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Abstract GPS compasses equipped with short baselines can provide precise heading and
elevation information for land vehicles. Most recent research in this area has focused on
developing single-frequency, single-epoch ambiguity resolution, as the ambiguity resolu-
tion in a single epoch can guarantee total independence from carrier phase slips and lock
losses. The reliability of single-frequency, single-epoch ambiguity resolution, however, are
often insufficient for actual applications due to the weak baseline model. For land vehicle
applications, baseline elevation can also be measured by inclinometer, which provides an
important constraint that can be exploited to directly assist the ambiguity resolution pro-
cess. In this study, we developed an innovative method that fully integrates MEMS-based
inclinometer measurements into single-difference GPS observation equations and obtains
the fixed baseline solution via weighted constrained integer least squares. We then
explored the performance and effectiveness of the proposed method by building an inte-
grated GPS/inclinometer compass system (IGICS) with low-cost GPS receivers (U-Blox
LEA-6T) and a MEMS-based inclinometer (SCA-100T). Both actual static and dynamic
experiments demonstrated that our method is capable of successfully fixing the set of
integer ambiguities to the correct value for land vehicles equipped with very short base-
lines. The proposed method is also more easily implemented than the traditional aug-
menting scheme with rate gyros and IMU, as evidenced by a comparative experiment
conducted using three approaches: (1) the new method; (2) horizontal constraint without
inclinometer measurements; and (3) exploiting inclinometer measurements without
imposing horizontal constraints.
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1 Introduction

In low-cost land vehicle applications, the navigation system needs not only accurate
position and velocity information, but precise heading information. In recent decades, the
two most common types of heading indicators have been the magnetic compass and the
gyrocompass—the accuracy of the magnetic compass is affected by magnetic field
intensity nearby the equipment, however, and the gyroscope suffers from error drift (King
1998). More recently, the global positioning system (GPS) compass has been widely used
in attitude determination, favored for advantages such as long-term and stable accuracy
(Tu et al. 1997; Park et al. 1997). To realize this technique, two antennas are attached to a
vehicle, then the baseline between two antennas is estimated with a differential approach.
As such, there are no natural directional constraints. In order to make differenced carrier
phase measurements act as high-precision relative distance measurements, the carrier
phase integer ambiguity must be successfully resolved thus allowing a baseline solution
with a comparably high precision as well as highly precise attitude determination (Teu-
nissen et al. 2011a). Parameterizing the phase ambiguities when there are cycle slips
(Shirazian et al. 2011), however, poses a significant challenge during GPS data processing.
For most land vehicle navigation applications, due to lock loss and noise disturbance, cycle
slips rather often occur and, if repaired incorrectly, affect all subsequent observations (Kim
and Langley 2002; Leick 2004; Karaim et al. 2013; Gao et al. 2015). To this effect, they
may decrease the continuity of the entire attitude determination system in difficult
environments.

Attitude determination in single epoch may be a way to effectively address this prob-
lem, because it uses only instantaneous carrier-phase measurements with ambiguity
function values that are insensitive to changes in the entire cycle of the carrier phase.
Single-frequency GPS receivers already are commonly used in this type of application, as
well, because they are low in cost and readily available. Successfully and efficiently
performing integer ambiguity resolution for single-frequency single-epoch cases is of
considerable practical significance, as it can improve continuity in difficult environments.

In general, the reliability of ambiguity resolution is defined by the probability of correct
integer ambiguity estimation, i.e., the so-called ambiguity success rate (Teunissen and
Odijk 1997), which is, in essence, determined by the strength of the underlying GNSS
model; the stronger the model, the higher the success rate. Recently proposed approaches
have made use of the Constrained (C-) LAMBDA method to improve the strength of the
single-epoch GNSS model (Teunissen 2007; Buist 2007; Park and Teunissen 2009; Teu-
nissen et al. 2011a; Chen and Qin 2012; Buist 2013), because as it applies to nonlinear
constrained models, it is therefore nearly optimal for the GPS attitude determination
problem because baseline length is typically known in advance (Teunissen 2010). The
rigorous inclusion of the baseline length constraint into the ambiguity objective function
has resulted in dramatic improvements in success rates.

In fact, to further improve ambiguity resolution success rate, any other baseline con-
straint in addition to length can be exploited to directly aid the ambiguity resolution
process and decrease the ambiguity search space. For example, in any multiple-antenna
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attitude determination scheme, the geometrical constraint of multiple baselines provides a
very strong constraint for augmenting the weak baseline model (Hide et al. 2007; Giorgi
et al. 2010; Teunissen et al. 2011b; Giorgi et al. 2012). The necessary multiple auxiliary
receivers and antennas increase system cost, however, limiting the use of this type of
scheme in land vehicle applications. Recent studies have integrated inertial and magnetic
field sensor measurements into the GPS attitude determination model in order to utilize
multiple constraints to decrease the ambiguity search space (Gebre-Egziabher et al. 1998;
Li et al. 2006, 2012; Roth et al. 2012; Eling et al. 2013; Zhu et al. 2013, 2014). For
example, Zhu et al. (2013) applied rate-gyro-constraints to filter the candidates in the
ambiguity search stage, resulting in high ambiguity search success rates after efficiently
shrinking the search space.

The MEMS-based inclinometer, a relatively simple inertial sensor used in land vehicle
applications, can also provide elevation measurements with very high sampling rate.
Assuming that the measuring axis of the sensing element is parallel to the mounting plane
and the GPS baseline vector, the real-time elevation of the baseline vector can consistently
obtained independent of GPS carrier phase measurements; the vector then serves as a
constraint that effectively shrinks the ambiguity search space. The MEMS-based incli-
nometer also is a cheap, readily available, and relatively small device that can be easily
equipped to the GPS compass system to provide real-time elevation constraint. To make
the best of this additional auxiliary information, we fully integrated the constraint into the
ambiguity resolution estimation process with a proper weight so that the ambiguity fixed
solution could be obtained by weighted constrained integer least squares (ILSs) (Teunissen
2010). Compared to the augmenting scheme with rate gyros and IMU, the proposed
method is theoretically cheaper and more easily implemented; further, both static and
dynamic experiments verified its effectiveness and feasibility.

2 Single-epoch ambiguity estimation with real-time elevation constraint

2.1 Model using approximate geodetic horizon plane constraint
and inclinometer measurements

For two nearby antennas A and B, the single-differenced (SD) carrier phase and code
observation equations on band L; of GPS satellite i can be modeled as follows:

A (d)ﬁw + afw) = rfw + c(dty — Otp) + c(ddy — ddg) + vi\B

. / : (1)
Pup = g + c(0ta — Otg) + c(dds — ddg) + 15

where 4, is the wavelength of L, carrier, qﬁgB and aj; 5 denote the SD fractional phase and
integer ambiguity, respectively, p), denotes the observable SD code, Vi, and i,
respectively denote the SD phase and code observable noise, 7/, is the SD geometric range
of two receivers for satellite i, ¢4 and d75 are clock biases of receiver A and B, dd4 and ddp
are hardware delay biases of receiver A and B on band L; (Buist 2013), and c is the
velocity of light.

The baseline length is very short, as it is assumed to have a sufficiently small size (e.g.,
<100 m) in relation to the high altitudes of GPS satellites (about 20,000 km), and the lines
of sight (LOSs) are approximately parallel for both antennas (Cohen 1992). Thus, the SD
geometric range of two antennas for satellite i can be considered a projection of the
baseline in the LOS direction:
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rap = (Si)Tb (2)

where s = (st i s’b)T is the normalized line-of-sight vector and b is the baseline
vector, which in the local east-north-up frame can be expressed using the heading W,
elevation 0, and baseline length [ as follows:

bg lcos Osiny
b= |by| = |lcosOcosy (3)
by [sin 0

With (2), the SD carrier phase and code measurement equations can be modeled as:

M (qﬁi,B + aj;B) = stbg + siby + s"UbU + B+ Vi,

5) = SEPE T4 | . ()
Pap = Sgbe + sybe + sybu + B+ iy

where = c - [(0ta — Otp) + (dds — Odp)]. Note that the baseline coordinate by can be
parameterized with baseline length [ and elevation angle 0, which can be measured by the
MEMS-based inclinometer. Measurement angle o is given as:

a:0+A+wa,w1~N(0,ai) (5)

where o2 denotes the variance of measurement white noise w, and A denotes install error
and non-linearity error. Assuming that the measurement axis of the MEMS-based incli-
nometer is parallel to both the mounting plane and the baseline, install error can be
neglected; non-linearity error size is dependent on the extent of tilt, i.e., the smaller the tilt
angle, the smaller the non-linearity error.

For land vehicle applications, the baseline approximately lies in the plane of the local
geodetic horizon (Chen and Qin 2012) meaning that elevation angle 0 is often close to
zero, so sinf ~ 0, cos ~ 1. In this case, the non-linearity error of the MEMS-based
inclinometer is small enough for most land vehicle applications (<0.1° for SCA-100T, for
example.) The expectation of output measurements o is thus equal to elevation 0. See the
following equation:

oc:@—}—wm,wawN(O,(ri) (6)

In addition, for a land vehicle equipped with a high-accuracy inclinometer, the following
expression is essentially correct:

Sin Wy & Wy, cosw, ~ 1 (7)

and the next two approximate mathematical expressions can be obtained by exploiting
Egs. (3) and (7):

Isino = Isin(0 + wy,) = Isin O cos w, + Lcos O sinw, =~ by + Iw, (8)
Icoso = lcos(0 + wy,) = IcosOcosw, — IsinOsinw, = ||by| — 0w, 9)

where by = (lcos0siny lCOSOCOSl//)T denotes the baseline projection in the local
geodetic horizon plane and its length ||by|| is equal to /cos 6. With Eq. (8), the SD carrier
phase measurement equation and SD code measurement equation can be modeled as
follows:
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b

l 1 1 1
(quB sU smoc) =7 [sh sk 1]|bw| —dip+ (/T]me +)L—1s/§]lw1>
v p
10
1 ! 1 e 1 1 "
(TlpﬁB fzs’l‘/sinoc) _)L_I[SI‘{E sk 1] | by | + <) ,uAB+)L sUlwx>
B

For n satellites in view, there are n independent SD phase measurements and SD code
measurement equations, respectively. Note that the SD code observation term is also
expressed in units of cycles in order to obtain similar expression as the carrier phase. Clock
bias is assumed constant on each tracking channel, that is, the hardware delays are inde-
pendent of which satellite is being tracked. All relevant equations can be expressed in
compact vector and matrix notation as follows:

1 5 5
yo,oc _ «_G X —a+ n(/),a’ nrbuj NN(O, Q(/),J)
Al

(11)

1

v = LGox w7, ne N (0,007)
A1

where a denotes the SD carrier phase ambiguity vector and x contains the horizontal
baseline components and clock bias f8, and all other terms are expressed as follows:

s Is}, sina 1 |, Isysina
AB 5 Pag —
Al Al Al
o - ls%, sin o ip2 _ ls%, sin o
y(by“ = AB /11 ) yp,ot = /ll AB ;vl ) G = (H e)7
¢ Is?, sin o 1, Ishsina (12)
/143 1 T i Pap i
Sp Sy 1
22
S-S 1
H=| " V| e= .
SE Sy 1

The Q% and Q”* matrices are the variance—covariance matrices of y** and y”*, which
capture the relative precision contributions of the SD phase/code data and the scaled
measuring error of the MEMS-based inclinometer. We assumed that SD measurements
were uncorrelated because measurements from different satellites on a single receiver were
independent. Due to atmospheric dispersion and antennae qualities, they may also include
satellite elevation’s dependency on dispersion (Teunissen et al. 2011b). For instance, in the
case of Q‘M, the ith diagonal element can be characterized as follows:

i 12,2
syl) o
0¥7(1) =2}, + P % (13)
1
where b is the standard deviation (in cycle units) of the undifferentiated single-frequency

L1 phase observables of satellite i. In this study, we used the following elevation-depen-
dent model (Teunissen et al. 2011b):
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g *0,‘
Tpi = ;v? (1 + ao exp (0—0)) (14)

where 0; is the elevation angle of satellite i and a9 = 2, 0y = 10°,00 = 0.007 m. In the
same manner, Q”* can also be obtained based on the elevation-dependent model with
gy = 1.1 m.

Equation (13) suggests that extra error can be induced by the inclinometer, which is also
related to baseline length /, up component siU, and carrier wavelength. Of course, the short
baseline and highly accurate inclinometer can significantly reduce the induced error,
however, too short a baseline during practical application should also be avoided since it
will reduce the precision of the GPS-based attitude solution.

Under the definition G = (H e) and according to Eq. (11), we can obtain the fol-
lowing single-difference model:

b _ ¢,
) R O Bl V) Lo O L )

Note that the original baseline vector is reduced to 2D from 3D space, so only the

horizontal components given by by = (b by )T should be estimated. If we consider the
horizontal baseline length as an observable factor, the horizontal baseline length constraint
forms a nonlinear observation equation. Equation (9) provides the approximate expression
written as follows:

lcosa = ||by|| — low, (16)

Considering the nonlinear horizontal baseline constraint above, the GPS compass model
is expressed as:

E(y)= Aa + Bby + CB,D(y) = Q,,a € Z"

17
E(lcosa) = ||by||,D(Icos o) = I*a*a2, by € R (17)

where n = m — 1. Each term is expressed as follows:

_ [y _(~In _ 1 (H _1[e _ o
r= () 4= () w5 (i) =5 (2) o= o]

The GPS compass is often equipped with a very short baseline due to land vehicle size
limitation (Qin and Chen 2013), which benefits the success rate of Model (17)—first
because the shorter baseline can greatly reduce the scaled inclinometer error in @y, and
second because the uncertainty of the horizontal baseline length constraint is very small for
the weighted model above.

To solve for the unknown parameter vectors a@ and b and the clock bias 5 of Model (17),
we applied the estimation principle of least-squares (LSs) to Model (17) to create the
following minimization problem:

min |ly — Aa — Bby — Cffg,

aby.p (18)
acZ" E(lcosa) = ||by||,D(Icosa) = Pa*a2,by € R®
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To gain insight into the ILSs problem in Eq. (18), it is helpful to first apply an
orthogonal decomposition to the objective function (Teunissen 2007). To do so, we wrote
the objective function as a sum of four squares:

Iy — Aa — Bb — CPIIg, = lellg, +ia — ally, +{|b(a) — 5|

2 o
o, [P@ = oy, 19
where é is the unconstrained LS residual vector, I;(a) and ﬁ(a) are the LSs estimates of
b and f conditioned on a, respectively, Qﬁ(a) is the variance—covariance matrix of b (@), Q,;
is the variance—covariance matrix of float ambiguity vector 4, and Q f(a) is the variance of
clock bias f. Note that no constraints are posed on the clock bias, therefore, the fixed clock
bias (i.e., conditional to the fix ambiguity vector) solution is Z?(a) = ﬁ (@) and the last term
in Eq. (19) is identically null. Apart from the integer constraint on the ambiguity vector,

then, only the nonlinear baseline constraint is considered and receives proper weighting in
its minimization as follows:

min(Hdfa|\2Qi+bmeilr?12H(a,bH)) (20)
H

acZ"

where

2

H(a,by) = HI;H(a) - bH’ QE(H)JF@

(Icoso — ||byl))? (21)

This minimization problem can be resolved with the weighted constrained (WC-)
LAMBDA method, which is described in detail in Teunissen’s paper (2010).

2.2 Model using horizontal constraint without inclinometer measurements

In Sect. 2.1, we made the assumption that the inclinations of land vehicles are often small.
Under this assumption, by removing the inclinometer and applying a constraint of very
small inclination angles, the results obtained are nearly identical without introducing any
additional cost or complexity due to the inclinometer. For example, one can identify the
most likely correct candidate by penalizing those baseline solutions that would result in
large inclinations in the validation procedure, with the following minimization problem:

o~ mpfo (i) 2

where p(b) = |by| / \/b% + b%, and Q is the ambiguity candidate space given by:

2
< th, (23)

li—al’ + min "5(a)—b’ <
“ Qﬁ(a)

beR3 ||b||=!

where the space size xg indicates that the number of candidates is ¢. In actuality, the results
obtained are almost matched only for very flat geodetic planes with smooth motion—for
rough roads, reliability decreases. This phenomenon is attributable to three main facts.
First, there are no obvious distinctions between two candidates (or in other words, the
absolute elevation values are too close.) For instance, when 4.12° and —3.93° are the
elevations of the most likely potential candidates, it is difficult to identify which is correct.
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Reordering the candidates by elevation and choosing the one with minimum cost may also
fail if there are no obvious distinctions between the costs of candidates, especially when
low-cost receivers are utilized in a multipath environment. Inclinometer measurements can
help identify correct candidates and reduce the effects of multiple paths on the search.
Second, the horizontal approximation may not hold well for high road slopes, (e.g., when
attitude determination is applied to a cross-country environment.) Third, the correct can-
didate can be identified using the horizontal constraint without inclinometer measurements,
however, it may be limited by the search time and search space during real-time appli-
cation. In other words, the chosen search space x> must be large enough to guarantee the
presence of the integer minimizer, but if too large, will result in excessive computational
load. Inclinometer measurements also help reduce the search space and the time consumed
by this process.

2.3 Model exploiting inclinometer measurements without horizontal
constraints

Note that the proposed method limits the baseline to practically horizontal orientation, as
evidenced by Egs. (7)—(9), thus making the solution unreliable for large elevation
(Sect. 2.1). A viable solution to this problem is to use the inclination measurement as an
additional observation in the GPS baseline model, without the constraint on 6 given in
Eq. (7). In this case, Eqgs. (8) and (9) can be written as:

Isino = Isin[0 + (oo — 0)] = by cos(a — 0) + I cos Osin(a — 0) (24)
lcosa =lcos[0 + (o — 0)] = ||bu|| cos(o — 0) — Isin O sin(o — 0) (25)
By a simple mathematical derivation, then:

I(sino — cos Osin(a — 0))
cos(o — 0)

=by (26)

lcosa

m + ls1n9tan(o¢ — 0) = HbH” (27)

With the equation above, the SD carrier phase measurement equation and SD code mea-
surement equation can be modeled as follows:

b
I, (sino — cosOsin(o — 0)) 1 1
(98— fop S = ) L 1] b =
1 I, (si Osin(e — 0))\ 1 el
. ¢ (sina — cos 0sin(o — P .
_ _ =— b — .
()»1 Pap /11 Su COS(OC — 9) ) /11 [SE SN ! } V| /11 Has

p
(28)

Note that the true elevation 0 is required in the model above. Although it is hard to
obtain directly, an approximate measurement can be given by the inclinometer. The ele-
vation search strategy can be used in order to build an accurate 0 into the model above,
under the basic principle that correct elevation results in the best matching data for the
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model, thus making the cost of the fixed ambiguity objective function as the global
minimum. At this point, we can assume that the true elevation angle exists in the interval of
[0 —n-N(a,n),0+1n-N(a,n)], where n is the step size and N(e,#) is the number of
sampling points in positive or negative direction for current inclination measurement. In
general, N(o,7) is an empirical function that depends mainly on the performance of the
inclinometer and the step size. Accordingly, for each step, the elevation candidate is given
by:

0; = o+ jin, —N(a, 1) <j < N(a,n). (29)
There must be some 0; closest to the true elevation angle 0, and with bias of the closest

candidate smaller than 1. Assuming that the closest candidate of 0; is 0;,, the following
model is appropriate:

bg

‘ lk(sinocfcos()sin(acf()jn)) Sl 1
<¢AB 7 Su cos (2 — 0;) yy [SE SN 1] b’g’ aAB+}

1
vAB —|— sUly

b
1, I, (sino—cosOsin(x—0;)) 7i[k . g
) _/l

1
P cos (o — 0;, o1 bg 4 'uABJr SUIV
(30)

(()—0/ ) coq( )

cos(y 0; )

__ (sina—cos0sin(a—0)) (sina—cos()sin(m—(}‘ )) N
where y = cos(o—0) - cos(a(—(),o) e

equation can be obtained:

Similarly, the following

[cosa

m—i—lsm jy tan (o = 0j,) = [lba|| + 1€ (31)
where
(= [% + sin 0tan(o — 0)} - {% + sin 0}, tan (ot — 0,) | = (0;, — 0) sin 0j,.
s(a—0;,

If 0;, is close enough to the true elevation angle 0, we can consider the noise term of the
GPS baseline model as approximately normal. It is given as y — 0 and { — 0, thus making
the CLAMBDA method available. If 0; is far from the true elevation angle 0, the noise
term cannot be considered normal and the data vector on the left of Eq. (30) will mismatch
the baseline model, and the calculation results will be incorrect. In other words, these
conditions result in incorrect integer ambiguity vectors and baseline vectors. Basically,
step size 7 should be as small as possible.

Next, we can calculate the minimum of the ambiguity objective function F(a) for each
0; to find the optimal integer ambiguity candidate:

a; = arg {lreliZQF(a|0j). (32)

The most correct ambiguity candidate can be identified by traversing all the elevation
candidates. In fact, most of the optimal integer ambiguity candidates are incorrect, because
they are obtained using mismatched data. Only one, which is given by one or several 0;s
that are close enough to the true elevation angle, is absolutely correct. To find it, we can
search for the global minimum of the fixed ambiguity objective function; that is, for each
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0;, compare F (sz|9j) to determine the optimal candidate that makes the fixed ambiguity

objective function as the global minimum. See the following:

jo = arg min F(a/6;), ~N(o,n) <j < N(a, ). (33)
J

Note that the imposed horizontal constraints can be removed in this model, however, the
elevation search strategy requires greater computational effort related to the number of
sampling points. During our experiments with the Murata SCA100T inclinometer, we used
the following empirical formula:

0.050 + 0.01
N - [205001,

(34)
3 Ambiguity validation with real-time elevation constraint

Once the ambiguity vector a has been resolved successfully based on Eq. (4), all the SD
carrier phase equations can be expressed in compact vector and matrix notation as follows:

E(y’ +a) :/%S-x, D(y*) =Q? (35)

where each term is given as:

d);w s}zg s}z\, s;U1 )
¢ s sy sy 1 E
e R B R A (AR S
: R B b
U
o oSy s

Q,= 2diag(o§)71 ; 0(21,,2, Y “%é-n)

where Opi is the undifferentiated phase standard deviation of satellite i in cycle units. With
the resolved ambiguity vector a, the conditional LSs solution for x can be written as:

-1
*a) =21 (570;'s) 87Q;' (" +a) (36)
and the variance—covariance matrix is given by:
-1
Qi) = /1 (STQ<}IS) (37)

Thus, heading i/ and elevation 0¢ can be computed from the baseline coordinates bg,
by, and by

— bE _ bU
l//c = tan ! <E)’ Oc = tan ! (— W) (38)

where subscript C denotes that the attitude angle is derived from the compass baseline
solution. Heading and elevation accuracy can also be estimated as follows (Park et al.
1997; Chen et al. 2012):
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2 (cos l//c)zaé + (sin ‘//0)2‘712\/

G5, = 39
o P2(cos 0)* (39)

,  (sinyesin0c)*62 + (cos Y sin Oc) a3 + (cos 0@)26%]
O5p = 2 . (40)

Equations (39) and (40) imply that the accuracies of heading and elevation increase as the
baseline length increases. Baseline placement can also affect GPS compass accuracy, since
heading and elevation errors are related to baseline vector direction.

Note that the elevation can also be obtained from the inclinometer, for which the
measurement is independent of the ambiguity vector. To some extent, once the ambiguity
vector a is resolved correctly, the measured elevation of the inclinometer should be con-
sistent with the computed elevation derived from the GPS compass. Wrongly resolved
ambiguities may result in unacceptably large baseline vector errors, however, thus making
inconsistent elevations possible. Although the inclination measurement already drives the
ambiguity resolution process, there is no guarantee that the correct ambiguity candidate is
identifiable. In order to evaluate the consistency of the two elevations, the difference
should be considered:

D=0c—a=(0+00)—(0+4+w,)=030—4—w, (41)

For land vehicle applications, the non-linearity error can be neglected. Regardless of install
error, then, the variance of the elevation difference is written as follows:

Gé = 0%0 + ai. (42)

One can set a threshold with 3-sigma (3-standard error), for example, to determine whether
or not the ambiguity resolution has been resolved correctly.

4 Integrated GPS/inclinometer compass system (IGICS) and experiment
4.1 IGICS design and implementation

To test the proposed method, we constructed an integrated GPS/inclinometer compass
system (IGICS). In order to implement the IGICS at relatively low cost, two U-Blox LEA-
6T receivers and one Murata SCA-100T-D02 inclinometer were utilized for the hardware

platform. The U-Blox LEA-6T receiver provides raw measurements including carrier
phase and code, is cost-effective, and is already commonly used for time service and

Fig. 1 Designed hardware board
for U-Blox LEA-6T receiver

eiblox. ® (©)

LEA-6T-1-001 6
AR
26234200510 3/42
10049&%01 001

41 gty Reseraes
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attitude determination. The hardware of the LEA-6T module was integrated very carefully
to ensure favorable performance. The LEA-6T module and single-receiver hardware board
are depicted in Fig. 1.

The SCA-100T-D02 is a MEMS-based dual axis inclinometer that provides instru-
mentation-grade performance and measuring ranges £90° with a 0.07° digital output
resolution. Dual axis inclination measurements (X and Y) assist the GPS attitude deter-
mination system (with at least two baselines) and only the X-axis measurement is nec-
essary for the GPS compass system. Low-temperature dependency, high resolution, and
low noise, together with robust sensing element design, made the SCA-100T an ideal
choice for IGICS. The Murata inclinometers we used are insensitive to vibration due to
their over-damped sensing elements, and can withstand mechanical shocks of up to
20,000 g.

To provide a sufficiently accurate elevation angle for IGICS, microcontrollers such as
those in the STM32 family can be utilized for data communication with the serial
peripheral interface of the SCA-100T-D02; the output rate of digital elevation can reach
10 Hz. Figure 2 demonstrates the Murata SCA-100T-DO02 inclinometer and the hardware
board we used for elevation sensing. We implemented the proposed method in C language
and applied it to real-time measurements from IGICS with 1 Hz output. All raw mea-
surements of LEA-6T receivers and SCA100T-D02 were processed by ARM Cortex-A8
processor, and for convenience, the raw data and final results were sent to the computer via
a Bluetooth link. During real-time application, current GPS measurements must be com-
bined with current inclinometer measurements—high-rate measurements helped reduce the
synchronization error.

To minimize baseline length measurement error, the IGICS was equipped with two
geodetic antennae fixed on two ends of a rigid pipe. Different baseline lengths were
achieved by varying the length of the pipe, which contained the two GPS receivers and
SCA-100T hardware board fixed on the inside. A diagram of the IGICS with 0.54 m
baseline length is shown in Fig. 3. We should point out that we carefully attempted to
make the baseline vector parallel to the mounting plane and calibrated the inclinometer
installation error meticulously.

4.2 IGICS static experiments
In order to verify the performance of GPS compass attitude determination with the aid of

MEMS-based inclinometer, two groups of static experiments were achieved. One was done
with different elevations and the other was done with different baseline lengths.

Fig. 2 Murata SCA-100T-D02 inclinometer and the hardware board for elevation sensing
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Fig. 3 Integrated GPS/inclinometer compass system (54 cm baseline)

In the first experiment, six static tests were performed in 6 days and each group of data
collected over the same time span each day. The number of visible satellites was thus
nearly identical for each test. To avoid any strong multipath interference, all data was
collected on the roof with the baseline pointing to the northeast but at varying elevation for
each test. Table 1 summarizes the experimental success rates for different elevations.
During about half an hour of observation, the number of available satellites was usually
eight (though a few dropped to seven or rose to nine.) The stochastic model of GPS carrier
phase observables can be specified by the elevation-dependent model described in
Egs. (13) and (14).

We assumed that ¢ i = 10000 60 this empirical value worked well in each of the tests.
To satisty weighted constraint model (18), the standard derivation of measurement for
inclination white noise was 0.05°.

As shown in Table 1, the success rates of the proposed method (Sect. 2.1) declined as
baseline elevation increased. In fact, the approximations of Egs. (7)—(9) decreased as
baseline placement grew farther from the plane of the local geodetic horizon, thus
impacting the correctness of the model. The size of the non-linearity error, which is
dependent on the tilt angle of the baseline vector, may have also contributed to these
results—as mentioned above, higher tilt angle results in larger non-linearity error. Table 1
also shows where the elevation difference of the GPS compass and MEMS-based incli-
nometer diverged as tilt angle increased. That said, for land vehicles, the baseline often
approximately lies in the plane of the local geodetic horizon and inclinometer non-linearity
error can be neglected, so the application would still guarantee high success rates in
practice.

Table 1 Comparison of ambiguity success rates for IGICS with different elevations (0.54 m baseline, the
approach given by Sect. 2.1)

Group Elevation of Heading of Success rate of Elevation of Elevation
compass (°) compass (°) compass (%) inclinometer (°) difference (°)
Mean (o) Mean (a,,) Mean (o,)

1 0.52 (1.18) 44.58 (0.58) 99.89 0.43 (0.040) —0.09

2 5.85(1.22) 44.65 (0.58) 99.60 5.80 (0.041) —0.05

3 12.11 (1.17) 44.64 (0.60) 97.67 12.21 (0.042) 0.10

4 18.09 (1.34) 44.71 (0.76) 94.94 18.28 (0.042) 0.19

5 30.31 (1.71) 44.55 (0.83) 87.28 31.65 (0.049) 1.34

6 42.03 (1.68) 44.79 (0.89) 70.83 43.86 (0.055) 1.83

@ Springer



124 Acta Geod Geophys (2017) 52:111-129

For the second experiment, another six static tests were performed with the same
method described above but with different baseline lengths (pointed northeast) placed in
the local geodetic horizon plane for each test. Table 2 summarizes the experimental suc-
cess rates for different baseline lengths, which decreased as baseline length increased.
Lengthier baseline likely worsened the success rate because it increased the variance
components, as described in Eq. (13), and/or because the uncertainty of the horizontal
baseline length constraint significantly increased for the weighted model (17). These
results reflect the fact that shorter baseline is better suited to success rate in land vehicles,
however, since heading and elevation accuracies decrease as baseline length decreases, a
balance should be achieved for the baseline length between success rate and accuracy.

In order to make a proper comparison between three approaches discussed in Sect. 2,
we conducted two additional experiments—one using the same data listed in Table 1
(results are shown in Table 3) and another designed to compare the success rates among
approaches in a case with high elevation. A new group of data were collected with different
baselines and a 45-° elevation angle (results are shown in Table 4.) In both Tables 3 and 4,
“Approach I denotes the method described in Sect. 2.1, “Approach II” the method from
Sect. 2.2, which uses the horizontal constraint without inclinometer measurements (with
the most likely correct candidate identified by penalizing those baseline solutions that
result in large inclinations, and ¢ of Eq. (23) set to 3,) and “Approach IIIA” and “Ap-
proach IIIB” both refer to the method described in Sect. 2.3 which exploits inclinometer
measurements without imposing horizontal constraints; the step size was 0.002 radians for
Approach IITIA and 0.001 radians for Approach IIIB.

Tables 3 and 4 both show where Approach III had the highest success rates. Smaller
step size helped improve the success rate, especially at longer baselines. For Approach II,
the results obtained almost matched Approach I, but only at small elevations. For
Approach I, complexity was lower than Approach III but success rates neared those of
Approach III only at short baselines and small elevations. Approach III proved better suited
than other approaches to various baseline lengths and elevations, but requires complex
computation. Therefore, after taking into account both the high success rate and low
computational burden, a combination of Approach I and Approach III is the most viable
method for practical application.

Note that the elevation angle can be measured by inclinometer, although it may
introduce bias at large elevation. Approaches I and III both use an inclinometer, so we can
preset a threshold value according to baseline length to control the corresponding success

Table 2 Comparison of ambiguity success rates for IGICS with different baselines (the approach given by
Sect. 2.1)

Baseline Elevation of Heading of Success rate of Elevation of
length (m) compass (°) compass (°) compass (%) inclinometer (°)
Mean (o) Mean (%zp) Mean (0,)
0.540 0.34 (1.16) 44.46 (0.56) 99.94 0.37 (0.041)
1.003 0.38 (0.63) 44.51 (0.31) 99.83 0.36 (0.038)
1.499 0.35 (0.42) 44.67 (0.23) 99.11 0.37 (0.041)
2.001 0.34 (0.32) 44.49 (0.17) 98.33 0.37 (0.040)
2.498 0.34 (0.27) 44.52 (0.13) 96.07 0.36 (0.041)
3.003 0.36 (0.21) 44.50 (0.10) 95.02 0.37 (0.039)
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Table 3 Success rate comparison between the three approaches presented in Sect. 2 for the same data used
in Table 1

Group Approach I (%) Approach II (%) Approach IITA (%) Approach IIIB (%)
1 99.89 99.78 99.89 99.94
2 99.60 96.89 99.83 99.94
3 97.67 83.94 99.67 99.78
4 94.94 68.44 99.83 99.83
5 87.28 56.22 99.56 99.89
6 70.83 43.17 99.61 99.72

Table 4 Success rate comparison between the three approaches presented in Sect. 2 for a 45-° elevation
with different baseline lengths

Baseline length (m)  Approach I (%)  Approach II (%)  Approach IIIA (%)  Approach IIIB (%)

0.540 67.95 42.06 99.50 99.78
1.003 66.06 42.61 99.06 99.38
1.502 59.22 39.89 98.78 99.33
1.998 50.83 41.78 98.06 99.11
2.497 44.61 39.56 97.56 98.39
3.001 38.28 35.94 95.72 97.27

rates of both approaches. As an example, we set the threshold as 6° for 0.54 m baseline
(Table 1) and found that if the measured elevation of the inclinometer is larger than the
threshold, Approach III improves the system’s reliability—if not, Approach I can be
applied to reduce the computational burden. Because land vehicles typically operate at low
elevation, large computational burden is usually avoidable.

4.3 IGICS dynamic experiment

We tested the proposed method’s ability to process actual data during a dynamic experi-
ment with the IGICS. The experiment was conducted at the Civil Aviation University of
China on June 27, 2015 (GPS week 1850; TOW: 532454-533186). The IGICS with 0.54 m
baseline was mounted on a rotating platform with rotational velocity of about 3 deg/s, as
shown in Fig. 4, then GPS observations were collected for about 14 min with a 1 Hz
sampling rate. Figure 5 demonstrates the attitude results of the GPS compass as well as the
elevation measured by the inclinometer. Results showed that the periodic heading coin-
cided with the periodic motion of the IGICS. The elevation also presented a certain
periodicity due to the undulating planes, however, the elevation fluctuation amplitude of
the GPS compass was much larger than that of the inclinometer because the very short
baseline resulted in low accuracy, but inclinometer accuracy is not related to baseline
length or placement. In order to further verify the periodicity of the baseline vector, the
resolved east, north, and up baseline components were as shown in Fig. 6 during the
dynamic experiment. All baseline components were resolved by Eq. (23). The
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Fig. 4 Dynamic experiment
platform for IGICS
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Fig. 5 Attitude results of dynamic experiment

constellation of satellites in the experiment was as shown in Fig. 7, and each satellite was
discernible by its PRN number. The results suggest that for practical application of small-
sized land vehicles, the elevation accuracy of the inclinometer is higher than that of the
GPS compass—but for larger tilt angle or longer baseline, the accuracy and precision of
the GPS compass is higher.
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Fig. 7 Constellation of satellites 0

06

270

@ Springer



128 Acta Geod Geophys (2017) 52:111-129

5 Conclusions

In this study, we developed a single-frequency, single-epoch GPS attitude determination
method based on inclinometer elevation measurements for land vehicle applications. The
proposed method was designed to obtain high success rates by integrating MEMS-based
inclinometer measurements into the GPS compass model. The baseline elevation measured
by the inclinometer, in essence, provides a necessary constraint to assist the ambiguity
resolution process; under this constraint, the original baseline vector is reduced to 2D from
3D space so the ambiguity fixed solution can be resolved by weighted constrained ILSs.
Experimental results showed that high success rates were indeed achievable for land
vehicles equipped with very short baselines, however, reliability decreases as baseline
increases at larger elevations. We proposed a solution to this problem by exploiting
inclinometer measurements based on elevation search without imposing horizontal con-
straints. In short, combining both approaches is a viable method for practical applications.
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