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A Greedy Algorithm for Finding the
Consensus Matching

We approximate the consensus matching by first mak-
ing a pass over the particle population, {m"}"_, to
retrieve the edges, e € m™, as well as the count for
each of the edges. We start with an empty matching,
cm = . The next step is to sort the edges, {e(;)}, and
add an edge to cm one edge at a time as long as there
does not exist an edge €’ € cm such that e’ [ e(;) # 0.
We provide the pseudocode in Algorithm

We note here that a polynomial time algorithm for
finding the optimal consensus matching for bipartite
graph matching can be developed using an algorithm
such as Hungarian algorithm [I] (runtime complexity
of O(|{e(;y}|*)). But it is unclear whether such exact
algorithm can be developed for K-partite matching for
K > 2, hence we adopt a greedy approximation in this
case.

Algorithm 1 : GreedyConsensus({m"})

1: H < map()

2: forn=1,...,|N| do

3: foreem” do

4: Hle] <~ Hle] +1

5:  end for

6: end for

7 em + ()

8: {e(j)}gzll + sort(H)

9: for j =1,...,[{e)}| do
10:  if e;yNe =0:¢€ € cm then
11: em < cemJe)

12:  end if
13: end for
14: return cm

B Details on the Decision Model

The decision model is a user configurable component in
our matching framework. Although it is usually a prob-
lem specific component, there are certain variations of
it that can potentially affect the performance. Further-
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more, one must give consideration to the overcounting
problem that can arise for specific choices of the deci-
sion model. We illustrated the pairwise decision model
in the main paper. Here, we present two additional
decision models and provide details in regards to the
overcounting problem.

B.1 Set Packing Decision Model

The set packing decision model is as follows. We visit
the nodes sequentially as given by ¢ (random or de-
terministic) in the main paper. Each node decides
to pack itself among the available sets. The initial
matching is mg = @ and hence, the only available de-
cision for the first node visited is to pack itself into
a singleton set, i.e., e = {v,(1)} and m; = {e}. The
second node visited, assuming that it is coming from a
different partition as vs(1), has two possible decisions.
The first is to grow e to ¢’ = {v,(1),Vs(2)} and set
mg =my + ¢ =my \ el Je'. The second possibility is
to pack itself into its own singleton set, €' = {v,(2)}
and set mo = {e,e’}. And this process continues until
all of the nodes are visited.

We show that this decision model satisfies the assump-
tions in [2] ensuring the correctness of the SMC algo-
rithm using this set packing decision model bypassing
the need to implement the overcounting correction.

Proposition 1. Let v : S — S be the proposal density
associated with the poset (S, <) defined as described
in the main paper. Let w: Sgp — [0,00) be the target
density defined on the state space of interest. The
following are true for the SMC sampler for matching
based on the set packing decision model:

1. v"(s = §') > 0 for some n if and only if s < ¢,
where V™ refers to n applications of the proposal
to s.

2. The undirected Hasse diagram corresponding to
(S, <) is connected and acyclic.

3. The target density w is positive for all s € S and
if m, is the restriction of m to M = Sg, then, ©
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extends the density m,. on S in the sense that
there is a constant C' > 0 with m = Clg, ..

Proof. In our case, the target density, m, is given by
the set packing decision model.

1. For n = 1, this is clearly true: v(s — s’) > 0 if and
only if s’ is in the decision set of the state s. For
arbitrary n > 1, it follows from simple induction.

2. The Hasse diagram is acyclic if for each s € S, it
covers at most one s’ € S. For the initial state
sp, the empty matching, it does not cover any
state so it is trivially true. For s, # sg, then the
only state that it covers is a state that is obtained
by removing the last node added, which can be
obtained from the decision sequence by dy, . To
see that the Hasse diagram is connected, note that
each state s # sg covers exactly one state, namely
the one obtained by reverting the last decision.

3. Since the sequential decision model is well defined
for partial matching, this is trivially true: set
C=1

B.2 Bipartite Graph Matching

For the general bipartite matching problem, every node
in V] may be matched with a node in V5 (without loss of
generality, take |V1| < |V3]). A suitable decision model
for bipartite graph matching is to visit the nodes in
V1 and consider all of the nodes in the other partition
in the decision set. This is a special case of the set
packing decision model and hence, we can show that it
satisfies Proposition

C Supplement for Sequential Monte
Carlo Method

We provide a generic pseudocode for SMC for sequential
graph matching in Algorithm [2|

The weight for each particle is computed as:

n
n SNy (s — v
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(1)
The backward kernel is as described in Section 5.4 of
the main paper. The forward as well as the backward
proposal depends much on the choice of the decision
model. For example, for bipartite matching decision
model and the set packing decision model v— = 1
because we can ensure that there is exactly one parent
state for each state. The forward proposal is carried out

by formulating the decision set, D(vy(,), and sampling
a decision d,, ,, exactly from Equation (4) in Section 3
of the main paper. Alternatively, one may propose to
match randomly with probability 1/|D(ve(,)| for faster
execution as it bypasses computing the probabilities
for each of the decisions. The weight update simplifies
when exact forward sampling is used:

n n

as,ly = s7) = v (s = s,04). (2)
Note that v, (s) is given by the first r factors of Equa-
tion (12) in the main paper and hence,

rYT(S:*l)/ryT—l(sgr—l) = p(dvg(r) |m7’—1) O-Ta 6)

So if exact sampling is used,

V+ (Srfl,aj} — S’r‘,n) = p(dvo(ﬂ |mr717 Or, 9)

Algorithm 2 : SMC(Vy,...,Vk, N)
sg < {}
wy < 1/N
R0 Vil
forr=1,...,Rdo
al ~ Multinomial(w,_1)
5wt (s
Wl a(syTy = s7)
G > e
end for
return (s%, wh)0_,

H
@

D Additional Materials on Knot
Matching

D.1 Problem Background

Common dimensions of construction lumber are the
2-by-4 and 2-by-8 (i.e., height is nominally two inches
and the width of the board is 4 or 8 inches). The length
of a piece varies, but our dataset is made up of boards
that are 8 feet long.

One important use of lumber is for construction pur-
poses and it is of critical importance that each piece of
lumber be able to withstand certain loads. The current
grading system identifies strength reducing characteris-
tics, such as knots, which are remnants of tree branches
that appear on the surfaces after sawing. In Figure [T}
we have shown a sample of a board that we are us-
ing for evaluation. The four surfaces of the board are
laid out side-by-side to make it clear which knots are
matched with which. From Figure [l we can see that
some knots can easily be matched based on proximity.
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However, there are difficult cases where there are mul-
tiple knots within close enough proximity that it would
be difficult to determine the correct match without con-
sidering the sizes as well as the distance, necessitating
the development of our methodology.

D.2 Features

The knot detection is carried out using a bounding box
algorithm that outputs location (z,y, z) as well as the
dimension (w, h) of the bounding box. Let e = {v;,v,}
are being considered for matching; here v; and v; are
the nodes representing two knots. We extract a distance
based feature depending and two size based features.

The distance based feature is computed as follows.
If the two knots both appear on the wide sur-
faces, then we ignore the z coordinate in the com-
putation of the distances and set ¢1({v;,v;}) =
d((vi,z,Viy), (Vjz,Vjy)), where d(.,.) denotes the Eu-
clidean distance. For all of the other cases, we set
$2({vi,v;}) = d((viz, iy, Viz), (V5,25 Vi j,2)). The
reason for separating into the distance feature into two
cases is because of the preference for sawmills to cut
lumber in such a way as to have the two knot faces
both appear on the wide surfaces. And hence, if a knot
v; on one of the wide surfaces is presented with two
candidates v;, also on one of the wide surfaces and v;/
on one of the narrow surfaces, we want the model to
prefer it to match with v;, all things being equal. We
can achieve this by incorporating this knowledge into
the prior over the parameters. What we have done
is restricting the support of the parameters so that
0> < 01. Note that this does not break the convexity
of the optimization procedure at hand as we have only
added a linear inequality constraint 6 — 6y < 0 (refer
to [3]).

The size based feature is computed by taking the abso-
lute difference of the width and the height: ¢3(v;, v;) =
[Viw — Vjw] and ¢4(v,v;) = |vip — v;p|. For the MC-
EM experiments, we have restricted the parameters to
be negative, 6, < 0 for p = 1,2,3,4. This is because
the feature function we defined is such that smaller
value is indicative of higher probability of a match.
For example, the smaller the sizes and the distance
between two knots, the more likely for the two knots to
be matched. Again, this is equivalent to incorporating
our knowledge into the prior over the parameters and
it was found to improve the convergence of MC-EM.

D.3 Monte Carlo Expectation Maximization
Convergence

We have executed MC-EM for maximum of 100 it-
erations, with the algorithm terminating sooner if a
convergence criterion on the parameters is satisfied:

|6t — 6t]|1/p < § where p = 4 (the number of fea-
tures). We have plotted the negative log likelihood
versus the iterations of MC-EM in Figure[2] For these
plots, = 0.01 was chosen. We have ran the experiment
5 times for each board — the different colors indicate
different replications.

For boards ID 8 and 24, we see that the MC-EM con-
verged well before hitting the 100-th iterations. For
boards 17, 18, and 20, the MC-EM reached the maxi-
mum number of iterations. For board 20, the likelihood
seems stable. For boards 17 and 18, we have plotted
a solid black line indicating the overall mean of the
negative log likelihood across the five replications. Al-
though the negative log likelihood does not seem to
be stabilizing for boards 17 and 18, it seems to be
oscillating around this mean value.

We also observed random spikes in the negative log
likelihood across the figures. We have observed that
these random spikes did not affect the overall perfor-
mance of the MC-EM. The random spikes seem to be
due to the Monte Carlo error. One remedy to handle
such a problem is to increase the number of Monte
Carlo samples, as the Monte Carlo approximation of
the objective function is deemed to have been swamped
by Monte Carlo error (see for example [4]). However,
we did not implement such device as we were able to at-
tain satisfactory performance as is (only slightly worse
than supervised approach as can be seen in Table 1 of
the main paper).
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Figure 1: A sample board in our dataset. The four surfaces are laid out side-by-side. Matching that can be
potentially harder are outlined inside the red box.
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Figure 2: The negative log likelihood versus iterations of the Monte Carlo EM algorithm for 5 boards used in the
knot matching experiments. The different colors indicate different runs of MC-EM.
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