
Toward Integration

92 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

Middleware
“Dark Matter”
Steve Vinoski • IONA Technologies • vinoski@ieee.org

S ome astronomers theorize that the universe
is filled with “dark matter” that we can’t see
because it emits too little radiation for our

instruments to detect across the vast distances of
space. Whether dark matter actually exists, and if
so in what quantity, is important to our under-
standing of the universe. Some theories about
what occurred when the universe began are even
predicated on dark matter’s existence. If it’s actu-
ally there, its presence is profoundly important to
the universe’s very existence and operation.

Clay Shirky describes PCs as the “dark matter of
the Internet” because a lot of them are connected,
but they’re barely detectable.1 We can apply a sim-
ilar analogy to middleware because the “mass” of
the middleware universe is much greater than the
systems — such as message-oriented middleware
(MOM), enterprise application integration (EAI),
and application servers based on Corba or J2EE —
that we usually think of when we speak of mid-
dleware. We tend to forget or ignore the vast num-
bers of systems based on other approaches. We
can’t see them, and we don’t talk about them, but
they’re out there solving real-world integration
problems — and profoundly influencing the mid-
dleware space. These systems are the dark matter
of the middleware universe.

A Dark Matter Scenario
In response to my previous column,2 reader Norm
Katz noted that not all integration efforts revolve
around well-known or market-leading technolo-
gies or products. As a consultant, Katz regularly
works with customers who lack the necessary
funds or skills to purchase or use high-cost mid-
dleware to solve their integration problems.

He’s right, of course. Many integration projects
are based on everyday middleware dark matter —
languages and systems that work just fine, but are
too mundane for those writing for market-orient-

ed technical publications or academic conferences.
Say you’re a system administrator in a small

company, and your boss informs you that two
important departments want their primary systems
to talk to each other as soon as possible. The task
of integrating them has fallen to you, the compa-
ny’s “jack of all trades (but master of none).”
You’re not really a programmer, but you have deep
knowledge of how to keep networked Unix and
Windows systems up and running, and you’ve
written some significant shell scripts and batch
files that did the job in the past.

The two systems you’re charged with integrat-
ing are based on completely different technologies
supplied by different vendors. Each system uses its
own network protocol, and the two are incompat-
ible with each other. They can almost certainly be
bridged using EAI, MOM, Corba, or J2EE middle-
ware, but you’re a system administrator, not a dis-
tributed systems developer or an EAI expert. More-
over, even if you had experience with such
middleware, your boss wouldn’t let you use it
because of the cost or perceived complexity of
applying it to your task.

Several Ways to Skin a Cat
One way to solve this problem is to use the lowliest,
but most ubiquitous, middleware dark matter in
existence: the humble text file. We can coerce most
systems into producing some textual form of the
information they process. Thus, by making the text
files output by one system available to the other
system, you might achieve an integration that’s
good enough for the two departments involved
and, better still, good enough for your boss.

Integration via text files is not only ubiquitous,
it’s as old as the hills. Unix command-line tools
generally read text from their standard input and
produce text on their standard output, for exam-
ple, and Unix shells let you integrate tools via

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 93

“Dark Matter”

pipes that feed one command’s stan-
dard output to the next command’s
standard input.

This approach does raise the issue of
how to send text from one system to
another, but straightforward and sim-
ple approaches work here as well. The
first system could produce its text file
in a specified file system directory, for
example, and the next system could
poll the directory occasionally and act
on the file when detected. I’ve seen
this approach applied quite often, but
it obviously works only when the sys-
tems can share a file system. Alterna-
tively, we could send the text file over
the network, using a common protocol
such as FTP. The common FTP appli-
cation is interactive and intended to be
human-driven, but tools such as Don
Libes’s Expect utility3 can turn just
about any interactive application into
an automated noninteractive system.
In practice, FTP is heavily used for
automated system-to-system file
transfer for integration.

The other big issue with text files is
content format. It is fairly unlikely that
a system based on one vendor’s tech-
nology will produce text files that are
directly consumable by another system
that uses a different vendor’s technol-
ogy. Thus, we must generally modify
one system’s text output before it can
be input to another system in this type
of integration. Even on Unix, for
example, you traditionally apply filters
based on the sed, awk, or grep utilities
to reduce, augment, or modify the text
produced by one tool before piping it
into another.

One of the most useful tools avail-
able for general-purpose scripting,
including filtering text files, is Perl
(whose full name — the Practical
Extraction and Report Language —
indicates that it is a full-featured lan-
guage when it comes to data filtering
and integration). A system can use
Perl’s extensive pattern-matching fea-
tures to recognize and act on just
about any input. Perl also has facilities
for reading and writing fixed-format
files, and if the built-in features aren’t
enough, you can easily extend Perl by

adding modules to an installation. Perl
is well suited to real-world heteroge-
neous integration tasks because it has
been ported to just about every plat-
form in existence.

Together, Perl and Python account
for a significant fraction of middle-
ware dark matter. For more on Perl, as
well as other tools, such as Python, see
the sidebar on “Dark Matter Details”
(next page).

Simple,Yet Adequate
Let’s say you’re accustomed to inte-
grating systems or tools using Perl and
text files, and your boss asks you to set
up a Web site that allows access to
data resulting from one of your inte-
gration projects. Your department
already has a Web server running, so

all you need to do is tie your data into
it. A brief search of the Comprehensive
Perl Archive Network (www.cpan.org)
turns up several common gateway
interface (CGI) modules for Perl that let
you easily write programs that a Web
server can use to respond to browser
requests. Given your familiarity with
Perl, you can use one of the CGI mod-
ules to quickly put together the site
your boss is looking for.

I had such an experience several
years ago when I used a Perl CGI mod-
ule to create a Web-based bug-track-
ing system for a small development
team I was leading. The resulting sys-
tem, which integrated our developers’
desktops with our bug-tracking data-
base via a browser-based GUI, was
easy to build, maintain, and extend.
When the company made our team
switch to a vendor-supplied customer
relationship management (CRM) sys-
tem for bug tracking, we found that
my 1,000-line Perl system was superi-
or in just about every important way.

CGI’s limitations are well known,

particularly the fact that a separate
operating system process services each
HTTP request, which is fairly expen-
sive. Nevertheless, the costs are not
prohibitive for many projects. Like
text files, CGI often provides a more
than adequate solution for simple
integration projects. Given that some
Perl and other such modules make
building CGI applications almost too
simple, there’s often no need to throw
something complex, like J2EE servlets,
at the problem.

In addition to CGI modules, the
CPAN site has Perl modules for data-
base access, networking, file handling,
operating system interfaces, mail, and
news. Clearly, these modules collec-
tively supply an extensive and useful
middleware layer.

There are no hard and fast rules to
help you decide whether to use tradi-
tional middleware or middleware dark
matter to solve your integration or dis-
tributed computing problems. These
decisions depend on your skill set,
financial situation, the scope and
schedule of your project, and the capa-
bilities of the systems and technologies
you’re integrating. Middleware dark
matter sometimes (but not always)
lends itself to solutions that are easy
to create but fail to evolve, scale, or
perform as well as a traditional mid-
dleware solution. On the other hand,
using traditional middleware is no
guarantee that your system will evolve
gracefully, or perform or scale well.
Not surprisingly, it comes down to skill
and experience. Just as you can write
bad code in any programming lan-
guage, you can develop a poor system
using any type of middleware.

The Dark Matter
Influence
The situation begs the question of how

Web services might very well start

to illuminate our middleware dark matter.

94 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

much, if any, overlap there is between
middleware dark matter and tradition-
al middleware. Integration projects
tend to evolve and grow over time.
Successful dark matter-based systems
often reach a point at which adminis-
trators can’t tune or improve them any
further without simply replacing some
or all subsystems with more tradition-
al middleware technologies. Do those

who solve problems using middleware
dark matter ever “cross over” into the
realm of traditional middleware?

When you mention J2EE to some-
one associated with traditional mid-
dleware, for example, they normally
think of Enterprise JavaBeans, Java
Messaging Service, and the Java Con-
nector Architecture — outgrowths of
traditional distributed objects, data-

base, MOM, and EAI work. However, I
have personally heard from several
reliable sources, including respected
middleware analysts, that most devel-
opers who use J2EE are actually using
servlets, Java server pages, and Java
database connectivity. Only a small
(but growing) number are actually
using EJBs. To me, this clearly indi-
cates dark matter’s influence.

Dark Matter Details

The middleware dark matter systems men-
tioned in this column are used extensively,
and each has its own community of users
and supporters.

� Perl. Larry Wall invented Perl to help
him exchange information across a
widely distributed and heterogeneous
network of computer systems, and to
generate reports about each
exchange. Perl borrows syntax and
semantics from several preexisting
tools and appli-cations, including sed,
awk, grep, C, Fortran, and the Bourne
shell. Starting with the first version —
posted in 1987 to the comp.sources
Usenet newsgroup — Wall released
Perl in source form to allow others to
extend its usefulness and help
maintain it. That fact has earned him
wide recognition as a pioneer of the
open source movement. Because of
the large number of Web sites that use
it to hold their implementations
together, Perl is often admired as the
“duct tape of the Web.” You can find
more details about Perl, as well as
numerous modules, at www.perl.org.

� Python. Guido van Rossum created
Python around 1990 to provide a
powerful scripting language that could
succeed the ABC programming
language for the Amoeba distributed
operating system.Many view Python as
a rival to Perl, and much has been made
of the fact that Python’s syntax is far
cleaner than Perl’s. The languages share
many similarities and are used to solve
many of the same problems, including
text filtering, system administration

scripting, and Web site implementation.
You can learn more about a similar tool
called Python at www.python.org.

� Tcl.While at the University of California,
Berkeley, John Ousterhout invented the
Tool Command Language as a general-
purpose embeddable interpreter. Tcl
was designed to allow developers to use
scripts to easily invoke and glue
together functions and applications
written in C — function-ality that was
later extended into the worlds of C++
and Java. Ousterhout also built Tk (so
named because it’s a toolkit for Tcl),
which enabled rapid prototyping of
graphical user inter-faces. Tk was
originally implemented for X Windows
but later ported to Microsoft Windows
and other win-dowing systems. Tcl’s
syntax can be verbose, but it has still
been used to develop extensive
systems, including a fully functional
HTTP daemon. You can learn much
more about Tcl at www.scriptics.com.

� Visual Basic. Microsoft introduced VB in
1991 to allow developers to visually
create Windows applications —
particularly those with GUIs, which
could be created without writing a
single line of code. Indeed, VB’s GUI
capabilities are probably the biggest
reason that Windows applications
generally support standard interfaces
that let users seamlessly switch between
applications. A third-party market for VB
add-ons and controls began developing
soon after the first release of VB,which
in turn helped create the massive VB
user community that exists today.Over
the years,VB has evolved to provide the

same ease of development for database
and Web applications as well.

These systems share several characteristics
with other middleware dark matter:

� Extensive community support. Because a
lot of middleware dark matter is open
source, it attracts users and developers
who contribute to such systems’ con-
tinued maintenance and evolution.

� Support for rapid prototyping.
Middleware dark matter is typically
based on interpreted languages with
flexible type systems that are
conducive to rapid edit-run-debug
cycles.

� Highly extensible. Systems such as Perl,
Python, and Tcl allow developers to
create modules that build above the
language as well as extensions that are
embedded into the language inter-
preter.This flexibility makes it possible
for each language’s user community to
extend it and apply it to an ever-
growing variety of problems.

� Web-related. Many applications of mid-
dleware dark matter involve the Web
as many extensions for these systems
were built to solve Web site integration
and implementation problems. As the
Web grew and matured, so did these
middleware systems.

Many other systems also classify as mid-
dleware dark matter, such as Delphi
(www.borland.com/delphi/). I can’t detail
them all here, but they often have similar
histories and share many of the charac-
teristics of the systems I’ve described.

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 95

“Dark Matter”

As system administrator for your
small company, you could easily
advance to writing systems too large
or heavily used for the CGI approach
to handle. Given the understanding of
CGI and Web applications you would
have to possess to reach that point, it’s
no stretch to imagine that you could
turn to J2EE, learn to program in
servlets or JSPs, and use those skills to
pick up where CGI runs out of steam
without ever needing to use EJBs.

Similarly, someone used to achiev-
ing integration via text files could use
similar tactics to instead use XML,
which is, after all, text. Moreover, it’s
designed specifically to represent struc-
tured hierarchical data, filtering and
transformation tools are readily avail-
able for it, and many of today’s sys-
tems can already produce it. XML is
quickly replacing specialized formats
and their associated tools in both the
dark matter and traditional middleware
communities, as using standard XML
and its tools and practices is less
expensive than developing and main-

taining proprietary tools and formats.
Web services might very well start

to illuminate our middleware dark
matter. Given that a significant por-
tion of the existing middleware dark
matter is probably implemented in
Visual Basic, for instance, Microsoft’s
promise that .Net will put a Web ser-
vices substrate beneath VB — as well
as Perl, Python, and other middle-
ware dark matter languages — is
indeed significant. Even as vendors
of traditional middleware are moving
to augment their Corba, J2EE, MOM,
and EAI systems with Web services,
the middleware dark matter commu-
nity is building modules for SOAP,
the Web Services Description Lan-
guage, and other technologies relat-
ed to Web services (for example, a
search of CPAN in August for SOAP
turned up 226 hits). Web services
might therefore be a genuine point of
convergence for traditional middle-
ware and middleware dark matter. If
this convergence actually occurs and
Web services do manage to illumi-

nate the dark matter, there’s no ques-
tion that the “laws of physics” that
currently govern our middleware
universe will change.

Acknowledgments
Thanks to Norm Katz of IP Consulting for

sending me his thought-provoking e-mail

message, and thanks to Doug Lea for reading

and commenting on drafts of this and all my

previous columns.

References
1. C. Shirky, “PCs are the Dark Matter of the

Internet,” Clay Shirky’s Writings About the
Internet, Oct. 2000; available at www.
shirky.com/writings/dark_matter.html.

2. S. Vinoski, “Web Services Interaction Mod-
els, Part 2: Putting the ‘Web’ into Web Ser-
vices,” IEEE Internet Computing, vol. 6, no.
4, July/Aug. 2002, pp. 90-92.

3. D. Libes, Exploring Expect, O’Reilly & Asso-
ciates, Sebastopol, Calif., 1994.

Steve Vinoski is vice president of platform tech-

nologies and chief architect for IONA Tech-

nologies. He currently serves as IONA’s rep-

resentative to the W3C Web Services

Architecture working group.

Editorial: IEEE Internet Computing targets the technical and scientific Internet user
communities as well as designers and developers of Internet-based applications and
enabling technologies. Instructions to authors are at http://computer.org/
internet/author.htm. Articles are peer reviewed for technical merit and copy edited
for clarity, style, and space.Unless otherwise stated,bylined articles and departments,
as well as product and service descriptions, reflect the author’s or firm’s opinion;
inclusion in this publication does not necessarily constitute endorsement by the IEEE
or the IEEE Computer Society.

Copyright and reprint permission: Copyright ©2002 by the Institute of Electrical and Electronics Engineers.All rights reserved.
Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limits of U.S. copyright law for pri-
vate use of patrons those articles that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is
paid through the Copyright Clearance Center, 222 Rosewood Dr.,Danvers,Mass. 01970. For copying, reprint, or republication permission,
write to Copyright and Permissions Dept., IEEE Service Center, 445 Hoes Ln., Piscataway, NJ 08855-1331.

Circulation: IEEE Internet Computing (ISSN 1089-7801) is published bimonthly by the IEEE Computer Society. IEEE headquarters: 3 Park
Avenue, 17th Floor,New York,NY 10016-5997. IEEE Computer Society headquarters: 1730 Massachusetts Ave.,Washington,DC 20036-
1903. IEEE Computer Society Publications Office: 10662 Los Vaqueros Circle, PO Box 3014, Los Alamitos, Calif. 90720; (714) 821-8380;
fax (714) 821-4010. Subscription rates: IEEE Computer Society members get the lowest rates and choice of media option — US$37/30/48
for print/electronic/combination. For information on other prices or to order, go to http://computer.org/subscribe. Back issues: $10 for
members, $20 for nonmembers. Also available on microfiche.

Postmaster: Send undelivered copies and address changes to IEEE Internet Computing, IEEE Service Center, 445 Hoes Ln., Piscataway,
NJ 08855-1331. Periodicals postage paid at New York, N.Y., and at additional mailing offices. Canadian GST #125634188. Canada Post
International Publications Mail Product (Canadian Distribution) Sales Agreement #1008870. Printed in USA.

