
A Divide-and-Conquer Solver for Kernel Support Vector Machines

Cho-Jui Hsieh CJHSIEH@CS.UTEXAS.EDU
Si Si SSI@CS.UTEXAS.EDU
Inderjit S. Dhillon INDERJIT@CS.UTEXAS.EDU

Department of Computer Science, The University of Texas, Austin, TX 78721, USA

Abstract
The kernel support vector machine (SVM) is one
of the most widely used classification methods;
however, the amount of computation required be-
comes the bottleneck when facing millions of
samples. In this paper, we propose and ana-
lyze a novel divide-and-conquer solver for ker-
nel SVMs (DC-SVM). In the division step, we
partition the kernel SVM problem into smaller
subproblems by clustering the data, so that each
subproblem can be solved independently and ef-
ficiently. We show theoretically that the sup-
port vectors identified by the subproblem solu-
tion are likely to be support vectors of the entire
kernel SVM problem, provided that the problem
is partitioned appropriately by kernel clustering.
In the conquer step, the local solutions from the
subproblems are used to initialize a global coor-
dinate descent solver, which converges quickly
as suggested by our analysis. By extending
this idea, we develop a multilevel Divide-and-
Conquer SVM algorithm with adaptive cluster-
ing and early prediction strategy, which outper-
forms state-of-the-art methods in terms of train-
ing speed, testing accuracy, and memory us-
age. As an example, on the covtype dataset
with half-a-million samples, DC-SVM is 7 times
faster than LIBSVM in obtaining the exact SVM
solution (to within 10−6 relative error) which
achieves 96.15% prediction accuracy. Moreover,
with our proposed early prediction strategy, DC-
SVM achieves about 96% accuracy in only 12
minutes, which is more than 100 times faster than
LIBSVM.

1. Introduction
The support vector machine (SVM) (Cortes & Vapnik,
1995) is probably the most widely used classifier in var-
ied machine learning applications. For problems that are

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

not linearly separable, kernel SVM uses a “kernel trick”
to implicitly map samples from input space to a high-
dimensional feature space, where samples become linearly
separable. Due to its importance, optimization methods
for kernel SVM have been widely studied (Platt, 1998;
Joachims, 1998), and efficient libraries such as LIBSVM
(Chang & Lin, 2011) and SVMLight (Joachims, 1998) are
well developed. However, the kernel SVM is still hard to
scale up when the sample size reaches more than one mil-
lion instances. The bottleneck stems from the high compu-
tational cost and memory requirements of computing and
storing the kernel matrix, which in general is not sparse.
By approximating the kernel SVM objective function, ap-
proximate solvers (Zhang et al., 2012; Le et al., 2013) avoid
high computational cost and memory requirement, but suf-
fer in terms of prediction accuracy.

In this paper, we propose a novel divide and conquer ap-
proach (DC-SVM) to efficiently solve the kernel SVM
problem. DC-SVM achieves faster convergence speed
compared to state-of-the-art exact SVM solvers, as well
as better prediction accuracy in much less time than ap-
proximate solvers. To accomplish this performance, DC-
SVM first divides the full problem into smaller subprob-
lems, which can be solved independently and efficiently.
We theoretically show that the kernel kmeans algorithm
is able to minimize the difference between the solution of
subproblems and of the whole problem, and support vectors
identified by subproblems are likely to be support vectors
of the whole problem. However, running kernel kmeans on
the whole dataset is time consuming, so we apply a two-
step kernel kmeans procedure to efficiently find the parti-
tion. In the conquer step, the local solutions from the sub-
problems are “glued” together to yield an initial point for
the global problem. As suggested by our analysis, the coor-
dinate descent method in the final stage converges quickly
to the global optimal.

Empirically, our proposed Divide-and-Conquer Kernel
SVM solver can reduce the objective function value much
faster than existing SVM solvers. For example, on the
covtype dataset with half a million samples, DC-SVM
can find a globally optimal solution (to within 10−6 accu-
racy) within 3 hours on a single machine with 8 GBytes

A Divide-and-Conquer Solver for Kernel Support Vector Machines

RAM, while the state-of-the-art LIBSVM solver takes
more than 22 hours to achieve a similarly accurate solu-
tion (which yields 96.15% prediction accuracy). More in-
terestingly, due to the closeness of the subproblem solu-
tions to the global solution, we can employ an early pre-
diction approach, using which DC-SVM can obtain high
test accuracy extremely quickly. For example, on the cov-
type dataset, by using early prediction DC-SVM achieves
96.03% prediction accuracy within 12 minutes, which is
more than 100 times faster than LIBSVM (see Figure 3e
for more details).

The rest of the paper is outlined as follows. We propose
the single-level DC-SVM in Section 3, and extend it to the
multilevel version in Section 4. Experimental comparison
with other state-of-the-art SVM solvers is shown in Sec-
tion 5. The relationship between DC-SVM and other meth-
ods is discussed in Section 2, and the conclusions are given
in Section 6. Extensive experimental comparisons are in-
cluded in the Appendix.

2. Related Work
Since training SVM requires a large amount of memory, it
is natural to apply decomposition methods (Platt, 1998),
where each time only a subset of variables are updated.
To speedup the decomposition method, (Pérez-Cruz et al.,
2004) proposed a double chunking approach to maintain a
chunk of important samples, and the shrinking technique
(Joachims, 1998) is also widely used to eliminate unimpor-
tant samples.

To speed up kernel SVM training on large-scale datasets,
it is natural to divide the problem into smaller subprob-
lems, and combine the models trained on each partition.
(Jacobs et al., 1991) proposed a way to combine models,
although in their algorithm subproblems are not trained
independently, while (Tresp, 2000) discussed a Bayesian
prediction scheme (BCM) for model combination. (Col-
lobert et al., 2002) partition the training dataset arbitrarily
in the beginning, and then iteratively refine the partition
to obtain an approximate kernel SVM solution. (Kugler
et al., 2006) applied the above ideas to solve multi-class
problems. (Graf et al., 2005) proposed a multilevel ap-
proach (CascadeSVM): they randomly build a partition tree
of samples and train the SVM in a “cascade” way: only
support vectors in the lower level of the tree are passed to
the upper level. However, no earlier method appears to dis-
cuss an elegant way to partition the data. In this paper, we
theoretically show that kernel kmeans minimizes the error
of the solution from the subproblems and the global so-
lution. Based on this division step, we propose a simple
method to combine locally trained SVM models, and show
that the testing performance is better than BCM in terms of
both accuracy and time (as presented in Table 1). More im-
portantly, DC-SVM solves the original SVM problem, not
just an approximated one. We compare our method with
Cascade SVM in the experiments.

Another line of research proposes to reduce the training
time by representing the whole dataset using a smaller set
of landmark points, and clustering is an effective way to
find landmark points (cluster centers). (Moody & Darken,
1989) proposed this idea to train the reduced sized problem
with RBF kernel (LTPU); (Pavlov et al., 2000) used a sim-
ilar idea as a preprocessing of the dataset, while (Yu et al.,
2005) further generalized this approach to a hierarchical
coarsen-refinement solver for SVM. Based on this idea, the
kmeans Nyström method (Zhang et al., 2008) was proposed
to approximate the kernel matrix using landmark points.
(Boley & Cao, 2004) proposed to find samples with simi-
lar α values by clustering, so both the clustering goal and
training step are quite different from ours. All the above ap-
proaches focus on modeling the between-cluster (between-
landmark points) relationships. In comparison, our method
focuses on preserving the within-cluster relationships at the
lower levels and explores the between-cluster information
in the upper levels. We compare DC-SVM with LLSVM
(using kmeans Nyström) and LTPU in Section 5.

There are many other approximate solvers for the kernel
SVM, including kernel approximation approaches (Fine &
Scheinberg, 2001; Zhang et al., 2012; Le et al., 2013),
greedy basis selection (Keerthi et al., 2006), and online
SVM solvers (Bordes et al., 2005). Recently, (Jose et al.,
2013) proposed an approximate solver to reduce testing
time. They use multiple linear hyperplanes for prediction,
so the time complexity for prediction is proportional to
the dimensionality instead of number of samples. There-
fore they achieve faster prediction but require more train-
ing time and have lower prediction accuracy comparing to
DC-SVM with early prediction strategy.

3. Divide and Conquer Kernel SVM with a
single level

Given a set of instance-label pairs (xi, yi), i =
1, . . . , n,xi ∈ Rd and yi ∈ {1,−1}, the main task in
training the kernel SVM is to solve the following quadratic
optimization problem:

min
α
f(α) =

1
2
αTQα− eTα, s.t. 0 ≤ α ≤ C, (1)

where e is the vector of all ones; C is the balancing pa-
rameter between loss and regularization in the SVM pri-
mal problem; α ∈ Rn is the vector of dual variables; and
Q is an n × n matrix with Qij = yiyjK(xi,xj), where
K(xi,xj) is the kernel function. Note that, as in (Keerthi
et al., 2006; Joachims, 2006), we ignore the “bias” term –
indeed, in our experiments reported in Section 5, we did
not observe any improvement in test accuracy by including
the bias term. Letting α∗ denote the optimal solution of
(1), the decision value for a test data x can be computed by∑n
i=1 α

∗
i yiK(x,xi).

We begin by describing the single-level version of our pro-
posed algorithm. The main idea behind our divide and
conquer SVM solver (DC-SVM) is to divide the data into

A Divide-and-Conquer Solver for Kernel Support Vector Machines

smaller subsets, where each subset can be handled effi-
ciently and independently. The subproblem solutions are
then used to initialize a coordinate descent solver for the
whole problem. To do this, we first partition the dual vari-
ables into k subsets {V1, . . . ,Vk}, and then solve the re-
spective subproblems independently

min
α(c)

1
2

(α(c))TQ(c,c)α(c)−eTα(c), s.t. 0≤α(c)≤C, (2)

where c = 1, . . . , k, α(c) denotes the subvector {αp | p ∈
Vc} and Q(c,c) is the submatrix of Q with row and column
indexes Vc.

The quadratic programming problem (1) has n variables,
and takes at least O(n2) time to solve in practice (as shown
in (Menon, 2009)). By dividing it into k subproblems (2)
with equal sizes, the time complexity for solving the sub-
problems can be dramatically reduced to O(k · (nk)2) =
O(n2/k). Moreover, the space requirement is also reduced
from O(n2) to O(n2/k2).

After computing all the subproblem solutions, we concate-
nate them to form an approximate solution for the whole
problem ᾱ = [ᾱ(1), . . . , ᾱ(k)], where ᾱ(c) is the optimal
solution for the c-th subproblem. In the conquer step, ᾱ
is used to initialize the solver for the whole problem. We
show that this procedure achieves faster convergence due to
the following reasons: (1) ᾱ is close to the optimal solution
for the whole problemα∗, so the solver only requires a few
iterations to converge (see Theorem 1); (2) the set of sup-
port vectors of the subproblems is expected to be close to
the set of support vectors of the whole problem (see Theo-
rem 2). Hence, the coordinate descent solver for the whole
problem converges very quickly.

Divide Step. We now discuss in detail how to divide
problem (1) into subproblems. In order for our proposed
method to be efficient, we require ᾱ to be close to the opti-
mal solution of the original problem α∗. In the following,
we derive a bound on ‖ᾱ−α∗‖2 by first showing that ᾱ is
the optimal solution of (1) with an approximate kernel.
Lemma 1. ᾱ is the optimal solution of (1) with kernel
function K(xi,xj) replaced by

K̄(xi,xj) = I(π(xi), π(xj))K(xi,xj), (3)

where π(xi) is the cluster that xi belongs to; I(a, b) = 1
iff a = b and I(a, b) = 0 otherwise.

Based on the above lemma, we are able to bound ‖α∗−ᾱ‖2
by the sum of between-cluster kernel values:
Theorem 1. Given data points {(xi, yi)}ni=1 with
labels yi ∈ {1,−1} and a partition indicator
{π(x1), . . . , π(xn)},

0 ≤ f(ᾱ)− f(α∗) ≤ (1/2)C2D(π), (4)

where f(α) is the objective function in (1) and D(π) =∑
i,j:π(xi) 6=π(xj)

|K(xi,xj)|. Furthermore, ‖α∗− ᾱ‖22 ≤

C2D(π)/σn where σn is the smallest eigenvalue of the ker-
nel matrix.

The proof is provided in Appendix 8.2. In order to min-
imize ‖α∗ − ᾱ‖, we want to find a partition with small
D(π). Moreover, a balanced partition is preferred to
achieve faster training speed. This can be done by the
kernel kmeans algorithm, which aims to minimize the off-
diagonal values of the kernel matrix with a balancing nor-
malization.

We now show that the bound derived in Theorem 1 is rea-
sonably tight in practice. On a subset (10000 instances)
of the covtype data, we try different numbers of clusters
k = 8, 16, 32, 64, 128; for each k, we use kernel kmeans to
obtain the data partition {V1, . . . ,Vk}, and then compute
C2D(π)/2 (the right hand side of (4)) and f(ᾱ) − f(α∗)
(the left hand side of (4)). The results are presented in Fig-
ure 1. The left panel shows the bound (in red) and the
difference in objectives f(ᾱ) − f(α∗) in absolute scale,
while the right panel shows these values in a log scale.
Figure 1 shows that the bound is quite close to the differ-
ence in objectives in an absolute sense (the red and blue
curves nearly overlap), especially compared to the differ-
ence in objectives when the data is partitioned randomly
(this also shows effectiveness of the kernel kmeans proce-
dure). Thus, our data partitioning scheme and subsequent
solution of the subproblems leads to good approximations
to the global kernel SVM problem.

(a) covtype 10000 samples. (b) covtype 10000 samples (log
scale).

Figure 1: Demonstration of the bound in Theorem 1 – our data
partitioning scheme leads to good approximations to the global
solution α∗. The left plot is on an absolute scale, while the right
one is on a logarithmic scale.

However, kernel kmeans has O(n2d) time complexity,
which is too expensive for large-scale problems. Therefore
we consider a simple two-step kernel kmeans approach as
in (Ghitta et al., 2011). The two-step kernel kmeans algo-
rithm first runs kernel kmeans onm randomly sampled data
points (m � n) to construct cluster centers in the kernel
space. Based on these centers, each data point computes its
distance to cluster centers and decides which cluster it be-
longs to. The algorithm has time complexity O(nmd) and
space complexity O(m2). In our implementation we just
use random initialization for kernel kmeans, and observe
good performance in practice.

A key facet of our proposed divide and conquer algorithm

A Divide-and-Conquer Solver for Kernel Support Vector Machines

(a) rbf kernel, precision (b) rbf kernel, recall (c) rbf kernel, time vs. preci-
sion

(d) rbf kernel, time vs. recall

(e) polynomial kernel, preci-
sion

(f) polynomial kernel, recall (g) polynomial kernel, time vs.
precision

(h) polynomial kernel, time vs.
recall

Figure 2: Our multilevel DC-SVM algorithm computes support vectors for subproblems during the “conquer” phase. The above plots
show that DC-SVM identifies support vectors more accurately (Figure 2a, 2b, 2e, 2f) than cascade SVM, and more quickly than the
shrinking strategy in LIBSVM.

is that the set of support vectors from the subproblems
S̄ := {i | ᾱi > 0}, where ᾱi is the i-th element of ᾱ, is
very close to that of the whole problem S := {i | α∗i > 0}.
Letting f̄(α) denote the objective function of (1) with ker-
nel K̄ defined in (3), the following theorem shows that
when ᾱi = 0 (xi is not a support vector of the subprob-
lem) and ∇if̄(ᾱ) is large enough, then xi will not be a
support vector of the whole problem.

Theorem 2. For any i ∈ {1, . . . , n}, if ᾱi = 0 and

∇if̄(ᾱ) > CD(π)(1 +
√
nKmax/

√
σnD(π)),

where Kmax = maxiK(xi,xi), then xi will not be a sup-
port vector of the whole problem, i.e., α∗i = 0.

The proof is given in Appendix 8.3. In practice also, we ob-
serve that DC-SVM can identify the set of support vectors
of the whole problem very quickly. Figure 2 demonstrates
that DC-SVM identifies support vectors much faster than
the shrinking strategy implemented in LIBSVM (Chang &
Lin, 2011) (we discuss these results in more detail in Sec-
tion 4).

Conquer Step. After computing ᾱ from the subproblems,
we use ᾱ to initialize the solver for the whole problem. In
principle, we can use any SVM solver in our divide and
conquer framework, but we focus on using the coordinate
descent method as in LIBSVM to solve the whole prob-
lem. The main idea is to update one variable at a time, and
always choosing the αi with the largest gradient value to
update. The benefit of applying coordinate descent is that
we can avoid a lot of unnecessary access to the kernel ma-
trix entries if αi never changes from zero to nonzero. Since
ᾱ’s are close to α∗, the ᾱ-values for most vectors that are
not support vectors will not become nonzero, and so the
algorithm converges quickly.

4. Divide and Conquer SVM with multiple
levels

There is a trade-off in choosing the number of clusters k for
a single-level DC-SVM with only one divide and conquer
step. When k is small, the subproblems have similar sizes
as the original problem, so we will not gain much speedup.
On the other hand, when we increase k, time complexity
for solving subproblems can be reduced, but the resulting ᾱ
can be quite different from α∗ according to Theorem 1, so
the conquer step will be slow. Therefore, we propose to run
DC-SVM with multiple levels to further reduce the time
for solving the subproblems, and meanwhile still obtain ᾱ
values that are close to α∗.

In multilevel DC-SVM, at the l-th level, we partition the
whole dataset into kl clusters {V(l)

1 , . . . ,V(l)

kl
}, and solve

those kl subproblems independently to get ᾱ(l). In order
to solve each subproblem efficiently, we use the solutions
from the lower level ᾱ(l+1) to initialize the solver at the
l-th level, so each level requires very few iterations. This
allows us to use small values of k, for example, we use
k = 4 for all the experiments. In the following, we discuss
more insights to further speed up our procedure.

Adaptive Clustering. The two-step kernel kmeans ap-
proach has time complexity O(nmd), so the number of
samples m cannot be too large. In our implementation we
use m = 1000. When the data set is very large, the perfor-
mance of two-step kernel kmeans may not be good because
we sample only a few data points. This will influence the
performance of DC-SVM.

To improve the clustering for DC-SVM, we propose the
following adaptive clustering approach. The main idea is to
explore the sparsity of α in the SVM problem, and sample

A Divide-and-Conquer Solver for Kernel Support Vector Machines

Table 1: Comparing prediction methods using a lower level model. Our proposed early prediction strategy is better in terms of prediction
accuracy and testing time per sample (time given in milliseconds).

webspam k = 50 webspam k = 100 covtype k = 50 covtype k = 100
Prediction by (5) 92.6% / 1.3ms 89.5% / 1.3ms 94.6% / 2.6ms 92.7% / 2.6ms

BCM in (Tresp, 2000) 98.4% / 2.5ms 95.3% / 3.3ms 91.5% / 3.7ms 89.3% / 5.6ms
Early Prediction by (6) 99.1% / .17ms 99.0% / .16ms 96.1% / .4ms 96.0% / .2ms

from the set of support vectors to perform two-step kernel
kmeans. Suppose we are at the l-th level, and the current
set of support vectors is defined by S̄ = {i | ᾱi > 0}.
Suppose the set of support vectors for the final solution
is given by S∗ = {i | α∗i > 0}. We can define the
sum of off-diagonal elements on S̄ ∪ S∗ as DS∗∪S̄(π) =∑
i,j∈S∗∪S̄ and π(xi)6=π(xj)

|K(xi,xj)|. The following the-
orem shows that we can refine the bound in Theorem 1:

Theorem 3. Given data points x1, . . . ,xn and a partition
{V1, . . . ,Vk} with indicators π,

0 ≤ f(ᾱ)− f(α∗) ≤ (1/2)C2DS∗∪S̄(π).

Furthermore, ‖α∗ − ᾱ‖22 ≤ C2DS∗∪S̄(π)/σn.

The proof is given in Appendix 8.4. The above observa-
tions suggest that if we know the set of support vectors S̄
and S∗, ‖α∗ − ᾱ‖ only depends on whether we can obtain
a good partition of S̄ ∪ S∗. Therefore, we can sample m
points from S̄ ∪S∗ instead of the whole dataset to perform
the clustering. The performance of two-step kernel kmeans
depends on the sampling rate; we enhance the sampling
rate fromm/n tom/|S∗∪ S̄|. As a result, the performance
significantly improves when |S∗ ∪ S̄| � n.

In practice we do not know S∗ or S̄ before solving the prob-
lem. However, both Theorem 2 and experiments shown
in Figure 2 suggest that we have a good guess of sup-
port vectors even at the bottom level. Therefore, we can
use the lower level support vectors as a good guess of the
upper level support vectors. More specifically, after com-
puting ᾱl from level l, we can use its support vector set
S̄l := {i | ᾱli > 0} to run two-step kernel kmeans for find-
ing the clusters at the (l − 1)-th level. Using this strategy,
we obtain progressively better partitioning as we approach
the original problem at the top level.

Early identification of support vectors. We first
run LIBSVM to obtain the final set of support vectors,
and then run DC-SVM with various numbers of clusters
45, 44, . . . , 40 (corresponding to level 5, 4, . . . , 0 for multi-
level DC-SVM). We show the precision and recall for the
support vectors determined at each level (ᾱi > 0) in iden-
tifying support vectors. Figure 2 shows that DC-SVM can
identify about 90% support vectors even when using 256
clusters. As discussed in Section 2, Cascade SVM (Graf
et al., 2005) is another way to identify support vectors.
However, it is clear from Figure 2 that Cascade SVM can-
not identify support vectors accurately as (1) it does not
use kernel kmeans clustering, and (2) it cannot correct the
false negative error made in lower levels. Figure 2c, 2d, 2g,

2h further shows that DC-SVM identifies support vectors
more quickly than the shrinking strategy in LIBSVM.

Early prediction based on the l-th level solution. Com-
puting the exact kernel SVM solution can be quite time
consuming, so it is important to obtain a good model us-
ing limited time and memory. We now propose a way to
efficiently predict the label of unknown instances using the
lower-level models ᾱl. We will see in the experiments that
prediction using ᾱl from a lower level l already can achieve
near-optimal testing performance.

When the l-th level solution ᾱl is computed, a naive way
to predict a new instance x’s label ỹ is:

ỹ = sign

(
n∑
i=1

yiᾱ
l
iK(x,xi)

)
. (5)

Another way to combine the models trained from k clus-
ters is to use the probabilistic framework proposed in the
Bayesian Committee Machine (BCM) (Tresp, 2000). How-
ever, as we show below, both these methods do not give
good prediction accuracy when the number of clusters is
large.

Instead, we propose the following early prediction strategy.
From Lemma 1, ᾱ is the optimal solution to the SVM dual
problem (1) on the whole dataset with the approximated
kernel K̄ defined in (3). Therefore, we propose to use the
same kernel function K̄ in the testing phase, which leads to
the prediction

k∑
c=1

∑
i∈Vc

yiαiK̄(xi,x) =
∑

i∈Vπ(x)

yiαiK(xi,x), (6)

where π(x) can be computed by finding the nearest cluster
center. Therefore, the testing procedure for early prediction
is: (1) find the nearest cluster that x belongs to, and then (2)
use the model trained by data within that cluster to compute
the decision value.

We compare this method with prediction by (5) and BCM
in Table 1. The results show that our proposed testing
scheme is better in terms of test accuracy. We also compare
average testing time per instance in Table 1, and our pro-
posed method is much more efficient as we only evaluate
K(x,xi) for all xi in the same cluster as x, thus reducing
the testing time fromO(|S|d) toO(|S|d/k), where S is the
set of support vectors.

Refine solution before solving the whole problem. Be-
fore training the final model at the top level using the whole
dataset, we can refine the initialization by solving the SVM
problem induced by all support vectors at the first level, i.e.,

A Divide-and-Conquer Solver for Kernel Support Vector Machines

Table 2: Comparison on real datasets.
ijcnn1 cifar census covtype webspam kddcup99 mnist8m

C = 32, γ = 2 C = 8, γ = 2−22 C = 512, γ = 2−9 c = 32, γ = 32 C = 8, γ = 32 C = 256, γ = 0.5 C = 1, γ = 2−21

time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%)
DC-SVM (early) 12 98.35 1977 87.02 261 94.9 672 96.12 670 99.13 470 92.61 10287 99.85

DC-SVM 41 98.69 16314 89.50 1051 94.2 11414 96.15 10485 99.28 2739 92.59 71823 99.93
LIBSVM 115 98.69 42688 89.50 2920 94.2 83631 96.15 29472 99.28 6580 92.51 298900 99.91

LIBSVM (subsapmle) 6 98.24 2410 85.71 641 93.2 5330 92.46 1267 98.52 1627 91.90 31526 99.21
LaSVM 251 98.57 57204 88.19 3514 93.2 102603 94.39 20342 99.25 6700 92.13 171400 98.95

CascadeSVM 17.1 98.08 6148 86.8 849 93.0 5600 89.51 3515 98.1 1155 91.2 64151 98.3
LLSVM 38 98.23 9745 86.5 1212 92.8 4451 84.21 2853 97.74 3015 91.5 65121 97.64
FastFood 87 95.95 3357 80.3 851 91.6 8550 80.1 5563 96.47 2191 91.6 14917 96.5
SpSVM 20 94.92 21335 85.6 3121 90.4 15113 83.37 6235 95.3 5124 90.5 121563 96.3
LTPU 248 96.64 17418 85.3 1695 92.0 11532 83.25 4005 96.12 5100 92.1 105210 97.82

level below the final level. As proved in Theorem 2, the
support vectors of lower level models are likely to be the
support vectors of the whole model, so this will give a more
accurate solution, and only requires us to solve a problem
with O(|S̄(1)|) samples, where S̄(1) is the set of support
vectors at the first level. Our final algorithm is given in
Algorithm 1.
Algorithm 1 Divide and Conquer SVM
Input : Training data {(xi, yi)}ni=1, balancing parameter

C, kernel function.
Output : The SVM dual solution α.
for l = lmax, . . . , 1 do

Set number of clusters in the current level kl = kl;
if l = lmax then

Sample m points {xi1 , . . . ,xim} from the whole
training set;

else
Sample m points {xi1 , . . . ,xim} from
{xi | ᾱ(l+1)

i > 0};
end
Run kernel kmeans on {xi1 , . . . ,xim} to get cluster
centers c1, . . . , ckl ;
Obtain partition V1, . . . ,Vkl for all data points ;
for c = 1, . . . , kl do

Obtain ᾱ(l)
Vc by solving SVM for the data in the

c-th cluster Vc with ᾱ(l+1)
Vc as the initial point (

ᾱlmax+1
Vc is set to 0);

end
end
Refine solution: Compute α(0) by solving SVM on
{xi | α(1)

i 6= 0} using α(1) as the initial point;
Solve SVM on the whole data using α(0) as the initial
point;

5. Experimental Results
We now compare our proposed algorithm with other SVM
solvers. All the experiments are conducted on an In-
tel 2.66GHz CPU with 8G RAM. We use 7 bench-
mark datasets as shown in Table 3. The cifar dataset
can be downloaded from http://www.cs.toronto.
edu/˜kriz/cifar.html, and other datasets can be
downloaded from http://www.csie.ntu.edu.tw/

Table 3: Dataset statistics
dataset Number of Number of dtraining samples testing samples
ijcnn1 49,990 91,701 22
cifar 50,000 10,000 3072

census 159,619 39,904 409
covtype 464,810 116,202 54

webspam 280,000 70,000 254
kddcup99 4,898,431 311,029 125
mnist8m 8,000,000 100,000 784

˜cjlin/libsvmtools/datasets or the UCI data
repository. We use the raw data without scaling for two
image datasets cifar and mnist8m, while features in all the
other datasets are linearly scaled to [0, 1]. mnist8m is a
digital recognition dataset with 10 numbers, so we follow
the procedure in (Zhang et al., 2012) to transform it into
a binary classification problem by classifying round digits
and non-round digits. Similarly, we transform cifar into
a binary classification problem by classifying animals and
non-animals. We use a random 80%-20% split for cov-
type, webspam, kddcup99, a random 8M/0.1M split for
mnist8m (used in the original paper (Loosli et al., 2007)),
and the original training/testing split for ijcnn1 and cifar.

Competing Methods: We include the following ex-
act SVM solvers (LIBSVM, CascadeSVM), approximate
SVM solvers (SpSVM, LLSVM, FastFood, LTPU), and on-
line SVM (LaSVM) in our comparison:

1. LIBSVM: the implementation in the LIBSVM library
(Chang & Lin, 2011) with a small modification to han-
dle SVM without the bias term – we observe that LIB-
SVM has similar test accuracy with/without bias. We
also include the results for using LIBSVM with ran-
dom 1/5 subsamples on each dataset in Table 2.

2. Cascade SVM: we implement cascade SVM (Graf
et al., 2005) using LIBSVM as the base solver.

3. SpSVM: Greedy basis selection for nonlinear SVM
(Keerthi et al., 2006).

4. LLSVM: improved Nyström method for nonlinear
SVM by (Wang et al., 2011).

5. FastFood: use random Fourier features to approximate
the kernel function (Le et al., 2013). We solve the
resulting linear SVM problem by the dual coordinate
descent solver in LIBLINEAR.

6. LTPU: Locally-Tuned Processing Units proposed in
(Moody & Darken, 1989). We set γ equal to the

A Divide-and-Conquer Solver for Kernel Support Vector Machines

(a) webspam objective function (b) covtype objective function (c) mnist8m objective function

(d) webspam testing accuracy (e) covtype testing accuracy (f) mnist8m testing accuracy

Figure 3: Comparison of algorithms using the RBF kernel. Each point for DC-SVM indicates the result when stopping at different
levels; each point for LIBSVM and CascadeSVM indicates different stopping conditions; each point for LaSVM indicates various
number of passes through data points; each point for LTPU and LLSVM, and FastFood indicates different sample sizes; and each point
for SpSVM indicates different number of basis vectors. Methods with testing performance below the bottom of y-axis are not shown in
the figures.

best parameter for Gaussian kernel SVM. The linear
weights are obtained by LIBLINEAR.

7. LaSVM: An online algorithm proposed in (Bordes
et al., 2005).

8. DC-SVM: our proposed method for solving the ex-
act SVM problem. We use the modified LIBSVM to
solve subproblems.

9. DC-SVM (early): our proposed method with the early
stopping approach described in Section 4 to get the
model before solving the entire kernel SVM optimiza-
tion problem.

(Zhang et al., 2012) reported that LLSVM outperforms
Core Vector Machines (Tsang et al., 2005) and the bun-
dle method (Smola et al., 2007), so we omit those compar-
isons here. We apply LIBSVM/LIBLINEAR as the default
solver for DC-SVM, FastFood, Cascade SVM, LLSVM
and LTPU, so the shrinking heuristic is automatically used
in the experiments.

Parameter Setting: We first consider the RBF kernel
K(xi,xj) = exp(−γ‖xi − xj‖22). We chose the balanc-
ing parameter C and kernel parameter γ by 5-fold cross
validation on a grid of points: C = [2−10, 2−9, . . . , 210]
and γ = [2−10, . . . , 210] for ijcnn1, census, covtype,
webspam, and kddcup99. The average distance between
samples for un-scaled image datasets mnist8m and cifar is
much larger than other datasets, so we test them on smaller
γ’s: γ = [2−30, 2−29, . . . , 2−10]. Regarding the parame-
ters for DC-SVM, we use 5 levels (lmax = 4) and k = 4,
so the five levels have 1, 4, 16, 64 and 256 clusters respec-

tively. For DC-SVM (early), we stop at the level with 64
clusters. The following are parameter settings for other
methods in Table 2: the rank is set to be 3000 in LLSVM;
number of Fourier features is 3000 in Fastfood1; number of
clusters is 3000 in LTPU; number of basis vectors is 200
in SpSVM; the tolerance in the stopping condition for LIB-
SVM and DC-SVM is set to 10−3 (the default setting of
LIBSVM); for LaSVM we set the number of passes to be 1;
for CascadeSVM we output the results after the first round.

Experimental Results with RBF kernel: Table 2
presents time taken and test accuracies. Experimental re-
sults show that the early prediction approach in DC-SVM
achieves near-optimal test performance. By going to the
top level (handling the whole problem), DC-SVM achieves
better test performance but needs more time. Table 2 only
gives the comparison on one setting; it is natural to ask,
for example, about the performance of LIBSVM with a
looser stopping condition, or Fastfood with varied num-
ber of Fourier features. Therefore, for each algorithm we
change the parameter settings and present the detailed ex-
perimental results in Figure 3 and Figure 5 in Appendix.

Figure 3 shows convergence results with time – in 3a, 3b,
3c the relative error on the y-axis is defined as (f(α) −
f(α∗))/|f(α∗)|, where α∗ is computed by running LIB-
SVM with 10−8 accuracy. Online and approximate solvers
are not included in this comparison as they do not solve

1In Fastfood we control the number of blocks so that number
of Fourier features is close to 3000 for each dataset.

A Divide-and-Conquer Solver for Kernel Support Vector Machines

(a) webspam objective function (b) webspam testing accuracy (c) covtype objective function (d) covtype testing accuracy

Figure 4: Comparison of algorithms on real datasets using polynomial kernel.

Table 4: Total time for DC-SVM, DC-SVM (early) and LIB-
SVM on the grid of parameters C, γ shown in Tables 7, 8, 9, 10.

dataset DC-SVM DC-SVM LIBSVM(early)
ijcnn1 16.4 mins 2.3 hours 6.4 hours

webspam 5.6 hours 4.3 days 14.3 days
covtype 10.3 hours 4.8 days 36.7 days
census 1.5 hours 1.4 days 5.3 days

the exact kernel SVM problem. We observe that DC-SVM
achieves faster convergence in objective function compared
with the state-of-the-art exact SVM solvers. Moreover,
DC-SVM is also able to achieve superior test accuracy in
lesser training time as compared with approximate solvers.
Figure 3d, 3e, 3f compare the efficiency in achieving dif-
ferent testing accuracies. We can see that DC-SVM consis-
tently achieves more than 50 fold speedup while achieving
the same test accuracy with LIBSVM.

Experimental Results with varying values of C, γ: As
shown in Theorem 1 the quality of approximation depends
on D(π), which is strongly related to the kernel parame-
ters. In the RBF kernel, when γ is large, a large portion of
kernel entries will be close to 0, and D(π) will be small so
that ᾱ is a good initial point for the top level. On the other
hand, when γ is small, ᾱ may not be close to the optimal
solution. To test the performance of DC-SVM under dif-
ferent parameters, we conduct the comparison on a wide
range of parameters (C = [2−10, 2−6, 21, 26, 210], γ =
[2−10, 2−6, 21, 26, 210]). The results on the ijcnn1, cov-
type, webspam and census datasets are shown in Tables
7, 8, 9, 10 (in the appendix). We observe that even when γ
is small, DC-SVM is still 1-2 times faster than LIBSVM:
among all the 100 settings, DC-SVM is faster on 96/100
settings. The reason is that even when ᾱ is not so close to
α, using ᾱ as the initial point is still better than initialization
with a random or zero vector. On the other hand, DC-SVM
(early) is extremely fast, and achieves almost the same or
even better accuracy when γ is small (as it uses an approxi-
mated kernel). In Figure 6, 8, 7, 9 we plot the performance
of DC-SVM and LIBSVM under various C and γ values,
the results indicate that DC-SVM (early) is more robust to
parameters. Note that DC-SVM (early) can be viewed as
solving SVM with a different kernel K̄, which focuses on
“within-cluster” information, and there is no reason to be-
lieve that the global kernel K always yields better test ac-
curracy than K̄. The accumulated runtimes are shown in
Table 4.

Experimental Results with polynomial kernel: To show
that DC-SVM is efficient for different types of kernels, we
further conduct experiments on covtype and webspam
datasets for the degree-3 polynomial kernel K(xi,xj) =
(η + γxTi xj)

3. For the polynomial kernel, the parame-
ters chosen by cross validation are C = 2, γ = 1 for cov-
type, and C = 8, γ = 16 for webspam. We set η = 0,
which is the default setting in LIBSVM. Figures 4a and
4c compare the training speed of DC-SVM and LIBSVM
for reducing the objective function value and Figures 4b
and 4d show the testing accuracy compared with LIB-
SVM and LaSVM. Since LLSVM, FastFood and LPTU
are developed for shift-invariant kernels, we do not include
them in our comparison. We can see that when using the
polynomial kernel, our algorithm is more than 100 times
faster than LIBSVM and LaSVM. One main reason for
such large improvement is that it is hard for LIBSVM and
LaSVM to identify the right set of support vectors when us-
ing the polynomial kernel. As shown in Figure 2, LIBSVM
cannot identify 20% of the support vectors in 105 seconds,
while DC-SVM has a very good guess of the support vec-
tors even at the bottom level, where number of clusters is
256. In Appendix 8.5 we show that the clustering step only
takes a small portion of the time taken by DC-SVM.

6. Conclusions
In this paper, we have proposed a novel divide and con-
quer algorithm for solving kernel SVMs (DC-SVM). Our
algorithm divides the problem into smaller subproblems
that can be solved independently and efficiently. We show
that the subproblem solutions are close to that of the orig-
inal problem, which motivates us to “glue” solutions from
subproblems in order to efficiently solve the original ker-
nel SVM problem. Using this, we also incorporate an
early prediction strategy into our algorithm. We report ex-
tensive experiments to demonstrate that DC-SVM signifi-
cantly outperforms state-of-the-art exact and approximate
solvers for nonlinear kernel SVM on large-scale datasets.
The code for DC-SVM is available at http://www.cs.
utexas.edu/˜cjhsieh/dcsvm.

7. Acknowledgements
This research was supported by NSF grants CCF-1320746
and CCF-1117055. C.-J.H also acknowledges support from
an IBM PhD fellowship.

A Divide-and-Conquer Solver for Kernel Support Vector Machines

References
Boley, D. and Cao, D. Training support vector machine

using adaptive clustering. In SDM, 2004.

Bordes, A., Ertekin, S., Weston, J., and Bottou, L. Fast
kernel classifiers with online and active learning. JMLR,
6:1579–1619, 2005.

Chang, Chih-Chung and Lin, Chih-Jen. LIBSVM: A li-
brary for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27, 2011.

Collobert, R., Bengio, S., and Bengio, Y. A parallel mixture
of SVMs for very large scale problems. In NIPS, 2002.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine Learning, 20:273–297, 1995.

Fine, S. and Scheinberg, K. Efficient SVM training us-
ing low-rank kernel representations. JMLR, 2:243–264,
2001.

Ghitta, Radha, Jin, Rong, Havens, Timothy C., and Jain,
Anil K. Approximate kernel k-means: Solution to large
scale kernel clustering. In KDD, 2011.

Graf, H. P., Cosatto, E., Bottou, L., Dundanovic, I., and
Vapnik, V. Parallel support vector machines: The cas-
cade SVM. In NIPS, 2005.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton,
G. E. Adaptive mixtures of local experts. Neural Com-
putation, 3(1):79–87, 1991.

Joachims, T. Making large-scale SVM learning practical.
In Advances in Kernel Methods – Support Vector Learn-
ing, pp. 169–184, 1998.

Joachims, T. Training linear SVMs in linear time. In KDD,
2006.

Jose, C., Goyal, P., Aggrwal, P., and Varma, M. Local deep
kernel learning for efficient non-linear SVM prediction.
In ICML, 2013.

Keerthi, S. S., Chapelle, O., and DeCoste, D. Building sup-
port vector machines with reduced classifier complexity.
JMLR, 7:1493–1515, 2006.

Kugler, M., Kuroyanagi, S., Nugroho, A. S., and Iwata,
A. CombNET-III: a support vector machine based large
scale classifier with probabilistic framework. IEICE
Trans. Inf. and Syst., 2006.

Le, Q. V., Sarlos, T., and Smola, A. J. Fastfood – approx-
imating kernel expansions in loglinear time. In ICML,
2013.

Loosli, Gaëlle, Canu, Stéphane, and Bottou, Léon. Train-
ing invariant support vector machines using selective
sampling. In Large Scale Kernel Machines, pp. 301–
320. 2007.

Menon, A. K. Large-scale support vector machines: algo-
rithms and theory. Technical report, University of Cali-
fornia, San Diego, 2009.

Moody, John and Darken, Christian J. Fast learning in net-
works of locally-tuned processing units. Neural Compu-
tation, pp. 281–294, 1989.

Pavlov, D., Chudova, D., and Smyth, P. Towards scalable
support vector machines using squashing. In KDD, pp.
295–299, 2000.

Pérez-Cruz, F., Figueiras-Vidal, A. R., and Artés-
Rodrı́guez, A. Double chunking for solving SVMs for
very large datasets. In Proceedings of Learning, 2004.

Platt, J. C. Fast training of support vector machines using
sequential minimal optimization. In Advances in Kernel
Methods - Support Vector Learning, 1998.

Smola, A., Vishwanathan, S., and Le, Q. Bundle methods
for machine learning. NIPS, 2007.

Tresp, V. A Bayesian committee machine. Neural Compu-
tation, 12:2719–2741, 2000.

Tsang, I.W., Kwok, J.T., and Cheung, P.M. Core vector
machines: Fast SVM training on very large data sets.
JMLR, 6:363–392, 2005.

Wang, Z., Djuric, N., Crammer, K., and Vucetic, S.
Trading representability for scalability: Adaptive multi-
hyperplane machine for nonlinear classification. In
KDD, 2011.

Yu, Hwanjo, Yang, Jiong, Han, Jiawei, and Li, Xiaolei.
Making SVMs scalable to large data sets using hierar-
chical cluster indexing. Data Mining and Knowledge
Discovery, 11(3):295–321, 2005.

Zhang, K., Tsang, I. W., and Kwok, J. T. Improved
Nyström low rank approximation and error analysis. In
ICML, 2008.

Zhang, K., Lan, L., Wang, Z., and Moerchen, F. Scaling up
kernel SVM on limited resources: A low-rank lineariza-
tion approach. In AISTATS, 2012.

