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Several influential studies of genotypic determinants of gene expression in humans
have now been published based on various populations including HapMap cohorts.

The magnitude of the analytic task (transcriptome vs. SNP-genome) is a hindrance
to dissemination of efficient, thorough, and auditable inference methods for this

project. We describe the structure and use of Bioconductor facilities for inference

in genetics of gene expression, with simultaneous application to multiple HapMap
cohorts. Tools distributed for this purpose are readily adapted for the structure

and analysis of privately-generated data in expression genetics.

1. Introduction

Figure 1 depicts findings in a general population study of genetics of gene
expression. On the left we plot distributions of expression of gene HLA-
DRB1 (measured on an Illumina WG-1 platform, as distributed by Sanger
Institute in the Genevar project1) against genotypes for SNP rs9271367,
assayed in 60 individuals from the CEU (central european ancestry) CEPH
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HapMap cohort. On the right we plot a gender-adjusted measure of associ-
ation of HLA-DRB1 expression with SNP rare allele counts for all phase II
HapMap SNP (3.9 million loci). Interest in HLA-DRB1 stems from the re-
port of Schadt et al.2 who used a cohort of human liver samples to identify
an eQTL at rs9272723. We display the third most-associated SNP (gender-
adjusted nominal p = 1.8× 10−9) in the CEU cohort as it decomposes the
expression distribution among three genotype groups most effectively. This
association was not reported in the multipopulation eQTL tables published
by Stranger et al.3, presumably for lack of formal genome-wide significance.
It is noteworthy that the immortalized B-cell samples assayed by Stranger
et al. carry signal similar in nature to that reported for the liver samples by
Schadt et al.2 Using tools described in this paper, it is straightforward to
show that among 60 founders in the Yoruba CEPH cohort, the rare allele
copy number for rs9271367 is also associated with HLA-DRB1 at a nominal
p of 1.5×10−7, but that the primary distinction in expression distributions
falls between homozygous common and all others.
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Figure 1. Left: y axis: Expression of HLA-DRB1 in 60 CEU HapMap individuals; x

axis: genotype groups formed using SNP rs9271367. Right: y axis: measure of associa-
tion between HLA-DRB1 expression and rare allele count (− log10 p-value for Cochran-
Armitage test for trend); x axis: locations of HapMap Phase II SNP according to build

36 release 23a.

In the work of Stranger and colleagues “a detailed association analysis
identified at least 1,348 genes with association signals in cis and at least
180 in trans”. The analyses involved filtering of expression probes on the
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basis of overall “variance and population differentiation”, filtering of SNPs
on the basis of minor allele frequency (confined to 5% and above in all
CEPH cohorts) and considered both linear regression and rank correlation
measures of association between allele counts and expression, applied only
to unrelated individuals. The trans investigation was limited by confin-
ing attention to nonsynonymous SNP known to have cis-associtions, SNP
thought to be involved in splicing (via Ensembl v41 annotation), and SNP
found in sequences defining microRNA.

The combination of Genevar and HapMap resources provides potent
tools for increasing our knowledge of genomic structures contributing to
expression variation. A number of the steps taken in the pioneering
analyses of Stranger et al. constitute concessions to computational, in-
ferential and annotational barriers that will be lowered as research and
computational prowess mature. We have undertaken in Bioconductor
(www.bioconductor.org) to design and disseminate data structures, algo-
rithms, and concrete software packages that simplify research into genetics
of gene expression, both with public Genevar/HapMap data, and with pri-
vately generated data.

2. Data structures

2.1. Abstract data types and methods

An instance x of the smlSet class (sml denoting SNP-matrix list) defined
in Bioconductor package GGBase satisfies the following basic constraints.
If x holds information on N individuals assayed for expression through G

features of a transcriptome-wide array, then exprs(x) returns a G×N ma-
trix of expression measures, and featureNames(x) is a G-vector of strings
encoding expression probe identifiers. If the individuals were genotyped on
Sc SNP loci on chromosome c, c = 1, . . . , C (or, more generally, c ∈ C

a set of tokens enumerating chromosomes in an organism), then snps(x,

c) returns an Sc × N matrix of SNP genotype assignments of the form
A/A, A/B, B/B, NA, where the latter token denotes unavailable genotype.
Identifiers for SNPs are retrieved using snpNames(x, c). Genome-wide
coordinates of SNP are retrieved using getSnpLocs(x).

A primary method for conducting genome-wide association tests for phe-
notypes defined by gene expression (mRNA abundance) measures is gwS-

npScreen, defined in the Bioconductor GGtools package. The call res =

gwSnpScreen(formula, smlSet [, chrnum]) returns an object res with
Sc inference results if chrnum identifies chromosome c; if chrnum is omit-
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ted, then the object has S =
∑

c Sc results. The type of analysis con-
ducted depends upon the formula passed. In general this will have the form
gs ~ x1 [+ x2 + ...] where gs is an instance of the GeneSet class de-
fined by Bioconductor package GSEABase, and the right-hand side is a lin-
ear predictor expressed in Wilkinson-Rogers notation, using N -dimensional
variables typically found in the phenoData component of the smlSet. These
variables can be employed in addition to the rare allele counts for all SNP in
K×S individual tests for association of SNP genotype with expression val-
ues for each of the K elements of the gene set gs. Finally, metadata about
expression reporters can be housed in a featureData component, metadata
about sample-level variable can be housed in a varMetadata component,
and the MIAME schema for the experiment can reside in an experiment-

Data component; designs for all these structures are defined in package
Biobase.

The entity res returned by gwSnpScreen is an instance of a formal
class that can be interrogated to identify most strongly associated SNP
(adjusting for covariates in the linear predictor), and that can be easily
visualized as in the left panel of Figure 1. Inferential summaries are those
generated by the snpMatrix package genome-wide association test functions
single.snp.tests (no covariate adjustment) or snp.rhs.tests (general-
ized linear model with covariates)4. The return object also includes call

information to indicate how it was created.

2.2. Statistical internals

Of primary interest are collections of p-values summarizing the statistical
strength of the genotype-expression associations. These are derived from
percentiles of the Chi-squared distribution with one d.f. evaluated at the
score statistic for the gene- and SNP-specific parameter βgs in the linear
model for log expression of gene g

Ygi = αg + βgscsi + γt
gsZi + egsi,

where csi is the copy number of the rare allele for SNP s on subject i, Zi is a
q-vector of confounders of the association betwen genotype and expression,
and egsi is a Gaussian disturbance with zero mean and constant (gene-
and SNP-specific) variance over all subjects. These p-values are provided
in nominal form; of them may be transformed to false discovery rates, or
to other corrected versions accounting for multiple comparisons, using the
multtest package of Bioconductor.

Pacific Symposium on Biocomputing 14:380-390 (2009)



September 19, 2008 13:36 Proceedings Trim Size: 9in x 6in carey09r

5

2.3. Concrete illustrations

The GGtools package provides an exemplar smlSet instance called hm-

ceuB36.2021:

> library(GGtools); data(hmceuB36.2021)

> hmceuB36.2021

snp.matrix-based genotype set:

number of samples: 90

number of snp.matrix: 2

annotation:

exprs: illuminaHumanv1.db

snps: snp locs package: GGBase ; SQLite ref: hmceuAmbB36_23a_dbconn

Expression data: 47293 x 90

Phenodata: An object of class "AnnotatedDataFrame"

sampleNames: NA06985, NA06991, ..., NA12892 (90 total)

varLabels and varMetadata description:

famid: hapmap family id

persid: hapmap person id

...: ...

isAdad: logical TRUE if person is a father

(9 total)

This structure is easy to work with interactively as it maintains information
on only two chromosomes, 20 and 21. The genome-wide data are available
separately in the GGdata package as hmceuB36.

Decoding and translation of expression reporter nomenclature is carried
out using standard platform-specific Bioconductor SQLite annotation data
packages. Maintenance of metadata on millions of SNP reporters is more
challenging. We investigated several approaches to storing and responding
to queries about SNP identifiers, locations, and allele assignments, including
web services and netCDF. At present we use SQLite tables; when an smlSet

instance is brought into scope, a SQLite connection is created and linked to
the instance for query resolution. The primary use cases of interest concern
visualization and computation of SNP-gene distances, and so only retrieval
of large blocks of locations (genome-wide or chromosome-wide) are provided
at present. Fine-grained queries on SNP metadata can be carried out using
special packages devoted to dbSNP data serialization or the Bioconductor
biomaRt package.

Pacific Symposium on Biocomputing 14:380-390 (2009)
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To conduct chromosome-wide inference on a small gene set, we create
hmFou, a restriction of the samples in hmceuB36.2021 to the cohort founders
(parents), and then:

> library(GSEABase)

> s1 = GeneSet(c("CPNE1", "RPS26"),

geneIdType = SymbolIdentifier())

> f1 = gwSnpScreen(s1 ~ male, hmFou, chrnum(20))

> f1

multi genome-wide snp screen result:

gene set used as response:

setName: NA

geneIds: CPNE1, RPS26 (total: 2)

geneIdType: Symbol

collectionType: Null

details: use 'details(object)'

there are 2 results.

the call was:

gwSnpScreen(sym = s1 ~ male, sms = hmFou, cnum = chrnum(20))

The formula dictates that each gene will be analyzed correcting for gender.
The resulting object is an instance of class multiGwSnpScreenResult, a list
of elements of class cwSnpScreenResult. Each of these elements can be
plotted, or interrogated for significant SNP.

Genome-wide inference on a gene set of even modest size can be me-
chanically challenging. In the phase II HapMap context, each gene yields
4 million inference measures, many of which are of no importance. The
gwSnpScreen method for gene sets can receive a snpdepth parameter. If
this parameter has value D, results on all SNPs but those yielding the D
smallest p-values, per chromosome, are discarded at the earliest possible
moment.

3. Knowledge-driven applications

3.1. In silico appraisal of putative eQTL

In Stranger’s published list of multi-population cis-eQTL, gene UTS2 on
chromosome 1 is distinguished as having SNP determinants of expression
only in the Asian populations CHB-JPT. Figure 2 depicts the findings,

Pacific Symposium on Biocomputing 14:380-390 (2009)
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chromosome-wide, in the CEU founders. The right-hand panel shows that
the tests statistics in customary use are sensitive to outlying values for
expression in small subsets of the data.
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Figure 2. Left: whole-chromosome association analysis for gene UTS in the CEU

founders. Right: the expression-genotype configuration that gives rise to the “many
eQTL” appearance in the whole-chromosome analysis.

3.2. Surveying a gene set for eQTL

The GSEABase package provides convenient facilities for defining and
translating gene sets between diverse nomenclatures. There are also facili-
ties for importing reference gene set collections such as the Broad Institute’s
msigDB. We chose to study the motif-based set V$FREAC2_01, containing
genes with promoter regions including a motif related to FOXF2 (forkhead
box F2), because this set includes a gene (CPNE1) with a well-documented
eQTL, and because FOXF2 is involved in activation of lung-specific pro-
teins. Probes on the Illumina WG-1 expression array for the CEU founders
were filtered to satisfy 1) membership in this gene set, 2) existence of unique
Entrez identifier, and 3) in the case of multiple probes sharing an Entrez
identifier, the probe with greatest IQR over all samples was retained. This
yielded 201 probes; at time of writing, 140 have been analyzed as described
here. Using genome-wide testing with snpdepth (as described above) set
to 500 per chromosome, each gene is analyzed for eQTL in about three
minutes on a Sun Blade with 8GB RAM.
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Figure 3 gives lightweight visualizations of per-chromosome distribu-
tions of assocation statistics for four genes from the FOXF2 gene set. Some
association statistic had to satisfy − log10 p > 6 to be included; HABP4
seems to possess a straight cis-eQTL; PIK3C2A has a complex appear-
ance; MCM7 appears to have a trans-eQTL; AKT2 may possess several.
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Figure 3. Left: whole-genome association analyses for four members of the FOXF2
motif-based gene set. Tick marks on upper bounding box are approximate location of

coding region for each gene for which eQTL were assessed.
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3.3. Combining SNP-expression association scores with

reference information on regulatory elements

Results of gwSnpScreen can be transformed to UCSC browser track in-
puts (WIG format) using the toTrackSet method in conjunction with the
rtracklayer package. Figure 4 shows a fairly coarse view of SNP and pu-
tative regulatory regions in the vicinity of CPNE1. There are many non-
synonymous coding SNP lying under the CNPE1-associated hump, along
with various locations where there is evidence of regulatory elements. Much
more information on functional impacts and correlates of polymorphic DNA
must be brought to bear to further our understanding of diversity in gene
expression.

Figure 4. UCSC browser with custom track based on tests for eQTL for CPNE1. The

score is − log10 p for the linear regression of log expression on copy number of SNP rare
allele.
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4. Discussion

In a recent survey of expression genetics, Williams and colleagues5 suggest
that the search for genetic explanation of expression variation is “some-
what simplistic”, citing the many non-genetic determinants along with the
wide variety of mechanisms by which genetic variation could affect gene
expression. These authors also identify a number of technical problems of
interpretation of eQTL statistics, including the effects of polymorphisms
in hybridization probes, expression array batch effects, and effects due to
expression array normalization. They complain that “a more disappointing
general observation is that the ability to combine independent studies, even
those carried out upon the same organism, is severely compromised by the
multiplicity of mapping panels, genetic markers, statistical methodology,
genes on arrays, and array platforms”.

The approach described in this paper to investigating the relationships
between expression variation and genotypic variation represents a step to-
wards facilitating broader integration of multiple experiments and multiple
forms of biologic metadata in studies of expression genetics.

• First, multiassay surveys of cohorts are represented in unified and
coordinated objects with relatively simple but rich query resolu-
tion support. These objects can contain hundreds of samples with
millions of SNPs and be manipulated interactively on commodity
hardware.
• Second, genome-wide statistical analyses of expression-genotype as-

sociations are conducted using high-level facilities (including gen-
eral covariate adjustments, and formulas involving gene sets as de-
pendent variables) with good performance thanks to detailed pro-
gramming with byte-level representations of SNP genotypes due
to D. Clayton (package snpMatrix ). These analyses also occupy
coordinated computational objects that may be programatically
transformed, queried, visualized as needed to identify biologically
important interpretations.
• Third, a specific mechanism for integrating expression-genotype

analysis results with biologic metadata available in the UCSC
genome browser has been created on the basis of the rtracklayer
package. The importation and visualization shown in this paper
are complemented by the bidirectional aspect of the browser inter-
face. Information on regulatory structures can be imported back
into R for numerical and statistical analysis, to permit detailed
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interpretation of observed cis- and trans- relationships.

It is well-acknowledged that much work remains to be done to create
knowledge from the results of expression genetics experiments. Transparent
and extensible computational architectures for representing and interpret-
ing these experiments will play a fundamental role in these efforts.
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