is extended to non-tangential directions

κp =
(
n t1 t2

) 0 0 0
0 κ11

p κ12
p

0 κ21
p κ22

p

 n
t1
t2

 (7.4)

and ~T is expanded to ~T = nN̂ + t1T̂1 + t2T̂2. The vector ~T can be written as
a linear combination of another orthonormal system. The directional curvature
can still be evaluated using this different coordinate system with another 3 × 3
symmetric matrix, Up, as long the three eigenvalues are still 0, κ11

p , and κ22
p . The

shape operator can be recovered from the curvature tensor Up by restricting the
matrix to the tangent plane.

Using the method described by Taubin [Taubin, 1995], the curvature tensor is
approximated by defining a matrix M by an integral formula that has the same
eigenvectors as Up and has their eigenvalues related by a fixed homogeneous linear

transformation. For −π ≤ θ ≤ π on the tangential plane, ~Tθ at p is the unit length
tangent vector ~Tθ = cos(θ)T̂1+sin(θ)T̂2. T̂1 and T̂2 represent the same orthonormal
principle directions in surface coordinates as previously mentioned. Using this in
the expression for directional curvature:

κp =
(

cos θ sin θ
)( κ11

p κ12
p

κ21
p κ22

p

)(
cos θ
sin θ

)
Because T̂1 and T̂2 are the principle directions, κ12

p = κ21
p = 0. Evaluating the

equation results in κp(Tθ) = κ11
p cos

2(θ) + κ22
p sin

2(θ). Integrating over the entire
surface element about p, the 3× 3 approximation matrix M is defined as

M =
1

2π

∫ π

−π
κp(Tθ)(Tθ ⊗ Tθ)dθ (7.5)

In M , the normal vector N is an eigenvector associated with the zero eigenvalue
since Tθ ⊗ Tθ is a rank 1 matrix at every θ and ~Tθ is tangent to the surface at p. If
M is then factorized and and integrated, it can be shown that the eigenvalues of
M , m11 and m22, are related to the principle curvatures by

κ11
p = 3m11

p −m22
p (7.6)

κ22
p = 3m22

p −m22
p (7.7)
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To approximate the curvature κp along some tangential vector ~T , we use a curve
q(s), a normal section to S at p parameterized by arc length. By differentiating
and solving at s = 0, q(0) = p, q′(0) = T , and q′′(0) = κp(T )N , where N is the
unit length normal vector. When q(s) is expanded in Taylor series

q(s) = q(0) + q′(0)s+
1

2
q′′(0)s2 +O(s3)

= p+ Ts+
1

2
κp(T )Ns2 +O(s3)

Removing higher terms and solving for κp(T ),

κp(T ) = lim
s→0

2N t(q(s)− p)
||q(s)− p||2

≈ 2N t(pj − pi)
||pj − pi||2

(7.8)

where pj is another point on the surface close to the point pi, where the approx-
imation is being done. This allows for the evaluation of the directional curvature
directly on a mesh surface between two neighboring points pj and pi. Now, all of
the components needed to compute the shape operator have been defined. The
integral formula for M when solving at pi is discretized to

M̃i =
∑
j∈i

wijκij(Tij ⊗ Tij) (7.9)

where j are the vertexes surrounding vertex i. The weighted value wij is value based
on the area of the triangles bordering the tangent vector. Once M̃i is calculated, a
Householder matrix Q corresponding to the plane orthogonal to the unit normal
vector is used to decompose the 3× 3 matrix M̃ . The Householder reflection is a
transformation that describes a reflection by a plane, in this case the tangential
plane at p on S. By construction, the first column of the Householder matrix is
equal to the unit normal vector and the other two columns are an orthonormal
basis of the tangent space. Because the unit normal vector at pi is an eigenvector
of M̃i corresponding to the 0 eigenvalue,

QtM̃iQ =

 0 0 0
0 m11

p m12
p

0 m21
p m22

p

 (7.10)

The values of the 2× 2 minor can then be used to find the values of the principle
curvature using the relations above for κ11

p and κ22
p . From there, as described above,

the Gaussian curvature or mean curvature can be evaluated at that vertex.
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7.3 Our Approach

To use the algorithm, an input list of vertices and list of triangles with the three
vertices that make up each triangle of the current grid are used. Instead of requiring
a list of edges on the grid surface, they will be computed for each triangle. The
first step is to compute the weighted unit normal vector, Nvi , of each vertex.

Nvi =

∑
fk∈F i NfkAk

||
∑

fk∈F i NfkAk||
(7.11)

To find Nvi , the normal vector, Nfk , of each triangle face fk surrounding vertex i
is multiplied by its face area Ak. The sum of all faces is then normalized. This is
done within a loop for all triangles on the surface. First, coordinates for each of
the three vertices in the triangle are needed.

for (i = 0; i <Number of Triangles; i++)

{

point A, B, C;

A = ... ; B = ... ; C = ... ;

Then, two of the triangle edge vectors are computed for finding the area and normal
vector.

tvector BA = B - A;

tvector CA = C - A;

The area is determined by half of the cross product norm of the same two edge
vectors. The triangular area is placed into an array.

TriangleArea[ i ] = .5*norm(BA ^ CA);

The weighted triangle surface normals are then weighted by their area and placed
in a 3-component vector array.

WeightedTriangleNormal[ i ] = (BA^CA);

A nested loop is created for each of the vertices in the triangle. The area of the
triangle is then summed to an array on the vertices. This VertexArea is a scalar
equal to the area of all triangular faces surrounding a single vertex. It finds use later
in the algorithm when calculating a weighted value and could also be visualized
on the time surface to show where the surface is ’stretching’.

for(k = 0; k<3; k++)

{ VertexArea[T[k]] += TriangleArea[ i ];
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Here, T[k] is the index of the three vertices in the triangle. For the call Vertices
Area[T[k]] += ..., the area is being summed to the vertices through the current
triangle in the outer loop. The weighted triangle normal vector is then summed to
another three-component vector array on each of the vertices in the same fashion.

WeightedVertexNormal[T[k]] += WeightedTriangleNormal[i];

}

}

Both loops are then closed. After this section has completed, each vertex will have
an array with the sum of all the triangular areas surrounding it and an array with
the sum of all the triangular surface unit normal vectors. A new loop for all vertices
on the surface is created to normalize the summed weighted vertex normals.

for(v=0; v < Number of Vertices; v++)

{ WeightedVertexNormal[v] = WeightedVertexNormal[v].unit(); }

Next, another loop for all triangles is used to compute the curvature tensor of each
vertex. To start, edge vectors must be computed for the first edge.

for(i = 0; i < Number of Triangles; i++)

{ tvector AB, BA;

AB = ... ; BA = ... ;

For the computation of M at the two vertices attached at the ends of this edge, a
tensor weight wij is used. This weight helps to balance the contribution of edges
representing a larger portion of the area surrounding the vertex. For all edge con-
tributions to a vertex,

∑
wij = 1. The weight for this triangle’s contribution to

the shape tensor is equal to the area of the triangle divided by twice the area of
all the triangles surrounding the vertex to which it is contributing.

double Wij0 = TriangleArea[ i ]/(2*VerticesArea[T[0]]);

Here, wij is computed for triangle vertex A, or 0, denoted by the term Wij0. The

projection of the edge vector ~AB on the tangential plane is calculated using

Tij =
(I −Nvi ⊗Nvi)(

~AB)

||(I −Nvi ⊗Nvi)(
~AB)||

(7.12)

where I is the 3× 3 identity matrix and Nvi is unit normal vector at the vertex i.
This operation can be performed by the single function

tvector TijAB = Tijoperator( WeightedVertexNormal[T[0]], AB );
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Then, for the same edge the directional curvature needs to be found using eqn.
(7.8). A function is Kijoperator() used for that purpose.

double KijAB = Kijoperator( WeightedVertexNormal[T[0]], AB );

Now, all of the components are available to compute the contribution of edge ~AB
to the approximation of the curvature tensor at vertex A. The tensor product of
Tij is computed, multiplied by the two scalar values κij and wij and, finally, added
to a 3× 3 matrix array indexed for the particular vertex.

Matrix33 TijABTensorProduct = ... ;

CurvTensor[T[0]] += Wij0 * KijAB * TijABTensorProduct;

where CurvTensor is a 3× 3 matrix array. This operational procedure is repeated
for the other edge vectors in the triangle. Each vertex will have two components of
the curvature tensor added to it from each triangle of which it belongs, so for each
triangle in the loop above, six curvature tensor components will be computed.
To continue with computing the shape operator from the curvature tensor, the
loop for all triangles is ended and a new loop for all the vertices on the surface is
started. To find the Householder matrix which is needed to restrict the tensor to
the tangential plane, the value of the sign in the calculation of Wvi must be found:

Wvi =
E1 ±Nvi

||E1 ±Nvi ||
(7.13)

where E1 is the first coordinate vector and is equal to (1, 0, 0)t. If the magnitude
of ||E1 −Nvi || > ||E1 +Nvi ||, the sign is negative; otherwise, it is positive.

}

for(v = 0; v < Number of Vertices; v++)

{ tvector E(1,0,0);

tvector A = E + WeightedVertexNormal[ v ];

tvector B = E - WeightedVertexNormal[ v ];

double MagB = norm(B);

double MagA = norm(A);

tvector Wvi;

if(MagB > MagA)

{ Wvi = B.unit(); }

else

{ Wvi = A.unit(); }

The Householder matrix Qvi is then found by the formula Qvi = I− 2WviW
t
vi

And

completing the restriction to the tangential plane, Qt
vi
M̃viQvi is computed.

86 Article 7. Implementation of an Algorithm for Approximating the Curvature Tensor
on a Triangular Surface Mesh in the Vish Environment



7.4. RESULTS

Matrix33 QviT = ...;

Matrix33 Holder = QviT*CurvTensor[v]*Qvi;

where Holder is the final 3× 3 Matrix whose first row and column are zeros. That
leaves a 2× 2 non-zero minor whose eigenvalues are m11 and m22 from eqn. (7.6)
and (7.7). The two principle curvatures now finally allow the computation of the
Gaussian or mean curvature of a triangular surface.

GaussCurve[ v ] = (3*m11 - m22) * (3*m22 - m11); }

7.4 Results

Using the curvature tensor module and pre-existing modules in Vish to render
scalar and tensor data on a surface, we have been able to produce visualizations
useful in the analysis of fluid mixing on the surface of time surfaces, such as
illustrated in fig. (7.1). Here the Gaussian Curvature is shown on the triangular
surface of a fluid blob of the stirred tank data set. The blue area identifies locations
with a large positive Gaussian Curvature and red identifies a large negative value.
As time elapses in the simulation, mixing is indicated by color change on the
surface. As previously stated, this signifies the movement of particles within the
surface and contact with new particles. Currently there are singularity points in
the approximation related to a incorrect sign in the curvature. This tends to occur
at points where the refinement of the mesh is very poor and less than six triangles
are surrounding a vertex.

7.5 Future Work

The mesh refinement procedure for the time surface is presently being updated to
improve the mesh quality, and may prove to diminish errors due to poor surface
quality. Beyond that, values of the approximated curvature are being compared
to surfaces with known curvature for validation and to estimate error. It is also
of interest to directly compute the time derivative of the Gaussian curvature as
a means of analysis instead of a visual interpretation. In future projects, the cur-
vature module is looking to be used in the analysis of chemical dispersant mixing
in Gulf of Mexico oil spill modeling. These disperants contain surfactants that
dissipate oil slicks but are dependent on wave action and water movement for
mixing. This modeling would utilize the time surface for visualization and could
interpreted similarly to the stir tank data.
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Figure 7.1: Gaussian Curvature on a triangulated time surface representing a fluid
blob.

7.6 Summary

After presenting the mathematical foundation of surface curvature, an algorithm
for its numerical computation was presented. The curvature tensor approximation
was then implemented as a module in the Vish framework. In Vish, the module
is currently being employed to compute the Gaussian curvature for the analysis
of mixing on a CFD time surface. It provides a visually intuitive and quantifiable
method of mixing evaluation in time surface simulations along with providing a
characteristic value used in several other graphical applications.
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We present a framework using C++ template programming for the
computation of integral geometries such as streamlines, pathlines, geo-
desics or time surfaces. Hereby, common needs are identified and certain
features are shared between different integration geometries minimizing
the overall implementation effort. The implementation is based on a
fiber bundle data model opening the possibility to handle all kinds of
space-time geometries in an unified interface.

8.1 Introduction

Visualization of vector fields is still an topic of active research in scientific visual-
ization. The most widely used approach, visualization via arrow icons, is intuitive
but does not scale to huge datasets, where methods such as fastLIC [Stalling, 1998]
or Doppler speckles [Benger et al., 2009b] are superior. Aside direct visualization
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of the vectors at each data point a common approach is studying features of the
vector field via integral curves and surfaces. The mathematical similarity of these
feature indicators is not necessarily reflected by the actual implementation of the
computation algorithms: the different integration scheme such as space-like vs.
time-like or 1D vs. 2D may easily lead to independent implementations, whereas
it were desirable to use one approach for all kinds of integral computations.

8.1.1 Mathematical Background and Motivation

Let q(s) be a parameterized curve in a manifold M , q : R → M : s 7→ q(s). The
variation of the curve parameter s defines the tangential vector q̇ = dq/ds along
the curve. In computational fluid dynamics (CFD) a vector field typically describes
the motion of fluid particles. Let v be a vector field with the vector v ∈ TP (M)
being an element of the tangential space at a point P of a manifold M . An integral
curve is defined in a space-time manifold M by

q̇(s) = v
(
q(s)

)
with q(0) = σ ∈M (8.1)

and σ the initial seeding point. Let us assume an evolving vector field in 3D
coordinates. A streamline is an integral curve that is tangential to a vector field
frozen at an instant of time, Fig. 8.1a:

q̇(s) = v
(
q(0)t, q(s)x, q(s)y, q(s)z

)
with q(s)t = q(0)t (8.2)

A pathline is evolving over time. It represents the motion of a fluid particle at a
certain point in time, Fig. 8.1b:

q̇(s) = v
(
q(s)t, q(s)x, q(s)y, q(s)z

)
. (8.3)

A bundle of integral curves yields a high dimensional object. An initial space-like
seeding line, σ : R → M : λ 7→ σ(λ), defines an integral surface Σ : R2 → M :
(s, λ) 7→ Σ(s, λ):

dΣ/ds = v
(
Σ(s, λ)

)
with Σ(0, λ) = σ(λ) (8.4)

A line at Σt(s, λ) = const. is called a material-line, see Fig. 8.1c for an illustra-
tion. An initial seeding surface S0(λ, µ) : R2 → M : (λ, µ) 7→ S(λ, µ) defines an
integral-hyper-surface H : R3 →M : (s, λ, µ) 7→ H(s, λ, µ):

dH/ds = v
(
H(s, λ, µ)

)
with H(0, λ, µ) = H0(λ, µ) (8.5)

A surface at H t(s, λ, µ) = const. is called a time surface, illustrated in Fig. 8.1d.
Finite differentiation schemes [Deuflhard & Bornemann, 2002] can be applied

to solve these equations. In our visualization environment we take this common
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Figure 8.1: Different types of integral lines: a) streamlines, b) pathlines, c) material-
line, d) time surface. The illustration shows time evolution in t-axis direction. The
xy-plane is manifold hosting the integral curves.

foundation into account and we develop a template based integration framework
suitable to all kinds of integration geometries in a unified way, sharing the algo-
rithms used for solving differential equations, interpolating data fields and handling
the underlying manifolds. The framework also extends to integrating geodesics on
tensor fields stemming from numerical relativity or Magnetic Resonance Imag-
ing (MRI). Here, the differential equation eq. 8.4 is replaced by the second order
geodesic equation [Ritter & Benger, 2010] using Σ̇ = d/dsΣ(s, λ):

∇Σ̇Σ̇(s, λ) = 0 ∀λ with Σ(0, λ) = σ(λ) and Σ̇(0, λ) = v
(
σ(λ)

)
(8.6)

8.1.2 Previous Work

New development in vector field visualization is related to the computation of
streaklines and streaksurfaces [Weinkauf & Theisel, 2010], the invention of new
integration geometry types, such as time surfaces [Krishnan et al., 2009] or by
[McLoughlin et al., 2009] on the improvement of algorithms to compute stream
and path surfaces .
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8.2 Framework Design and Implementation

Our earlier work includes the development of a streamline module for the com-
putation and rendering of streamlines. Later, a pathlines module was developed
mostly independently, only sharing some vector field interpolation methods. For
the streamline module, the computation part was separated from the rendering
of lines and it was further generalized to ease the implementation of geodesics in
higher dimensional space-times [Ritter, 2010], and the computation part of the
pathline module was inherited to compute the time surfaces [Bohara et al., 2010].
Besides a fast and simple Euler integration we had implemented the DOP853
integration for high accuracy [Hairer et al., 2000]. This is a Runge-Kutta (RK)
integration of 8th order using RK schemes of order 5 and 3 for error estimation
and adaptive step size control and provides dense output. “The performance of
this code, compared to methods of lower order, is impressive.” [Hairer et al., 2000]

8.2.1 Visualization Environment and Data Model

We use the VISH [Benger et al., 2007] visualization shell as our implementation
platform. VISH supports the concept of a fiber bundles data model [Benger, 2004],
which is a hierarchical data model structured in six levels. These levels are called
Bundle, Slice (time), Grid, Topology(Skeleton), Representation and Field. Fields
store the actual data arrays while the other levels are used similar to a directory
structure to organize the data. Datasets such as position, velocity or connectivity
information among points are stored in a Field. The collection of Skeletons which
hold data Fields in their coordinate Representation is a Grid object. The collection
of Grid objects over all time Slices is the Bundle of the dataset.

VISH uses a network structure to separate tasks in atomic entities, called
VISH -objects, which are connected by input and output connections. A pull model
is used updating using a separated control and data flow. Several levels of caching
are provided throughout the network updating process [Benger et al., 2009a].

8.2.2 The Integration Module

To compute and visualize the integration geometry the task is split in three parts:
definition of the seeding (emitter) geometry, integration based on a data field and
rendering. Each task is taken care of by a different module in the VISH network.

Here, we present the framework that provides a computational module based
on template specializations. Template programming allows to write flexible and
reusable code, without performance losses due to late binding or loose coupling.
The compiler directly inserts source code of template specializations dependent on
their template parameters, which can be highly optimized during compilation. The
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<class FieldType, class GeoType, class IPol><class FieldType, class GeoType> <class FieldType, class GeoType>

<FrontStreamline, tvector> <FrontStreamline, tvector> <FrontStreamline, tvector, 0..3>

IntegralHeart CoarseIntegrator

IntegralFace VObject (VISH)

AtomicDataBase

GridOperator FieldCollection AtomicIntegrator

<class FieldType, class GeoType, class IPol>
AtomicIntegrator

GridOperator FieldCollection AtomicIntegrator

FrontStreamline

Type Trait Type Trait Type Trait

bool update() = 0

bool update()  { ... }

Figure 8.2: Class organization for the integration framework. Classes illustrated
in dashed lines are template classes which define an interface but also provide
a default implementation. Classes illustrated in dotted lines are template traits
which only define an interface by empty functions. They have to be specialized
and implemented. Four classes have to be implemented, indicated by the bold
outline. The implementation of streamline integration is shown as an example.

overhead of function calls is not relevant in that context since it is removed during
compilation. See section (8.3.2) for a comparison of timings runtime measurements
between optimize versus debug compilation. Template programming provides a
programming language on its own “executed” at compile time [Veldhuizen, 1995]
[Furnish, 1998] [Vandevoorde & Josuttis, 2003].

Fig. 8.2 illustrates the main class relationships for the example of a streamline
integration. The four classes outlined in bold have to be customized for that pur-
pose: GridOperator, FieldCollection and AtomicIntegrator have to be spe-
cialized and an empty class defining a type has to be introduced. Here, this class
is called Streamline in Fig. 8.2.

We derive a class called IntegralFace from VObject and define all the in-
put and output connections necessary for a computation module. Derivation from
VObject makes a VISH network module. IntegralFace implements no additional
functionality. It provides the following input connections: input initial grid, in-
put base field, interpolation type of the base field (linear, cubic, analytic), inte-
gration type (Euler, Dop853), length of integration geometry (or their trajecto-
ries), step size and maximum steps. The integration geometry grid is output by
the module. From IntegralFace we derive the central computation class called
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Integrator

Input

OutPut

Figure 8.3: Any Grid object can define the seeding geometry and input to and
output from the integrator. Examples are a triangular surface, a uniform grid,
lines and points. A Grid may also hold data, for example scalar or vector field
data. The output Grid depends on the input Grid and is of the same type but
with an additional dimension.

IntegralHeart:

template <typename FieldType, typename IntGeoType>

class IntegralHeart : public IntegralFace

It implements the update() function used in the network updating process and
hosts the main integration loop. Tasks such as retrieving the initial geometry, the
data field and the user control parameters and outputting the integration geometry
are brought together here. The module handles all different kinds of input grids
and data fields by utilizing the fiber bundle library. A input grid can, for example,
be a point cloud, a surfaces or a connected curvilinear grid, as illustrated in Fig.
8.3. It is also possible to have additional data such as directional fields stored
in the emitter grid, if additional initial conditions besides positions are required.
Similarly, the field used in the integration can be of arbitrary type such as scalar,
vector or a tensor field specified in any topology or representation.

The two template parameters FieldType and IntGeoType describe the types
of the integration field and the type of the integration geometry. In the streamline
example the field type would be a vector field and the integration geometry the
empty class Streamline. The main computation loop utilized template type trait
classes for doing the integration, Fig. 8.4, illustrated by the dotted outlined classes
in Fig. 8.2. The traits define empty functions being called from IntegralHeart.
One additional template parameter is introduced: int InterpolationType. It
controls the choice of the interpolation scheme used in the integration field.
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The main loop uses two template trait classes, see Fig. 8.2: GridOperator and
CoarseIntegrator. The GridOperator

template <class FieldType, typename IntGeoType>

class GridOperator {...}

is responsible for the geometry that is created during the integration process and
has to be implemented for a specific type. Several functions may be provided in the
template specialization to control the geometry: prepare(), advance(), refine(),
store() and finalize(). The functions prepare() and finalize() allow initial
and final operation on the grid. The other functions are called in each call of the
main loop and are responsible for advancing, storing and refining the grid. Using
only Grid objects as function parameters allows maximum flexibility and power in
the functions to modify or create geometry. All topological information is available
in a Grid, which is necessary in the refine() function in case of doing adaptive
geometry refinement.

The CoarseIntegrator trait provides two functions to the main loop:

template <class FieldType, typename IntGeoType, int InterpolType>

class CoarseIntegrator {...}

advance() and extractLocalData(). The advance() function is responsible for
the integration in a coarse sense. It itself uses the trait AtomicIntegrator

template<typename FieldType, typename IntGeoType, int InterpolType>

class AtomicIntegrator {...}

which implements the integration on a low level per point basis. The Coarse-

Integrator advances a collection of points. The default template implementation
does a breadth-wise integration by advancing fronts. A depth-wise integration or
line-wise integration can be added by providing a different template specializa-
tion. The extractLocalData() function collects all data besides the vertex data
by again calling the according function from the AtomicIntegrator over a the
collection of vertices which utilizes the FieldInterpolator template, a fully im-
plemented template class that returns a linear or cubic interpolation value of a
given point in the field. The interpolator also can return an analytic value if a
formula for the data field available explicitly.

The advance() function of the CoarseIntegrator extracts data fields of the
current grid object into the so called

template <class FieldType, typename IntGeoType>

struct FieldCollection : public MemCore::ReferenceBase

<FieldCollection<FieldType,IntGeoType> >

{ ... } .
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<class FieldType, class GeoType, class IPol>
CoarseIntegrator

bool advance( G& CurrGrid, g NewGrid, time )
bool extractLocalData( G& Grid, time )

<class FieldType, class GeoType, class Ipol>
AtomicIntegrator

bool extractLocalData( FieldCollection )
bool doEuler( FieldCollection1..2, time )
void initDop853(...)
bool doDop853(...)

<class FieldType, class LineType>
IntegralHeart

override bool update( ... )
{
     while( ... )
     {    /* ... */
          GridOperator.advance( CurrGrid );
          CoarseIntegrator.advance( CurrGrid, NewGrid, time, ... );
          NewGrid = GridOperator.re�ne( CurrGrid );
          CoarseIntegrator.extractLocalData( NewGrid );
          GridOperator.store( ... );
          CurrGrid = NewGrid;
      }
      GridOperator.�nalize( ... );
}

<class FieldType, class GeoType>
GridOperator

G prepare( G& grid, size_estimate)
G advance( G& grid)
G re�ne( G& grid)
store( name, G& grid, time )
�nalize( name, G& g, time )

Figure 8.4: More detailed illustration of class functions. All functionality is in-
serted into the IntegralHeart’s update() function by the compiler which uses
the template trait functions of GridOperator and CoarseIntegrator. Reference
pointers are used when pointers are required. G is short for RefPtr<Grid>.

The field collection provides data necessary for integration on an array basis
used by the functions of the AtomicIntegrator. Thus, the atomic integration
operation need not to extract this data from the grid in every integration step.
AtomicIntegrator provides doEuler() and doDop853() functions to process every
points on the integration coarse.

The following subsections describe the implementation of four different inte-
gration geometries using the presented framework.

8.2.3 Streamline Implementation

To implement the streamline integration several classes are gathered in a sep-
arate cpp file. An empty class class FrontStreamline{}; is defined and the
GridOperator specialized:

template<> class GridOperator<tvector, FrontStreamline> {...}

where tvector is the type of the vector field. Its prepare() member function
retrieves the emitter grid and prepares a new integration geometry grid by copying
the vertices. The geometry will later be stored as a set of lines in the bundle
of the vector field. It also estimates the size of the data being computed and
reserves memory. The advance() just passes the given grid through without any
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operation. The refine() function also passes the grid through. Refinement will
by implemented in future. The store() function is an empty function. Nothing is
stored per time-step. Finally, the finalize() function stores the filled data fields
at the given time step into the bundle.

The FieldSelection specialization extracts std::vectors from the integra-
tion geometry grid and provides them to the AtomicIntegrator partial special-
ization:

template<int InterpolType>

class AtomicIntegrator<tvector, FrontStreamline, InterpolType>

: public AtomicDataBase {...};

Here, the doEuler() function is implemented which uses an index to access the
correct vertex and direction. These are retrieved from the Field- Collection

provided by the CoarseIntegrator. It computes and pushes the next vertex po-
sition and line connection into the FieldCollection. The extractLocalData()

function extracts the interpolated vector field data for the vertex positions previ-
ously computed by the integration function by utilizing the FieldInterpolator

template.
Finally, a VISH network module is provided by a template instantiation:

typedef IntegralHeart<tvector,FrontStreamline> FrontStreamlines;

Implementing streamline computation requires 350 lines of source code.

8.2.4 Pathlines Implementation

The pathline integration again requires a type class FrontPathline{}; and a
specialization of

template<> class GridOperator<tvector, FrontPathline> { ... };

The representation of a pathline differs from the representation of a streamline in
the fiber data bundle. For a pathline a vertex is stored as grid in different time
slices. The prepare() function also creates a new grid object and copies the vertex
data from the emitter grid. However, the advance() function now creates a new
grid object for each step of the integration front. The refinement() function is to
be implemented in future and just passes the grid though. The store() function
inserts the computed grid into the bundle for each integration front step. Here,
the finalize() function is an empty implementation. The FieldSelection again
extracts the array data from the grid object and provides array data.

The specialization of
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template<int InterpolType>

class AtomicIntegrator<tvector, FrontPathline, InterpolType>

: public AtomicDataBase {...};

implements the doEuler() function, using a provided time step value. It uses
direct array index access instead of using push backs (in the streamline case). The
extractLocalData() function interpolates the vector field and stores directions
at each vertex.

A VISH module is provided by the template instantiation:

typedef IntegralHeart<tvector,FrontPathline> FrontPathlines;

Pathline computation requires 250 lines of source code.

8.2.5 Material-Line Implementation

The pathline module can be reused for the material-line implementation. The fiber
bundle data stores topology information inside a Grid: A so called relative Repre-
sentation on the vertices in a Skeleton. The pathline module is extended, copying
this additional information in the GridOperators prepare() and advance() func-
tions. This was implemented for an arbitrary number of additional Skeletons on the
vertices using a Skeleton iterator. 50 additional lines are required in the framework
and 4 lines for the pathline implementation.

8.2.6 Time Surfaces

The computation of the time surface did not need any additional development
because the Skeleton iterator, implemented for material-lines, already copies the
topological surface connectivity data.

Figure 8.5: Images showing the streamlines [left] and the evolving time surfaces
[right], with a two sphere geometry as a seeding grid.
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8.3 Results

8.3.1 CFD Visualization of a Stirred Tank

Having the two computing modules implemented for streamline and pathline in-
tegration and having extended the modules providing the seeding geometries we
are able to visualize streamlines, pathlines, material-lines and time surfaces in a
uniform test grid and in a 2088 multi-block curvilinear dataset stemming from a
CFD simulation of a stirred tank. The curvilinear grid is comprised of 3.1 million
cells in total, with flow variables such as velocity and pressure measured at the
cell vertices [Benger et al., 2009c]. The integration module currently implemented
is explicit Euler. The figures show the results of the integration in the curvilinear
dataset. The computation was done for 50 time steps using SVN revision 2557
of VISH. The material-lines, time surfaces and pathlines in Fig. 8.6 and 8.7 are
rendered for every 5th time step. They are fading linearly in time, highlighting the
current state.

Figure 8.6: Image showing corresponding time surfaces overlapped on material
lines [right], both computed for 50 time steps.

8.3.2 Time Measurements

We did measurements of the computation time comparing our old implementations
and the new ones in a simple uniform grid based dataset and the stirred tank
data set. For testing we used a machine equipped with a six core Intel Xeon
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Figure 8.7: Images showing the material lines [left] and time surfaces with pathlines
overlapped [right], all computed for 50 time steps.

W3680@3.33GHz, 12MB L3, 6.4GT/s with 6GB of 1333MHz DDR3 SDRAM and
a NVIDIA Quadro FX 3800 1GB running gcc version 4.4.4 20100630 (Red Hat
4.4.4-10).

Imple- Data- Comp- Steps Step- N.- Spd- Spd-
mentaion set ilation Time Time Up Up

# [msec] [%] [-] [-]
stream old uni. debug 2704 0.19 100
stream old curvi. debug 6739 3.10 100
stream old uni. opt. 2704 0.03 16 6.3
stream old curvi. opt. 6739 1.40 45 2.2
stream new uni. debug 2600 0.19 100 1.0
stream new curvi. debug 6600 5.40 174 0.6
stream new uni. opt. 2600 0.03 16 6.3 1.0
stream new curvi. opt. 6600 2.60 84 2.1 0.5
path old uni. debug 2600 0.20 105
path old curvi. debug 6732 429.88 13867
path old uni. opt. 2600 0.03 16 6.7
path old curvi. opt. 6732.21 224.00 7226 1.9
path new uni. debug 2600 0.21 111 1.0
path new curvi. debug 6600 5.61 181 76.6
path new uni. opt. 2600 0.03 15 7.0 1.0
path new curvi. opt. 6600 2.61 84 2.1 85.8

The table gathers: Old and new stream and pathline using debug and optimized
compilation, number of integration steps, time per integration step, normalized-
time with respect to the old uniform and curvilinear grid streamline computation,
speedup by optimized compilation mode and speedup by the new implementation.

When comparing the timings of the old and the new integration in the uni-
form grid the measurements show no difference. The introduced overhead of the
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framework does not result in a longer computation time. In the curvilinear case of
streamlines the old computation is faster by a factor of about two. This has to be
investigated. However, the new curvilinear pathlines benefit a speedup of about
factor of 80 by making faster interpolation and point search algorithms available.

8.4 Conclusion

While the earlier version of integration modules were implemented independent of
each other with redundant computation code and time, we successfully designed
and implemented a framework based on template specializations that provides a
common computational module for different integral geometries. We introduced
the visualization of material lines with minimal programming effort: 350 lines for
streamlines, 250 lines for pathlines, 54 lines for material lines and none for time
surfaces.

8.5 Future Work

We will adapt our existing three and four dimensional geodesic tensor field in-
tegration code to the framework, enable DOP853 integration, introduce grid re-
finement during integration, introduce a module to extract a path-surface from
computed material lines and work on a thread-based parallelization on the CPU
using OpenMP [OpenMP Architecture Review Board, 2010].
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Improved Visualisations of 3D
Volumetric Data through
Pointwise Phong Shading Based
on Normal Mapping
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Numerical simulations have become increasingly important in almost
any field of physics throughout the last decades, since many physi-
cal systems are governed by coupled partial differential equations, for
which no analytic solution exists. The analysis and visualisation of the
resulting amounts of 3D data is one of the central problems in modern
science. Although several commonly used visualisation packages can
work with volumetric data, many of them only provide limited capa-
bilities in producing a suitable depth perception and could be improved
using advanced methods. One such method, pointwise Phong shading
based on normal mapping, and its advantages are described in detail
in this paper.

1All authors contributed equally to this work.
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9.1. INTRODUCTION

9.1 Introduction

The continuous performance gain of computers within the last decades made nu-
merical simulations an ideal tool to study complex physical systems which are
often described by coupled partial differential equations for which no analytical
solutions exist. Therefore numerical simulations now play an important part in
almost any field of physics.

Our working group in Innsbruck, for example, is doing simulations on the for-
mation of galaxy clusters with a special emphasis on the hydrodynamics of the
intra-cluster gas ([Kapferer et al., 2007]). Our simulations provide us with three-
dimensional arrays for quantities like the temperature, density and metallicity of
the cluster gas. In order to understand the physical content of the simulations, we
have to visualise this data (see e.g. [Kapferer & Riser, 2008]). There are several
commercial (e.g. Amira1) as well as free (e.g. Paraview 2, Visit 3) programs avail-
able for visualising volumetric data. Approximately speaking, the visualisation of
3D data in these programs works as follows: Every grid cell of the 3D volume gets
assigned a colour and alpha value based on a colour map corresponding to the
value of the quantity which should be visualised. Then, through a projection via
some specified perspective, a 2D image is generated out of the 3D data. In order for
all the grid cells to contribute to the image, transparency has to be applied in the
projection. However, sometimes it is difficult to see the 3-dimensional structure in
the images resulting from these projections, as projections are ambiguous. Many
programs try to solve this ambiguity by letting the user control the perspective in
real time, as viewing the data from different angles provides us with the necessary
information about the 3D structure. There is an additional technique to improve
the presentation of 3D data: Shading based on normal mapping. This technique is
well known, but as it is absent in many of the commonly used packages, we want
to draw attention to it.

In section 9.2 we will provide some background information about lighting and
shading, and in section 9.3 we will describe the method as implemented in our
visualisation program together with some comparisons of renderings with shading
on and off.

9.2 Theory

In this section some theories about three-dimensional visualisation techniques,
used in this work, are described. First, lighting and shading, necessary for the per-

1http://www.amira.com
2http://www.paraview.org
3https://wci.llnl.gov/codes/visit/
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ception of three-dimensional structure are introduced. Furthermore, direct volume
rendering is depicted, which is used to display a two-dimensional projection of a
three-dimensional discrete data set.

9.2.1 Lighting and Shading

Whether in real life or in computer graphics, a three-dimensional scene must be
illuminated. Thereby the scene gets illuminated by one or more light sources which
are characterised by a collection of properties like position, pointing, colour and
intensity of the light. Furthermore, different types of light sources and varying pa-
rameters can be introduced, as for example sources with light-direction-dependent
colours, uniformly radiating point sources or directed lamps and spotlights. The
light sources and their properties combined result in a lighting model. Generally,
light sources can be divided into local and infinite or remote light sources. Local
light sources are mainly used for particular effects, whereas infinite light sources
illuminate all objects the same way since the light rays are parallel and pointing
in the same direction and hence less expensive in computational cost.

Beside the light sources, also the ambient light is of great importance which
does not come directly from a light source but is arriving at a surface by being
reflected at other objects in the scene. Since the computation of the amount and
direction of reflected light is difficult and time consuming, different simplifications
are adopted often. A constant amount of ambient light can be added to every
object in the scene whenever its illumination has to be found ([Glassner, 1989],
[Angel, 1990]).

Once all the light sources, the material properties and the geometry of the
considered object have been defined, reflection and -in case of partly transparent
objects- transmission of the light can be calculated. The process of determining
the properties of the light leaving the surface is called shading. Shading is crucial
to depict the depth perception of three-dimensional objects. In principle, it is
possible to shade any surface by processing each single, visible point of a scene.
Knowing the illumination model at that point, the shading can be calculated by
just calculating the surface normal at the considered point, since irradiance and
reflection can easily be calculated.

Unfortunately, this method is computationally too expensive. Using shading
on polygons, the simplest shading model that can be adopted is constant shading,
where for each polygon just one intensity value is calculated and kept throughout
the whole polygon. This approach is not usable for surfaces that are an approxi-
mation to a curved surface and requires both the light source and the viewer to be
at infinite distance. Obviously, not very realistic results can be obtained, therefore
more sophisticated methods have been introduced as Phong shading, also used in
this work, described in the next section. Moreover, beside of varying the bright-
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ness according to the shading model, also the colour itself can be changed. This
technique is called tone shading ([Ebert & Rheingans, 2000]).
On the other hand, pixel based shading methods are nowadays commonly used,
especially in computer games. Worth mentioning is normal mapping or Dot3 bump
mapping. As in ordinary bump mapping, textures of a higher refined model are
used. The normal vector information for calculating the diffuse lighting at the sur-
face at each point is encoded in a 3-channel (a channel for each dimension) bitmap
and combined with the bump map. This gives the illusion that the model is more
detailed than it actually is.

9.2.2 Phong shading

Phong shading was introduced in 1975 by Bui Tuong Phong ([Phong, 1975]) and
is also known as normal-vector interpolation shading ([Foley et al., 1994]). This
method offers significant advantages over previously used ones, most notably the
perception of a smooth surface and the avoidance of visual artifacts at the edges
of polygons (see [Foley et al., 1994] for a more detailed discussion). As the name
already implies, this shading technique is based on the interpolation of normal
vectors: Starting from the two normal vectors on the span of a polygon on a scan
line, the normal vectors in between are interpolated. These two starting vectors
are themselves interpolated from the vertex normal vectors which again can just
be determined as in Gouraud shading. The interpolation of normal vectors is done
as follows:

Nt = tN1 + (1− t)N0 (9.1)

with N0 and N1 being the normal vectors at two vertices and 0 ≤ t ≤ 1. After
being normalised, the normal vectors at each pixel on the scan line are used to
calculate the new intensity using the lighting models to calculate the shading. It is
assumed that the light emitted by an object and getting to the eye of an observer
comes from combined diffuse and specular reflection of the irradiated light. Hence,
the shading at an object’s point p can be calculated as

Sp = Cp [cos (i) (1− d) + d] +W (i) cosn (s) (9.2)

with i and s being the incident angle and the angle between direction of light and
line of sight, Cp a reflection coefficient, W (i) the ratio of specular reflected and
incident light depending on the incident angle, d the diffuse reflection coefficient
and n models the specular reflection. The specular reflection term is the reason
why this shading method provides a good treatment of highlights and is therefore
well suited for curved surfaces.
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9.2.3 Direct volume rendering

Direct volume rendering (DVR) is a method used to obtain a two-dimensional
image out of a three-dimensional scalar field or data set. Unlike to slicing three-
dimensional data or plotting iso-surfaces, DVR has the advantage that all the data
can potentially contribute to the output image.
First, the three-dimensional data can be represented by voxels. Voxels (volume
picture elements) are the three-dimensional analogue to pixels. In principle, there
are two methods describing voxels. The first is to define a cubic cell and assign
a single colour and possibly a transparency to it. Another possibility is to define
data points at the corner of cubic cells. Then the colour and transparency values
inside the cells are calculated by interpolation.
The transparency of the voxels ensures, that all these cells can contribute to the
final image. Therefore, a visualisation of the whole three-dimensional data set is
possible. The two-dimensional image is consequently a projection of the complete
data set. A possible method for doing this is ray-casting, whereas a ray outgoing
from each pixel of the final two-dimensional image into the object space is traced.
After calculating the colour value along the ray, a value to the pixel in the two-
dimensional image is assigned.
Usually, images obtained from DVR are blurry and fuzzy because many points
in the data set are considered which can also lead to ambiguity in the depth
perception. This problem can be solved by providing interactivity, if the volume
and the viewpoint can be changed, a much better feeling for the data set can be
obtained.
Also Amira uses DVR in its Voltex module. A colour map including alpha values
for transparency is used to calculate the amount of emitted and absorbed light
of each voxel. Then the projection of the voxels in the data set is computed by
drawing slices from back to front and composing them. The slices are textured
polygons, whereas the texture is computed by using the data and colour map. An
example is shown in figure 9.1.

This method is also denominated texture based volume rendering and can also
be applied to 2D textures, whereas the voxel data is composed into three stacks
of 2D texture slices. The stack which is most parallel to the viewing axis is going
to be rendered. As in ([Westermann & Sevenich, 2001]), several approaches can be
used to reduce computation time and memory consumption using this method as
for example ray-traversal, omitting homogeneous and empty regions.

Furthermore, instead of one-dimensional transfer functions, which maps the
scalar value of each cell of the data set to colour, opacity etc., multi-dimensional
transfer functions which take multiple measures (instead of the one scalar) into
account, can be used. However, the design of such functions is not straightforward.
Often, a discrete set of values is stored in lookup tables for easy and fast access.
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Figure 9.1: In this image, the gaseous component of a ram pressure stripped galaxy in
a side-on view is shown using the Voltex module of Amira. The transparency allows the
visualisation also of the gaseous filaments rearmost in the scene.

Anyway, for multivariate data, these tables can become immensely large. There-
fore, as in ([Kniss et al., 2003]), a sum of Gaussian transfer functions are used,
because their integral can easily be calculated on the GPU, to avoid the use of
large lookup tables.

9.3 Improving the 3D experience

One of the main issues in the visualisation of volumetric data is the actual usage
of the third dimension. In principle there are two ways of generating a three-
dimensional perception: (a) directly by providing suitable images for both eyes, or
(b) indirectly by tricking the brain into self-constructing a 3D impression from a
2D image.

The first method proves still to be costly and complicated, although recent
developments coming from the gaming and movie industries have brought three-
dimensional viewing considerably more into the mainstream market. Still the used
technologies suffer from problems (e.g. people being unable to see the 3D effect,
headaches and dizziness after longer viewing periods) and severe limitations (e.g.
viewing angle, uncomfortable glasses, brightness of the image) and can at the
moment only be considered as moderately usable.

Indirect methods of inducing depth perception have been known for a long time
and come in a number of varieties: hidden objects, simulated shadows, freeview
pictures, autostereograms, and many more. Most of these methods either require
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(a) no shading (b) Phong shading

Figure 9.2: An example of the metal distribution in the intra-cluster medium (ICM) of
a cluster of galaxies (a) without and with (b) Phong shading (plus normal mapping).
In (a) the depth information of the data slices is lost and in regions where similar data
values overlay each other, the position of the data points can hardly be determined by
the viewer. In contrast the shading in (b) provides a natural depth perception.

a special kind of viewing (e.g. parallel staring into infinity or cross-eyed focusing)
or use brightness information (shadows, lighting) to stimulate the brain into con-
structing a 3D perception. Since these methods do not require any technology,
they are often found in printed media, but are also widely used in the computer
and gaming industries.

9.3.1 Shading and depth perception

The fact that the brightness information of a scene causes a natural three-dimensional
impression enables us to improve the volume rendering of datasets without the need
for special and expensive hardware. As outlined in section 9.2.2, Phong shading
provides the fastest nearly realistic way to calculate the lighting of curved surfaces.
Although more sophisticated and physically correct shading techniques like the
Cook-Torrance ([Cook & Torrance, 1982]) or the He-Sillion-Torrance-Greenberg
([He et al., 1991]) shading exist, they come at the price of much higher computa-
tional costs and yield no improvement in the visualisation of volumetric datasets.
Since these physics based shading models only improve on the correct representa-
tion of surface materials, the use of a phenomenologically realistic model like the
Phong shading is sufficient to achieve an accurate depth perception.

How easy and useful it is to provide some depth perception from a 2D image can
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be seen in Fig. 9.2. While the iso-contour without shading (Fig. 9.2a) doesn’t allow
for any three-dimensional image to form, the shaded version (Fig. 9.2b) naturally
allows our mind to construct the scene in 3D. The image can therefore transport
considerably more information about the structure and distribution of the data.

In the following sections we will describe a method of using Phong shading
together with volumetric normal mapping to provide a natural depth perception
when visualising volumetric data. The gains of this method and a few examples
will be shown and then discussed in section 9.4.

9.3.2 The shading procedure in detail

The method presented here uses pointwise Phong shading and volumetric normal
mapping to create an impression of optical depth when used to visualise volumetric
data. The whole visualisation procedure works in a four-step process: 1. calculating
the colour texture and normal vector for each data point, 2. dividing the domain
into slices which are perpendicular to the line of sight, 3. applying normal mapping
and shading on the slices, 4. summing the slices up.
The following sections will detail the individual steps.

Calculating the colour texture and normal vectors

Let us consider volumetric data consisting of a rectangular cuboid with nx×ny×nz
data points D(x, y, z), where 1 ≤ x ≤ nx, 1 ≤ y ≤ ny, and 1 ≤ z ≤ nz. Together
with a colour map C (v ∈ [0; 1]) each point can be assigned a colour and alpha
value, depending on the colour space used and any selected data threshold values
Dmin and Dmax. Mathematically this assignment can be represented by a texture
transfer function Γ:

Γ(x, y, z) = C

(
D̃(x, y, z)−Dmin

Dmax −Dmin

)
, (9.3)

where

D̃(x, y, z) =


Dmin if D(x, y, z) < Dmin,

Dmax if D(x, y, z) > Dmax,

D(x, y, z) otherwise.

(9.4)

For the normal vectors, we have to calculate the local data gradient at each data
point. This can be done in various more or less sophisticated ways: The simplest
and fastest approach is the central difference operator ~∇CD which can be defined
by

~∇CDD(x, y, z) =

D(x+ 1, y, z)−D(x− 1, y, z)
D(x, y + 1, z)−D(x, y − 1, z)
D(x, y, z + 1)−D(x, y, z − 1)

 . (9.5)
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A more robust and accurate method would be the Sobel operator ~∇S, which can
be expressed by

~∇SD(x, y, z) =
∑

i,j,k∈{−1,0,1}

S ′(i)S(j)S(k)D(x+ i, y + j, z + k)
S(i)S ′(j)S(k)D(x+ i, y + j, z + k)
S(i)S(j)S ′(k)D(x+ i, y + j, z + k)

 , (9.6)

where S (m) =


1 if m = −1,

2 if m = 0,

1 if m = 1,

and S ′ (m) =


1 if m = −1,

0 if m = 0,

−1 if m = 1,

are defined for

m ∈ {−1, 0, 1}. The Sobel operator is especially well suited for noisy data or steep
and rapidly changing gradients, but comes at the price of being more than a factor
4 slower than the central difference. In practice the quality and noisiness of the
data determines which gradient operator should be used. This often results in
trying different operators and comparing the visual result.

Regardless of the operator used to determine the gradient vectors, we can now
construct an array of normal vectors ~N(x, y, z):

~N(x, y, z) =

{
~∇D(x, y, z) if ~s · ~∇D(x, y, z) < 0,

−~∇D(x, y, z) otherwise,
(9.7)

which will be used for the Phong shading and normal mapping. The condition
~s · ~∇D(x, y, z) < 0 makes sure that the normal vectors are pointing towards the
camera, since we have defined the line of sight ~s as pointing from the camera
towards the data cube.

Dividing the domain into slices

To calculate the volumetric view, the domain has now to be divided into a se-
lectable number nsl of slices which are perpendicular to the line of sight ~s. These
slices have to fulfill the plane equation

~s · ~X = λi, (9.8)

where ~X = (x̃, ỹ, z̃) is a non-discrete positional vector in the data cuboid and
1 < i < nsl denotes the i-th slice whose position is determined by λi. If λmax and
λmin are the maximum and minimum values of ~s· ~X found at the corner coordinates
of the data cuboid, then λi can be calculated:

λi = λmax −
(
i− 1

2

)
∗∆λ, (9.9)

where ∆λ =
λmax − λmin

nsl

is the distance between two slices.

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria

115



9.3. IMPROVING THE 3D EXPERIENCE

(a) without lighing (b) with lighting

Figure 9.3: A slice of data after being texturised (a) and after Phong shading and normal
mapping has been applied (b). It is easily visible that the slice immediately gains depth
information and also gives an impression of motion where the gradients are steep.

Applying texture, normal mapping and Phong shading

Since the slices now cross the domain at arbitrary and non-discrete positions ~X, the
texture and normal vectors in the slice layer have to be calculated by interpolation
from the surrounding discrete data points. Using trilinear interpolation each point
~X = (x̃, ỹ, z̃) in the slice i is assigned a texture Γi and a normal vector ~Ni:

Γi( ~X) =
∑

i,j,k∈{0,1}

ωi(x̃)ωj(ỹ)ωk(z̃) Γ(bx̃c+ i, bỹc+ j, bz̃c+ k), (9.10)

~Ni( ~X) =
∑

i,j,k∈{0,1}

ωi(x̃)ωj(ỹ)ωk(z̃) ~N(bx̃c+ i, bỹc+ j, bz̃c+ k), (9.11)

where ωn(δ) =

{
dδe − δ if n = 0,

δ − bδc if n = 1.

Although these operations as well as the texture Γ and the normal vectors ~N in
section 9.3.2 have been depicted on a regular grid, they only have to be modified
slightly to work with unstructured grids. In this case the floor bc and ceiling
de functions have to be replaced with proper mapping functions that return the
nearest lower and upper grid point, and one has to take care that the summation
over i, j, k alternates between these function mappings.

Since modern graphics cards and the corresponding APIs (Application Pro-
gramming Interfaces, e.g. OpenGL) already implement trilinear filtering for tex-
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tures and vectors (which are internally treated as 3D-textures), these steps can be
performed in the hardware at very high performance.

Now the calculated texture Γi is applied to each slice (see Fig. 9.3a for an
example) and then the normal mapping and Phong shading is applied using the

normal vectors ~Ni (see Fig. 9.3b). Also these operations and the actual rendering
of the slices including diffuse, specular and ambient lighting is done in hardware.
The resulting contribution of each slice is stored as an image Pi(ξ, υ), where ξ and
υ are in screen coordinates.

Creating the final volumetric view

Finally the pixel values of the slices are summed up to create the final shaded
volumetric view. For this we define a factor α with 0 < α < 1, which ensures
that the slices closer to camera give a higher contribution than those further away.
This is equivalent to the light emitted by the slice travelling through an absorbent
medium with an absorption coefficient ln(1−α)

∆λ
. In practice values around α = 0.04

for nsl = 512 have shown very good results with good insight into the centre of a
data cube. The final image Pfinal is summed up according to

Pfinal(ξ, υ) = α(1− α)nsl

nsl∑
i=1

Pi(ξ, υ)

(1− α)i
. (9.12)

This process of summing up the slices for the final image is demonstrated in Fig.
9.4. An example for data visualised with the method discussed here is shown in
Fig. 9.4d.

9.4 Results and Discussion

The advancing need for numerical simulations in science, engineering, medicine
and many other fields leads to ever increasing amounts of data that have to be
dealt with. It proves to be a challenge to analyse and visualise what now often
are Terabytes of 3D data in reasonable time and quality. Therefore it is important
to both develop new methods of visualisation and improve on already existing
methods. The method described in this paper is suitable for visualising volumetric
data in real-time and is primarily limited by the amount of graphics memory
and the filling rate of the texture mapping units (TMU), which both are quickly
expanding in every new generation of graphics cards. With a moderately current
graphics card (e.g. a NVIDIA GeForce GTX 285) we are able to visualise a cube of
10243 data points with 512 slices at fullscreen resolution (1680x1050) at interactive
frame rates (> 30 fps).
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(a) one slice (b) a few slices (c) more slices

(d) final image (e) iso-surface

Figure 9.4: An example of the presented method being applied to a volumetric data
set showing the metal distribution in galaxy cluster. The final image is composed
of fully texturised and shaded slices which are stacked over each other. The diffuse
and specular light coming from the slices experiences an absorbent medium on
its way towards the camera. Therefore slices close to the camera contribute more
to the final image than those far away. The number of slices increases from (a)
to (d). In (d) values below the threshold Dmin were set to be fully transparent
(i.e. Cα(0) = 0), which allows a deeper look into the volume. Even when viewing
through the surrounding material (red) the inner structure (green) in the centre
retains a perception of depth and surface structure. For comparison a polygon
based iso-surface is shown in (e).

The advantages of the proposed shading method over unshaded volume render-
ings can be clearly seen in Fig. 9.2 and 9.4e. Due to the high performance of this
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technique, it can also be used in conjunction with a stereoscopic screen or projec-
tion to further improve the three-dimensional impression. In fact our visualisation
tool X View 4 is already capable of this combined approach.
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Integral Field Spectroscopy is a powerful observing technique for As-
tronomy that is becoming available at most ground-based observatories
as well as in space. The complex data obtained with this technique re-
quire new approaches for visualization. Typical requirements and the
p3d tool, as an example, are discussed.

10.1 Integral Field Spectroscopy

Integral Field Spectroscopy (IFS) 1FS is – somewhat confusingly – also called “3D”
or “tri-dimensional” spectroscopy, “two-dimensional” or “area” spectroscopy, also
“hyperspectral imaging” is a powerful observing technique that has been intro-
duced and refined over the past two decades. It is now at the verge of becoming
a standard tool, which is available at most modern telescopes [Roth(2010)]. For
practical reasons, some users have, furthermore, adopted the intuitively descrip-
tive terminology “3D” as a reference to the datacube, which is thought to be the
product of an observation (cf. Fig. 10.1).

1I
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Figure 10.1: Three-dimensional dataset as the result from IFS (there are two spatial
coordinates and one wavelength coordinate). The datacube can be visualized as a
stack of quasi-monochromatic images, or, alternatively, as an assembly of n ×m
spectra.

IFS is an astronomical observing method based on the creation of a single expo-
sure spectra of (typically many) spatial elements (“spaxels”) simultaneously over
a two-dimensional field-of-view (FoV) on the sky. Owing to this sampling method,
each spaxel can be associated with its individual spectrum. Once all of the spectra
have been extracted from the detector frame, in the data-reduction process, it is
possible to reconstruct maps at arbitrary wavelengths. For instruments with an or-
thonormal spatial sampling geometry, the spectra can be arranged on the computer
to form a three-dimensional array, which is most commonly called a “datacube”.
Datacubes are also well-known as the natural data product in radio astronomy.
However, there are many integral field spectrographs which do not sample the sky
in an orthonormal system. In this case the term datacube is misleading. Also, at-
mospheric effects, in particular in the optical wavelength regime, make the term
inappropriate in the most general case.

Instruments that create three-dimensional datasets in the above mentioned
sense, however not simultaneously but rather in some process of sequential data
acquisition (scanning) – e.g. tunable filter (Fabry-Perot) instruments, scanning
long-slits, etc. – are not strictly 3D spectrographs according to this definition.

Image Dissection, Spatial Sampling, Spectra

Integral field spectrographs have been built based on different methods of dis-
secting the FoV into spaxels, e.g. optical fiber bundles, lens arrays, optical fibers
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Figure 10.2: The three major principles of operation of present-day IFUs (source:
J.Allington-Smith).

coupled to lens arrays, or slicers (Fig. 10.2).
The term spaxel was introduced in order to distinguish spatial elements in the

image plane of the telescope from pixels, which are the spatial elements in the
image plane of the detector [Kissler-Patig et al.(2004)]. The optical elements that
accomplish the sampling of the sky are often called “integral field units” (IFUs),
and IFS is also sometimes called “IFU spectroscopy”. Spaxels can have different
shapes and sizes, depending on instrumental details and the type of IFU (Fig. 10.3).

Figure 10.3: Four different types of spaxel geometries: square, rectangular, hexag-
onal, and bare fiber (circular).

Contrary to the persuasive implication of the datacube picture, IFUs do not
necessarily sample the sky on a regular grid: e.g. fiber bundles, where, due to the
manufacturing process, individual fibers cannot be arranged to arbitrary precision.
Even if the manufacture of an IFU allows to create a perfectly regular sampling
pattern, e.g. in the case of a hexagonal lens array, the sampling is not necessarily
orthonormal. Moreover, real optical systems create aberrations and, sometimes,
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non-negligible field distortions, in which case the spectra extracted from the de-
tector do not sample an orthogonal FoV on the sky. Furthermore, the sampling
method may be contiguous (e.g. lens array) fith a fill factor very close to unity,
or non-contiguous (e.g. fiber bundle) with a fill factor of significantly less than
100%. In all of these cases, it is possible to reconstruct maps at a given wavelength
through some process of interpolation and, repeating this procedure over all wave-
lengths, to convert the result into a datacube. Note, however, that interpolation
often produces artifacts and generally involves loss of information.

Figure 10.4: Extraction of IFU spectra from a raw CCD frame.

Data Formats

The generic data product from IFS is a set of spectra, which are associated with
a corresponding set of spaxel positions. The spaxel coordinate system may or may
not be ortho-normal, but in the most general case it is not. It is only through the
process of interpolation in the spatial coordinate system that arbitrary IFU geome-
tries are converted to ortho-normal, i.e. a datacube compatible form. Interpolation,
however, inevitably incurs loss of information. Therefore the Euro3D consortium
has introduced a special data format for transportation of reduced 3D data which
is different from the seemingly simple application of the standard FITS NAXIS=3
format, which is suitable e.g. for radio astronomy [Wells et al.(1981)]. The Euro3D
data format [Kissler-Patig et al.(2004)] avoids this latter step of interpolation and
assumes only that the basic steps of data reduction have been applied to remove
the instrumental signature, but else presenting the data as a set of spectra with
corresponding positions on the sky. This approach leaves spatial interpolation and
the creation of maps the process of data visualization and analysis, i.e. under con-
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trol of the user. Figure 10.5 illustrates the spaxel-oriented approach of the Euro3D
FITS data format.

Figure 10.5: The Euro3D data format [Kissler-Patig et al.(2004)].

10.2 IFS Visualization

The visualization of IFS data is confronted with two fundamental requirements:
the inspection of data for the purpose of monitoring data quality and correcting
defects, and the analysis of data, i.e. the derivation of physically meaningful quan-
tities. Ideally, a visualization tool should support both. While the former issue
requires to preferentially look into basic elements of a dataset – for example to
identify detector faults that mimic a signal, to check the correctness of the various
calibration steps (bias subtraction, flat-field and wavelength calibration, extraction
of spectra) and so forth – the latter addresses several possible projections of the
data set. For example, the user is often interested in obtaining a map at one or
several wavelengths over the FoV, corresponding, for example, to emission lines of
an extended gaseous object – in order to create line ratio maps, from which one
can derive quantities like electron temperature, density, dust extinction etc. On
the other hand, for a subset of spaxels that cover a peculiar object, one might wish
to co-add the flux within a user-defined aperture, and plot the resulting spectrum.

The p3d software [Sandin et al.(2010)] is a versatile data reduction package
for optical fiber based 3D instruments, which contains a visualization tool that
supports a variety of these needs. Its capabilities are illustrated in Figs. 10.6–10.9.
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Figure 10.6: A screenshot of the p3d spectrum viewer for a planetary nebula. The
different regions of the tool show the spectrum image (in the top-left region, cf.
Fig. 10.7), a spatial map of a selected wavelength (in the top-right region, cf.
Fig. 10.8), a set of ten stored spatial maps for ten wavelengths and a status line
(middle region), and an average plot of the nine spectra that are selected in the
spatial map (in the bottom region, cf. Fig. 10.9).

p3d is a free distribution that is licensed under GPLv3. It is available from the
project website at http://p3d.sourceforge.net/. Although p3d is coded using
the Interactive Data Language (IDL) it can be used with full functionality without
an IDL license.
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Figure 10.7: Each line in this image represents a spectrum. The brighter features,
which are ordered vertically, represent emission lines of Hγ, Hβ, and two forbidden
lines of O2+ ([Oiii]λλ4959, 5007). The brighter horizontal lines contain the central
star continuum, and the randomly placed features are residuals of cosmic rays.
The controls at the bottom allow to set the color cut levels, select the wavelength
bin that is used to show the spatial map (the green vertical bar), and to define the
width of the green bar.

Figure 10.8: The spatial map presents an intensity image as it is seen on the
sky. The left-hand (right-hand) side image shows one) selected spatial element,
among all 256 (331) square-shaped (circular) spatial elements of the PMAS/LARR
(PMAS/PPAK) IFU. The orientation of the IFU is also indicated, north is up and
east to the left. The controls at the bottom show the spectrum id, among other
things.
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Figure 10.9: This image shows a section of the full wavelength range of the data for
the selected spectrum, or, alternatively, of a set of averaged or summed spectra.
Errors are shown with bars. The emission line at the cursor location, which is
indicated with a red vertical line here (and simultaneously with a white vertical line
in the spectrum image, Fig. 10.7) comes from a forbidden line of Ar3+. The controls
at the bottom allow a quick change of the properties of the shown spectrum.
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Appendix B

Previous High-End Visualization
Workshops

B.1 The 4th High-End Visualization Workshop

The 4th High-End Visualization Workshop was held June 18-22, 2007 in Ober-
gurgl, Austria. Louisiana State University in Baton Rouge, Louisiana, U.S.A. It
was featuring the topic of Visualization of Non-Trivial Data Structures (ISBN
978-3-86541-216-4, http://www.lob.de/isbn/9783865412164). The proceedings
included the following contributions:

1. Modeling of Non-Trivial Data Structures with a Generic Scientific Simu-
lation Environment, Rene Heinzl, Phillip Schwaha, Carlos Giani, Siegfried
Selberherr

2. Visualization Tools for Adaptive Mesh Refinement Data, Gunther H. Weber,
Vincent E. Beckner, Hank Childs, Terry J. Ligocki, Mark C. Miller, Brian
Van Straalen, E. Wes Bethel

3. The Concepts of VISH, Werner Benger, Georg Ritter, Rene Heinzl

4. HD Collaborative Framework for Distribute Distance Learning, Ludek Matyska,
Petr Holub, Eva Hladka

5. Is Visualization Only Data Representation?, Wolfgang Kapferer

6. Direct Surface Extraction from Smoothed Particle Hydrodynamics Simulation
Data, Paul Rosenzweig, Stephan Rosswog, Lars Linsen

7. Visualization of the Gödel Spacetime, Frank Grave, Thomas Müller, Günter
Wunner, Thomas Ertl, Michael Buser, Wolfgang Schleich
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8. GPU Friendly Rendering of Large LIDAR Terrains, Shalini Venkataraman,
Werner Benger, Amanda Long

9. A Data Transfer Benchmark, Andrei Hutanu

10. Views on Fusion, Alexander Kendl

11. A Visualization Toolkit for Lattice Quantum Chromodynamics, Massimo Di
Pierro

12. A Fast CDESSOR-Based Image Retrieval System, Yung-Kuan Chan, Yi-
Tung Liu, Tso-Yu Lioa, Meng-Husian Tsai

13. Nucleus and Cytoplasm Contour Detector of Cervical Smear Image, Meng-
Husian Tsai, Yung-Kuan Chan, Zhe-Zheng Lin, Yun-Ju Chen, Chien-Shueh
Chen, Shys-Fan Yang-Mao, Po-Chi Huang

14. Visualization of Polynomials Used in Series Expansion, Phillip Schwaha,
Carlos Giani, Rene Heinzl, Siegried Selberherr

15. Visualization in Geosciences with Paraview and Geowall, Christoph Moder,
Hans-Peter Bunge, Heiner Igel, Bernard Schubert

16. Some Development Directions and Examples of Comprehensive Scientific
Visualization of Results of Mathematical Simulation, Mogilenskikh D.V.,
Mogilenskikh E.A., Melnikova S.N., Pavlov I.V., Petunin S.A.

B.2 The 5th High-End Visualization Workshop

The 5th High-End Visualization Workshop was held March 18-21, 2009 at Louisiana
State University in Baton Rouge, Louisiana, U.S.A. It was featuring the topic of
Remote and Collaborative Visualization (ISBN 978-3-86541-330-7, http://www.
lob.de/isbn/9783865413307). The proceedings included the following contribu-
tions:

1. Envisioning a Standard Image Storage Framework, Matthew Dougherty

2. Interactive Large-Scale Volume Rendering , R. Parys & G. Knittel

3. Beyond the Visualization Pipeline: The Visualization Cascade, Werner Benger,
Georg Ritter, Marcel Ritter & Wolfram Schoor

4. Visualizing Quarks, Massimo Di Pierro
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5. Post-Processing Pipeline Optimization for Interactive Exploration of Multi-
Block Turbine Propulsion Simulation Datasets, Andreas Gerndt, Rolf Hempel,
Edmund Kügeler & Torsten Kuhlen

6. Towards and Interactive and Distributed Visualization System for Explor-
ing Large Data Sets, Andrei Hutanu, Jinghua Ge, Cornelius Toole, Jr. &
Gabrielle Allen

7. Remote Rendering Strategies for Large Biological Datasets, Wolfram Schoor,
Marc Hofmann, Simon Adler, Werner Benger, Bernhard Preim & Rüdiger
Mecke

8. Strategies for Efficient Transparency Determination Based on Depth Peeling,
Lars Uebernickel, Wolfram Schoor & Bernhard Preim

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria
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