Pacific Symposium on Biocomputing 15:281-292(2010)

3D-BLAST: 3D PROTEIN STRUCTURE ALIGNMENT, COMPARISON, AND
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This paper presents a novel sequence-independent method of aligning protein structures using three-dimensional spherical polar
Fourier (SPF) representations of protein shape. The approach is demonstrated by clustering subsets of the CATH database for each of
the four main CATH fold types, and by searching the entire CATH database of some 12,000 structures using several protein structures
as queries. Overall, the automatic SPF clustering approach agrees very well with the expert-curated CATH classification, and ROC-
plot analyses of the database searches show that the approach has very high precision and recall. Database query times can be reduced
considerably by using a simple rotationally-invariant pre-filter in tandem with a more sensitive rotational search with little or no
reduction in accuracy. Hence it should soon be possible to perform on-line 3D structural searches in interactive time-scales.

1. Introduction

The BLAST and FASTA sequence alignment programs are probably considered by most biologists as the standard
tools for searching genomic nucleotide or amino acid sequence databases. However, it is known that in nature
protein structure is more conserved than protein sequence. Hence, structural alignments can provide significant
insights about protein function and can help classify protein families into functional super-families [1]. Considering
the large and rapidly growing number of three-dimensional (3D) protein structures available in the Protein Databank
(PDB [2]), it is important to develop new methods to align and compare protein structures [3]. Current protein
structure alignment methods such as SSM [4], CE [5], VAST [6], SSAP [10], and DALI [1] typically use graph-
matching and dynamic programming techniques to identify and align cliques of backba@tents or secondary
structural features. However, these approaches are slow compared to conventional sequence alignment methods.
Furthermore, finding the best way to perform 3D structural alignments remains an open question [7]. The most
widely used protein structure classifications are the CATH [8] and SCOP [9] databases, both of which are curated by
human experts. In CATH, the classification is initially performed using SSAP, whereas SCOP relies more on visual
inspection by the curators. In both cases, it would be desirable to be able to assemble and update structural
classifications in a more automated way.

In a significant step towards performing protein structure comparisons more efficientlgt lsllad 1] and Sael
et al. [12] showed that the 3D shapes of large protein molecules could be compared and classified very rapidly using
special 3D pose-invariant descriptors derived from spherical harmonic (SH) and Zernike polynomials [13]. Hence
this kind of approach offers the possibility of being able to search a 3D database of protein structures very rapidly.
Similarly, it has been shown previously that the related spherical polar Fourier (SPF) representation provides a fast
way to perform protein-protein docking correlations [14,15]. However, until now, the SPF approach has not been
used to superpose and compare protein shapes. Conceptually, the use of Zernike descriptors has close parallels with
the SPF representation, although Malal. and Saedt al. did not exploit the special rotational properties of the SH
basis functions. Hence their approaches can detect similar protein shapes, but cannot superpose them. There is
growing interest in the use of SH-based shape representation techniques [16-25]. The novelty of our SPF
representation compared to other SH-based approaches is its use of orthonormal Laguerre-Gaussian (GL) radial
functions to give a 3D density-based representation of molecular shape. This removes the requirement that
molecular surfaces should be star-like with respect to the chosen coordinate origin [26], and it allows both rotational
an translational correlation expressions to be calculated analytically [27]. In this paper, we demonstrate that SPF
correlations may be used to superpose and compare protein structures in an efficient and completely sequence-
independent manner. We present results obtained by clustering multiple protein structures selected from the CATH
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database, and we demonstrate the utility of our approach by performing queries of single protein structures against
the entire CATH database of some 12,000 protein structures.

2. Methods

2.1. Spherical Polar Fourier Shape Density Functions

In the SPF approach, protein shapes are represented as 3D density functions expressed as expansions of orthonormal

basis functions:
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whereN is the order of the expansioR,,;(r) are Laguerre-Gaussian radial functiopns,(9, ¢) are real spherical
harmonics, and,,;,, are the expansion coefficients which are calculated numerically as described previously [14].
Figure 1 shows the SPF representations of a pair of similar nitrogenase domains at several expansion orders.
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Figure 1. Two similar nitrogenase proteins, represented as SPF expansions at expansiNr®rdérsl5, and 20. The protein in the top row is
from azotobacter vinlandii (PDB code 2MIN). The protein in the bottom row is from clostridium pasteurianum (PDB code 1MIO).

In order to superpose a pair of protein structures we calculate a rotation-dependent Carbo-like similarity score
SroTusing:
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Conceptually, one protein is held fixed and a six-dimensional (6D) rotational/translational search over positions of
the second protein is performed. However, in practice it is more efficient to implement the search using one
translational and five Euler angle rotational coordinates [14].

2.2. Rotationally Invariant Fingerprints

Protein superpositions can be calculated relatively quickly by using FFT techniques to accelerate the 6D search [14].
However, it is necessary to develop even faster comparison techniques in order to search very large 3D structural
databases. Noting that expansion coefficients with the same valuastrahsform amongst themselves under
rotation, it is natural to use the vector interpretation of SH coefficients to construct rotationally invariant (RI)
fingerprints (RIFs) as:



Pacific Symposium on Biocomputing 15:281-292(2010)

(3)

If the coefficientsa,, define the shape density of a protein, then the rotation-invariant descpttogether
encode the protein’s radial mass distribution. By analogy to Eq 2, the RIF similarity score is written as:
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2.3. Implementation

Our approach has been implemented in a C program called 3D-Blast. We have used 3D-Blast to calculate and store
SPF coefficients for all the proteins of the CATH database. However, the approach could equally be used to store
SPF descriptions of other protein structure databases such as SCOP, for example. Given a protein query structure in
PDB format, 3D-Blast will calculate its SPF representation and then use only the resulting SPF expansion
coefficients to search its database.

2.4. Data Preparation

In order to evaluate the SPF approach, clustering experiments were performed on selected proteins from the CATH
database [8,10], and the entire CATH database was searched using SPF density functions as queries. In CATH,
proteins are assigned to a super-family according to their fold class, architecture, topology, and homology. This
classification scheme is essentially hierarchical, with the top-level class consisting of four possible fold types: All-
All-B, o+B, and irregular. Each of the four levels in the CATH hierarchy is identified by a numeric code.
Additionally, CATH names each protein according to its four-letter PDB code, its chain letter, and the number of
domains (e.g. 1IOMAO02). These naming conventions are followed here. For each clustering experiment, five or six
super-families with the same architecture were selected in such a way as to give around 30 protein structures for
each CATH fold class. Hence the aim of these experiments is to assess how well our approach can identity proteins
with the same topology and homology within a given fold architecture. The details of the super-families used here
are shown in Table 1.

For the initial database search experiment, asparagine synthetase (PDB code 12AS, CATH super-family
3.30.930.10) was selected as the query structure. The 3.30.930.10 super-family has 27 members, and these were
treated as “positives” while the remaining proteins in the database were treated as “negatives” with respect to the
query. If a scoring function were to reproduce exactly the CATH classification, the 27 positives would appear at the
top of the ranked list. However, such an ideal outcome is seldom observed in practice. Hence Receiver-Operator-
Characteristic (ROC) curves [28] are used to analyse objectively the precision/recall characteristics of the scoring
functions. In a ROC analysis, each element of the ranked list is considered in turn, and the number of positives and
negatives in the sublists to each side of the current element are counted. Here, we call the high similarity sublist the
“hit list”. A true positive (TP) is assigned when an element in the hit list contains an original positive, and a false
positive (FP) is assigned if that element contains a negative. Conversely, a true negative (TN) is assigned when an
original negative falls outside the hit list, and a false negative (FN) is assigned if that position is occupied by a
positive member. ROC plots are produced by plotting the true positive rate (TPR) on the y-axis against the false
positive rate (FPR) on the x-axis, where TPR and FPR are given by:

TPR = ———— ®)

FPR= ——— (6)
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The quality of a scoring function can quickly be assessed from the shape of a ROC plot. For example, a random
scoring function would give a diagonal line (TPR=FPR), whereas a perfect scoring function would give a horizontal
line (TPR=1) with a maximum value for the area under the curve (AUC=1).

Table 1. The 23 CATH super-families used in the four clustering experiments, grouped according to class and architecture. For each super-family
the name of each representative protein is provided according to the CATH naming convention.

Class + Topology + Protein Name Representative
Architecture Homology and Function member
230.10 Cytochrome p450-Terp; Domain 2 liomA02
All-a 120.10 Bifunctional Trypsin/Alpha-Amylase Inhibitor 1beaA00

Orthogonal Bundle 225.10 NK - Lysin 1191A00

(2.10) 167.10 Regulator of G-Protein Signalling 4; Domain 2 1dk8A02
30.10 DNA Binding (I) , subunit A 1grvA00
109.10 Umud Fragment, subunit A 1jhfB0OO
150.10 Urease, subunit B 1ejxB00
All-B 110.10 Cysteine Knot Cytokines, subunit B 1g47A00
Ribbon 77.10 Hemagglutinin; Chain A, domain 2 1jsdA02
(2.10) 160.10 Vascular Endothg:ﬂi%o&:qgﬁ]ctor - 165, Hepar|n - 1kmxA00
10.10 Seminal Fluid Protein PDC - 109 (Domain B) 1h8pA02
130.10 P-30 Protein 1dy5A00
atP 170.10 Elastate; Domain 1 1u4gA01
Roll 150.10 DNA Polymerase Ill; Chain A, Domain 2 10k7A01
(3.10) 110.10 Ubiquitin Conjugating Enzyme 2grrA00
120.10 Flavocytochrome B2; Chain A; Domain 1 1cyoAO0
280.10 MYOD Basic-Helix-Loop-Helix Domain, subunit B 1nlwEOO
290.10 Bacteriorhodopsin Fragment 1bctA0O
Irregular 410.10 Factor Xa Inhibitor 1g6xA00
(4.10) 490.10 High-Potential Iron-Sulfur Protein; Chain A liuaAOO
400.10 Low-density Lipoprotein Receptor 2fcwB02
320.10 Dihydrolipoamide Transferase 1w85100

3. Reaults

3.1. Expansion Resolution and Protein Superposition

It was shown previously that SPF expansions of oktle25 are required for protein-protein docking correlations

[14]. However, from our previous results on small-molecule virtual screening [29], we expected that considerably
lower order expansions would be sufficient to calculate satisfactory protein shape-density superpositions. In order to
test this hypothesis, we selected four example protein pairs with sequence identities ranging from 28% to 43%
previously identified by Levitt and Gerstein [30], and we superposed them using different expansion orders. The
root mean square deviation (RMSD) for each superposed pair was calculated between correspoattings C
identified by ProFit [31]. Figure 2 shows the RMSD as a function of the expansiorN\order



Pacific Symposium on Biocomputing 15:281-292(2010)

40 4
35 3.5
30 3
25 — 2.5
[=] o
220 2,
o [
15 E
=15
10
1
5
0 0.5
1234567 8 91011121314151617181920 0
Order of the expansion N 123456 7 8 91011121314151617181920
—— 2MIN-IMI0  —@— 1BGA- 1E70 1AYX-1GAI  —3— 1CYD - 1YBV Expansion Order N

Figure 2. On the left, the RMSD values of four protein pairs are plotted against the expansidh Ordéne right, the time per pair-wise search
is plotted against the expansion orbler

Figure 2 shows that using an expansion orde 88 is generally sufficient to obtain good superpositions (with
RMSDs ranging from 2A to 5A), requiring about 0.25 seconds per superposition. However, we choose to use
expansions to ordéM=6 in order to disambiguate cases where flipping about an axis might give similar scores [29].
Figure 2 shows that calculatilddr6 correlations is only marginally more expensive than usi® Figure 3 shows
theN=6 superposition of the nitrogenase proteins shown in Figure 1.

Figure 3. The superposition of a pair of nitrogenase proteins calculatedNa8n§PF correlations, shown as ribbon cartoons (left), backbone
traces (middle), and as 3D SPF density expansions to e (right). The protein in the top row is from azotobacter vinlandii (PDB code
2MIN). Top row: PDB code 2MIN; middle row PDB code 1MIO; bottom row their superposed orientation. The two proteins have a sequence
identity of 43%.

3.2. Clustering Protein Structures

For the All-u clustering experiment, five super-families were selected, as listed in Table 1. For each pair of proteins
in this set, a correlation search was performed to find the orientation that gives the maximum Carbo similarity score
(Eq 2). Ward’s agglomerative clustering [32] was then applied to the resulting table of pair-wise similarity scores.
The clustering results in Figure 4 show that the 1.10.230.10 and 1.10.167.10 super-families are correctly assigned to
two separate groups. Although there exist some differences in the clusters produced for the remaining super-
families, there is still a very good agreement between the calculated SPF clusters and the CATH hierarchy. The most
notable exception is that suposin (PDB code 1N69) is grouped with the 1.10.30.10 super-family. From visual
inspection of Figure 4 it can be seen that the overall fold of suposin is much closer to that of the 1.10.30.10 super-
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family than the CATH assignment of 1.10.225.10. This suggests that the automatic SPF classification could
potentially help the CATH curators resolve unusual or ambiguous cases.

For the All§ class, six super-families were selected. As can be seen in Figure 5, SPF clustering correctly
distinguishes all six groups, but two proteins are misplaced according to the CATH classification. These are the
carboxy-terminal LIM domain (PDB code 1CTL) and the influenza virus hemagglutinin (PDB code 2VIR) which
are grouped with the singleton heparin-binding domain (PDB code 1KMX). This seems to occur because 1CTL and
2VIR are calculated to be less similar to the other members of their respective CATH super-families, and they are
grouped with 1IKMX largely because all three proteins have similar steric bulk.

For thea + B class, five super-families were selected. From these five super-families the 3.10.130.10 and
3.10.120.10 super-families are correctly assigned into two groups, as shown in Figure 6. The other three super-
families (3.10.110.10, 3.10.150.10, and 3.10.170.10), present a similar case toctlestilks, whereby one super-
family group (3.10.110.10) is split into two sub-groups and two super-family groups (3.10.170.10 and 3.10.150.10)
are merged into one. Nonetheless, despite these differences, the overall consistency of the SPF clustering with the
CATH hierarchy is clearly very good.

For the irregular class, six super-families were selected. As in tHgedémple, SPF clustering is completely
consistent with the CATH hierarchy. However, two proteins are misplaced with respect to the CATH classification,
namely bikunin from the inter-alpha-inhibitor complex (PDB code 1BIK) and the tick anticoagulant peptide (PDB
code 1DO0D), which are both grouped with the 4.10.490.10 super-family. This seems to be due to the difference in
size between those proteins and the rest of their super-family of factor XA inhibitors. For example, Figure 7 shows
that bikunin has a repeat of the same motif as the other factor XA inhibitors. Hence, it is sterically too large to be
clustered with the other XA inhibitors, and is instead placed with the larger proteins of the 4.10.490.10 super-family.
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Figure 4. SPF clustering results of the Altlass. Left: the dendrogram obtained udits® with five clusters; Right: the corresponding groups
and the representative proteins for each group.
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3.3. Database Searching

Because it is relatively time-consuming to calculate high order comparisons, different rotational and rotation-
invariant parameters were tested to explore the extent to which the speed of queries on a large database can be
improved while still performing accurate searches. In each case, the asparagine synthetase structure (PDB code
12AS, CATH super-family 3.30.930.10) was superposed onto each protein in the databasl=6siS8&F
correlation searches, and the database structures were ranked in order to similarity to the query. Figure 8 shows the
resulting ROC curves obtained for a range of expansion orders when querying the CATH database, from which it
can be seen that our approach gives very good precision and recall. Figure 9 shows the 27 members of this super-
family, which were treated as true positives with respect to the query. To analyse the results further, the TPs were
clustered into 5 groups. The query belongs to group 1 and when using an expansion Meeradf members of

this group were found in the top 10 hits. groups 2 and 3 have siprilaeet structures to group 1, but different
arrangements af-helices. All proteins in groups 2 and 3 are ranked in the top 20% of the database. All proteins in
group 4 are ranked in the top 30%. The singleton group 5 is an obvious outlier due to itshektal domain.

Figure 8 also shows results for the RIF scoring function. Compared to the rotation-dependent scoring function,
the RIF function generally performs remarkably well. However, the two functions behave rather differently on the
first percentages of the database. For example, the rotational searches give a TPR of around 40% on the first 0.1% of
the database, whereas the RIF searches give a TPR of only around 10%. Hence, the RIF function is not sufficiently
sensitive to be used on its own but it could usefully be used as a fast pre-filter on the database so that the more
expensive rotation-dependent function is only applied to the most promising candidates. In order to test the notion,
the CATH database was searched using the RIF and rotational scoring functions in tandem using several protein
structures as queries: asparagine synthetase, ALF4-activateg@®@iein (PDB code 1AGR), chicken cysteine-rich
protein (PDB code 1B8T), dihydrolipoyllysine-residue acetyl transferase (PDB code 1W4E), and UbcH7 (PDB code
1C4Zz). Using a RIF pre-filter similarity threshold of 0.99, which selects from 2% to 15% of the database for
rotational re-scoring, each tandem search takes less than 10 minutes compared to 75 minutes for full rotational
searches on a 2.3GHz Pentium Xeon processor. Figure 10 shows the resulting ROC plots for the rotational, RIF, and
the tandem searches. This figure shows that tandem searches achieve the same high level of performance as the
rotational searches. The very high precision/recall values further support the utility of the SPF scoring functions.
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Figure 5. SPF clustering of the Allclass. Left: the dendrogram obtained uditsg with six clusters; Right: the corresponding groups and the
representative proteins for each group.
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Figure 6. SPF clustering of + 3 class. Left: the dendrogram obtained ush¥d with five clusters; Right: the corresponding groups and the
representative proteins for each group.
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4. Discussion and Conclusions

It has been shown that low resolution SPF expansions provide a reliable and fast sequence-independent way to
superpose and compare protein structures. The clustering results of the four CATH super-families show that SPF
clustering generally agree with the CATH classification. The database search results show that a large protein
structure database can be queried accurately using SPF expansions d=6tderorder to accelerate further the

scoring calculation, the use of a simple rotationally invariant scoring function was investigated. Our RIF scoring
function is significantly faster to calculate, but it is less precise than a rotational search. Nonetheless, the RIF
function may still be used effectively as an initial filter when searching large databases. Using the RIF function in
tandem with the rotational function to re-score only the top matches of the database gives very promising results.
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Thus tandem searches are much faster than full rotational searches, yet the recall/precision is almost equivalent.
Currently a limitation of our approach is that proteins larger than a typical domain of around 100-150 residues are
not represented well due to the exponential decay of the GL functions at large radial distances. However, we are
working to extend the resolution range of our approach to be able to describe proteins of any size, and we are
enhancing the approach to be able to detect the presence of symmetrical domains and repeated motifs, for example.
We also aim to develop a web-based interface for general use by the biological community. As well as being able to
calculate rapidly sequence-independent protein structure superpositions, we believe that the SPF approach could
provide an automatic and objective way to enhance the quality of protein structure classifications.
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