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Abstract

A standard technique for understanding underly-
ing dependency structures among a set of vari-
ables posits a shared conditional probability dis-
tribution for the variables measured on individ-
uals within a group. This approach is often re-
ferred to as module networks, where individuals
are represented by nodes in a network, groups
are termed modules, and the focus is on estimat-
ing the network structure among modules. How-
ever, estimation solely from node-specific vari-
ables can lead to spurious dependencies, and un-
verifiable structural assumptions are often used
for regularization. Here, we propose an ex-
tended model that leverages direct observations
about the network in addition to node-specific
variables. By integrating complementary data
types, we avoid the need for structural assump-
tions. We illustrate theoretical and practical sig-
nificance of the model and develop a reversible-
jump MCMC learning procedure for learning
modules and model parameters. We demonstrate
the method accuracy in predicting modular struc-
tures from synthetic data and capability to learn
regulatory modules in the Mycobacterium tuber-
culosis gene regulatory network.

1. Introduction

There is considerable interest in modeling dependency
structures in a variety of applications. Examples include re-
constructing regulatory relationships from gene expression
data in gene networks or identifying influence structures
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from activity patterns such as purchases, posts, tweets,
etc in social networks. Common approaches for learning
dependencies include using Bayesian networks and factor
analysis (Koller & Friedman, 2009).

Module networks (Segal et al., 2005; 2003) have been
widely used to find structures (e.g. gene regulation) be-
tween groups of nodes (e.g. genes) denoted as modules,
based on measurements of node-specific variables in a net-
work (e.g. gene expression). The motivation lies in that
nodes that are influenced or regulated by the same par-
ent node(s), have the same conditional probabilities for
their variables. For example, in gene regulatory networks,
groups of genes respond in concert under certain environ-
mental conditions (Qi & Ge, 2006) and are thus likely to
be regulated by the same mechanism. In other domains,
such as social networks, communities with similar inter-
ests or affiliations may have similar activity in posting mes-
sages (e.g. in twitter) in response to news-outbreaks or
similar purchases in response to marketing advertisements
(Kozinets, 1999; Aral et al., 2009).

However, inferring dependencies merely from node-
specific variables can lead to higher rate of false posi-
tives (Michoel et al., 2007). For example, a dependency
might be inferred between two unrelated nodes due to ex-
isting confounding variables. This can introduce arbitrary
or too many parents for a module. To avoid over-fitting in
inferring module networks, additional structural assump-
tions such as setting the maximum number of modules or
maximum number of parents per module may be required.
This in turn presents additional inductive bias and results
become sensitive to assumptions. Moreover, searching
through the entire set of candidate parents for each mod-
ule is computationally infeasible.

Alternatively, we can take advantage of existing network
data and by integrating node interactions with node vari-
ables, we can avoid structural assumptions. For exam-
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Figure 1. Illustration of proposed model: Modular structures are learned from node variables (e.g. gene expression) and network data
(e.g. protein-DNA interactions). Node variables are color-coded ranging from green (low) to red (high). A number of parents are
assigned to each module (orange links). A combinatorial program is inferred for each module; example shown for module M.

ple, to learn gene regulatory networks, we can use protein-
DNA interaction data, which shows physical interactions
between proteins of genes (known as Transcription Factors)
with promoter regions of other genes, leading to regulation
of transcription (and expression) of the latter genes. This
data can be measured using chromatin immunoprecipita-
tion of DNA-bound proteins, i.e. ChIP-ChIP or ChIP-Seq
technologies, which have shown to be informative of regu-
lation (Galagan et al., 2013; Liu et al., 2013; Celniker et al.,
2009). As another example, to learn influence structures in
a twitter network, we can integrate the network of who-
follows-who with measurements of users activities.

Identifying modules or block structures from network data
has been well-studied, e.g., using stochastic blockmodels
(Wang & Wong, 1987; Snijders & Nowicki, 1997; Airoldi
et al., 2008; 2013a) in the area of social network modeling
(Goldenberg et al., 2009; Azari Soufiani & Airoldi, 2012;
Choi et al., 2012). Stochastic blockmodels assume that
nodes of a network are members of latent blocks, and de-
scribe their interactions with other nodes with a parametric
model. However, models for inferring modular structures
from both node variables and network data are relatively
unexplored and of interest in many applications.

1.1. Contributions

In this paper, we propose an integrated probabilistic model
inspired by module networks and stochastic blockmodels,
to learn dependency structures from the combination of
network data and node variables data. We consider network
data in terms of directed edges (interactions) and model
network data using stochastic blockmodels. Intuitively, by
incorporating complementary data types, a node which is

likely to have directed edges to members of a module as
well as correlation with variables of module will be as-
signed as parent. A shorter version of this work was pre-
sented in (Azizi, 2013). The use of network data enhances
computational tractability and scalability of the method by
restricting the space of possible dependency structures. We
also show theoretically that the integration of network data
leads to model identifiability, whereas node variables alone
can not, without extra structural assumptions.

Our model captures two types of relationships between
variables of modules and their parents, including small
changes of variables due to global dependency structure
and condition-specific large effects on variables based on
parent activities in each condition.

For estimation of parameters, we use a Gibbs sampler in-
stead of the deterministic algorithm employed by Segal et
al. to overcome some of the problems regarding multi-
modality of model likelihood (Joshi et al., 2009). We
also solve the problem of sensitivity to choice of maxi-
mum number of modules using a reversible-jump MCMC
method which infers the number of modules and parents
based on data. The probabilistic framework infers poste-
rior distributions of assignments of nodes to modules and
thus does not face restrictions of non-overlapping modules
(Airoldi et al., 2008; 2013b).

1.2. Related Work

Other works have also proposed integrating different data
types, mostly as prior information, for improvement in
learning structures (Werhli & Husmeier, 2007; Imoto et al.,
2003; Mitra et al., 2013). It is more natural to consider
additional data types also as observations from a model
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of dependency structures. Our model thus considers both
network edges and node variables as data observed from
the same underlying structure, providing more flexibility.
Moreover, we utilize data integration to identify structures
between groups of nodes (modules) as opposed to individ-
ual nodes. Despite the similarity in the framework of our
model to module networks, our model for variables has dif-
ferences in relating modules to their parents, giving more
accurate and interpretable dependencies. Also, the integra-
tion of network data is novel. Regarding the learning proce-
dure, prior work has been done on improving module net-
work inference by using a Gibbs sampling approach (Joshi
et al., 2009). We take a step further and use a reversible-
jump MCMC procedure to learn the number of modules
and parents from data as well as parameter posteriors. Our
method can also allow restricting the number of modules
based on context, with a narrow prior. By adjusting this
prior, we have multi-resolution module detection.

2. Model of Modular Structures

In the framework of module networks, dependencies are
learned from profiles of node variables (e.g. gene ex-
pressions) for each node (e.g. gene), as random variables
{X1,...,Xn}. The idea is that a group of nodes with
common parents (e.g. co-regulated genes) are represented
as a module and have similar probability distributions for
their variables conditioned on their shared parents (regula-
tors). Figure 1 shows a toy example where node variable
data are shown in green-to-red heatmaps and network data
with dashed arrows (Airoldi, 2007). A module assignment
function A maps nodes {1, ..., N} to K non-overlapping
modules. A dependency structure function S assigns a set
of parents Pa; from {1, ..., R} known candidate parents
(possible regulators/influencers), which are a subset of the
N nodes, to module M; (figure 1). In the toy example,
nodes d, e are assigned to the same module M, and b, a
are assigned as their parents. In cases where multiple par-
ents drive a module, e.g. a, b affecting M,, combinatorial
effects are represented as a decision tree (regulatory pro-
gram) and each combination of parents activities, defined
as a context, is assigned to a cluster of conditions (experi-
ments). In figure 1, parent b has an activating effect while
a represses My, hence, e, d are active in context (4¢) where
only b is active and a is not. Inferring this decision tree
in the context of different applications shows how multiple
parents act together in influencing a group of nodes, e.g.
in a gene network, multiple transcription-factors (TFs) act
together to express a group of genes.

Given this framework, our model considers variables and
network data as two types of observation from the same un-
derlying modular structure. This structure is encoded based
on assignments to modules (A) and parents for each mod-

ule (S). In the example of gene networks, in each module,
TF-gene interactions are likely to be observed between TFs
and upstream regions of genes in the module while combi-
nations of expressions of TFs explain expressions of genes.

2.1. Modeling Node Variables

We model variables for nodes {1, ..., N} in each condition
or sample ¢ € 1,...,C with a multivariate normal repre-
sented as X ~ N (p,, ), where X is a N x 1 vector,
with N being the total number of nodes. The covariance
and mean capture two different aspects of the model re-
garding global dependency structures and context-specific
effects of parents, respectively, as described below.

We define the covariance X to be independent of condi-
tions and representing the strength of potential effects of
one variable upon another, if the former is assigned as a
parent of the module containing the latter. In the exam-
ple of gene expressions, > may represent the affinity of a
Transcription-Factor protein to a target gene promoter. The
modular dependencies between variables imposes a struc-
ture on Y. To construct this structure, we relate node vari-
ables to their parents through a regression X, = WX, + €
where € = N (mec,I). Wisa N x N sparse matrix in
which element W, is nonzero if variable r is assigned as
a parent of the module containing variable n. Here we as-
sume W, has the same value for Vn € M;,Vr € Pay,
which leads to identifiability of model (as explained in
section 3. Then, assuming I — W is invertible, X, =
(I — W)~ e which implies ¥ = (I — W)~T(1 — W)~ 1.
Therefore, we impose the modular dependency structure
over X through W, which is easier to interpret based on
A, S assignments.

We define variable means g, based on parents as described
below. First, based on the modular structure of nodes, we
can partition the mean vector as p, = [u}...u%]T, where
each pk for k = 1,..., K isa 1 x Ny vector with N} equal
to the number of nodes in module k. In modules where
there is more than one parent assigned, combinations of
different activities of parents, creating a context, can lead
to different effects. The binary state of parent » € Pay, is
defined by comparing its mean to a split-point z;, corre-
sponding to a mixture coefficient for that state 77 , or v,
as: v, = Vo H (2 — pe) + Vi H (e — 2j;), where H(:)
is a unit step function.

The combination of different activities are represented as
a decision tree for each module k (figure 1). We repre-
sent a context-specific program as dependencies of variable
means on parents activities in each context, such that p*
for module k is a linear mixture of means for parents of
that module: p* = Zi’“l ¥ uf “ where Ry, is the num-
ber of parents Paj and ~. are similar for all conditions
c occurring in the same context. Thus, in general we can
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Figure 2. Graphical representation of model: The assignments
of nodes to modules A and parents for modules S represent mod-
ular dependency structures, from which we observe node vari-
ables X in each condition ¢ and network data B,_,, between
a parent r and a node n. Means of node variables (. are deter-
mined from parent means pZ with mixing coefficients T" deter-
mined based on parent split-points Z.

write g1, = T'. %, where puff contains the means of parents
1, ..., R in condition c. The N x R matrix I'. has identical
rows for all variables in one module based on the assign-
ment functions A, S. The graphical model is summarized
in figure 2. Thus the model for object variables would be:
Xe ~ N(Tepl, (I = W)=H(I = W)7H).

Given independent conditions, the probability of data
X = [X4,..., X¢] for C conditions given parameters can
be written as multiplication of multivariate normal dis-
tributions for each condition: P(X|A,S,0,%,2%) =
15, P(Xc|A,S,0.,%, Z5), where © = {0y, ....00}
denotes the set of condition-specific parameters 6, =
{puB.T.} for ¢ = 1,..,C and Z° denotes the
set of parent split-points for all modules. Then for
each condition we have: P(X(|A4,S,0.,%,2°%) =
mexp(—%(xc — ) TE (X — 1))

Hence, this model provides interpretations for two types of
influences of parents. By relating the distribution mean for
variables in each module and in each condition to means
of their assigned parents (figure 1.B), we model condition-
specific effects of parents. Based on the states of parents in
different contexts (partitions of conditions), this leads to a
bias or large signal variations in node variables. Whereas,
small signal changes (linear term) are modeled through the
covariance matrix ¥ which is independent of condition and
is only affected by the global wiring imposed by depen-
dency structures.

2.2. Modeling Network Data

Network data, as a directed edge between a parent r €
{1, ..., R} andnode n € M}, when r is assigned as a parent
of the module r € Pay, is defined as a directed link B, _,,,
where

P(Brepay—nem, |A, S, ) ~ Bernoulli(n) (1)

The parameter 7 defines the probability of parent
r influencing module M} (figure 2). In the gene
network example, an interaction between a Transcrip-
tion Factor protein binding to a motif sequence, up-
stream of target genes, which is common in all
genes of a module can be observed using ChIP data.
Therefore, directed interactions from parents to all
nodes in a module would be P(Byp |A,S, ) =
[l epa, [lnear, P(BronlA, S, 7y), where my, is the vec-
tor of 7}, for all r € Pay, and for all nodes we have:

K
PBIAS, ) =[] [[ [] PBronlAS. )

k=1rePay neMj,

K
=TI TT o= el
k=1rePay

H (m0)*r"* (1 — 7T0)‘M’“|—5wk 2

r'éPay,

with w = {my,...,mx} and s, = ZneMk (Br—n) is the
sufficient statistic for the network data model and |M}| is
the number of nodes in module k£ and 7 is the probability
that any non-parent can have interaction with a module. In
gene regulatory networks, 7y can be interpreted as basal
level of physical binding that may not necessarily affect
gene transcription and thus regulate a gene.

In the context of stochastic blockmodels, the group of par-
ents assigned to each module can be considered as an in-
dividual block and thus our model can represented as over-
lapping blocks of nodes.

The likelihood of the model M = {A,S,0,%, Z°% =}
given the integration of node variables and network data
is: P(X,B|M) = P(X|A,S,0,%, Z%)P(B|A,S, ).
With priors for parameters M the posterior likelihood is:
PMX,B) x P(M)P(X,B|M).

3. Theory: Model Identifiability

Our method uses network data to avoid extra structural as-
sumptions. In this section we formalize this idea through
the identifiability of the proposed model. This property is
important for interpretability of learned modules. Module
networks and generally multivariate normal models for ob-
ject variables can be un-identifiable, and imposing extra
structural assumptions is necessary to overcome this. Here,
we illustrate that the integrated learning proposed in this
paper resolves the un-identifiability issue. First, we show
that modeling node variables alone is identifiable only un-
der very specific conditions. Then, we will restate some
results from (Latouche et al., 2011) on the identifiability of
overlapping block models. Using this result we show the
identifiability of the model under some reasonable condi-
tions.
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Lemma 1. Node Variables Model: For the model of node-
specific variables X, if we have: P(X|{A,S},0',Y) =
P(X|{A,8},0,%)

1. Then, we can conclude: i/ = pand ¥ = X.

2. If we further assume {A,S} = {A,S} and that
each module has at least two non parent nodes and
> i [Par| < N and the covariance matrix ¥ is in-
vertible, we can conclude: © = ', W = W',

Proof presented in (Azizi et al., 2014).

The above lemma provides identifiability for the case
where the structure {4, S} is assumed to be known. How-
ever, in the case where we don’t have the structure, the pa-
rameterizations of multivariate normal (¢ and X)) can be
written in multiple ways in terms of © and { A, S}. This is
due to existence of multiple decompositions for the covari-
ance matrix. In the following, we will use a theorem for
identifiability of overlapping block models from (Latouche
et al., 2011) which is an extension of the results in (Allman
etal., 2009). The results provide conditions for overlapping
stochastic block models to be identifiable.

Theorem 1. Network Data Model: If we have
P(B|{A,S},7) = PBI{A,S},w'), then: {A,S} =
{A, S} with a permutation and ™ = 7 (except in a set
of parameters which have a null Lebesgue measure) (Proof
direct result of Theorem 4.1 in Latouche et al. (2011) as
described in Azizi et al. (2014)).

Using the above Theorem and Lemma 1 we can have the
following Theorem for the identifiability of the model.

Theorem 2. Identifiability of Model: If we
have: P(BI{A,S},w) = PBH{AS},w") and
PX|{A,S8},0,Y) = P(X|{A,S},6,%) with as-
suming that each module has at least two non-parent
nodes and ), |Pay| < N and the covariance matrix ¥
is invertible, then: {A, S} = {A, S} with a permutation,
T =xn",0 =0 and W = W’ (except in a set of
parameters which have a null Lebesgue measure) (Proof
in Azizi et al. (2014)).

This Theorem states the theoretical effect of integrated
modeling on identifiability of modular structures, given
that the sum of number of parents is less than the number
of nodes (as is common in gene regulatory networks).

4. Parameter Estimation using RIMCMC

We use a Gibbs sampler to obtain the posterior distribution
P(M|X,B) and design Metropolis-Hastings samplers for
each of the parameters ©, ¥, 7 conditioned on the other pa-
rameters and data X, B. We use Reversible-Jump MCMC
(Green, 1995) for sampling from conditional distributions
of the assignment and structure parameters A, S.

4.1. Learning Parameters O, %, 75 7.

To update the means, we only need to sample one value for
means of parents assigned to the same module. This set of
means of distinct parents u® are sampled with a Normal
proposal (Algorithm 1). Similarly we sample the param-
eters 7y, ;. and 7}, corresponding to parent r € Pay, of
module £, from normal distributions. To update covariance
3., each distinct element of the regression matrix W corre-
sponding to a module k, denoted as wy, is updated. Due
to the symmetric proposal distribution, the proposal is ac-
cepted with probability Py, = min{1, ST LD
The conditions required for identifiability (from Theorem
1) are enforced in each iteration.

where M) = {A,5,0,%, Z57}0),

Algorithm 1 RIMCMC for sampling parameters
Inputs:
Node Variables Data X
Network Data B
for iterations j = 1 to J do
Sample AU+ given AU) using Alg 2 in (Azizi et al.,
2014)
Sample SUH1) given SUU) using Alg 3 in (Azizi et al.,
2014)
for modules k = 1 to K do
Propose w\! ) ~ N (w1
Accept with probability P,,;; update ©U+1)
for parents r = 1 to Ry, do
Propose z,z(jﬂ) ~ N(z;(j), I); accept with Py,
Propose wz(ﬁl) ~ /\/(77,:(]), I); accept with
th
end for
end for
for condition ¢ = 1 to C do
Propose p T o N(u?(j), T); accept with Py,
Propose ’y(fwﬂ) ~ N('yf”(j), I); accept with Py,
end for
end for

4.2. Learning assignments A, S.

Learning the assignment of each node to a module, involves
learning the number of modules. Changing the number
of modules however, changes dimensions of the parame-
ter space and therefore, densities will not be comparable.
Thus, to sample from P(A|S,0,%,, Z%r, X, B), we use
the Reversible-Jump MCMC method (Green, 1995), an ex-
tension of the Metropolis-Hastings algorithm that allows
moves between models with different dimensionality. In
each proposal, we consider three close move schemes of
increasing or decreasing the number of modules by one, or
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not changing the total number. For increasing the number
of modules, a random node is moved to a new module of
its own and for decreasing the number, two modules are
merged. In the third case, a node is randomly moved from
one module to another module, to sample its assignment
(Algorithm 2 in (Azizi et al., 2014)).

To sample from the dependency structure (assignment of
parents) P(S|A,0,%, 79w, X, B), we also implement a
Reversible-Jump method, as the number of parents for each
module needs to be determined. Two proposal moves are
considered for S which include increasing or decreasing
the number of parents for each module, by one (Algorithm
3in (Azizi et al., 2014)).

S. Results
5.1. Synthetic Data

We first tested our method on synthetic node-variables
and network data generated from the proposed model. A
dataset was generated for N = 200 nodes in K = 4 mod-
ules with C' = 50 conditions for each node variable. Par-
ents were assigned from a total of R = 10 number of can-
didates. Parameters 7, v and W were chosen randomly,
preserving parameter sharing of modules. The inference
procedure was run for 20,000 samples. Exponential prior
distributions were used for number of parents assigned to
each module, to avoid over-fitting. Figure 3 shows the au-
tocorrelation for samples of variable mean p for an ex-
ample gene. The samples become independent after a lag
and thus we removed the first 10, 000 iterations as burn-in
period. Samples from posteriors, including the number of
modules K, exhibit standard MCMC movements around
the actual value (actual K = 4). We also calculated the
true positive rate and false positive rates based on actual
dependency links. We repeated the estimation of true pos-
itive and false positive rates for 100 random datasets with
the same size as mentioned and computed the average ROC
for the model (figure 3). As comparison, for each gener-
ated dataset, we also tested the sub-model for variable data
(excluding the model for network data) to infer links. We
performed bootstrapping on sub-samples with size 1000 to
compute variance of AUC (area under curve) and paired t-
tests confirmed improved performance of integrated model
compared to the variables sub-model (p < 0.05).

The parameter sharing property in modular structures al-
lows parallel sampling of parameters wy and 'y(rk), 25T,
for each module &, in each iteration and in different con-
ditions. We used Matlab-MPI for this implementation. It
takes an average of 36 4= 8 seconds to generate 100 samples
for N = 200, C' = 50, R = 10 on an i5 3.30GHz In-
tel(R). For further enhancement, module assignments were
initialized by k-means clustering of variables.
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Figure 3. Results sythetic data: Autocorrelation for an example
variable mean (top); gibbs samples and posterior after burn-in pe-
riod (actual mean shown with red line); number of modules (pur-
ple) and true positive rate of recovered links (green), ROC curve
for integrated model and variables model (bottom)

5.2. M. tuberculosis Gene Regulatory Network

We applied our method to identify modular structures in the
Mycobacterium tuberculosis (MTB) regulatory network.
MTB is the causative agent of tuberculosis disease in hu-
mans and the mechanisms underlying its ability to persist
inside the host are only partially known (Flynn & Chan,
2001). We used interaction data identified with ChIP-Seq
of 50 MTB transcription factors and expression data for
different induction levels of the same factors in 87 experi-
ments, from a recent study by (Galagan et al., 2013). Only
bindings of factors to upstream intergenic regions were
considered. We tested our method on 3072 MTB genes
which had binding from at least one of these factors and
performed 100,000 iterations on the combination of the two
datasets. For each gene, we inferred the mode of its assign-
ments to modules (after removing burn-in samples) and ob-
tained 29 modules in total. The largest modules and the
assigned regulators are shown in figure 4. The identified
modules are enriched for functional annotations of genes
(Azizi et al., 2014).

For each module, the number of assigned genes and ex-
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Figure 4. Regulatory structures between largest modules in-
ferred for MTB: Regulators assigned to each module are shown;
the size of circles are proportional to number of genes assigned
to the module. Enriched functional annotations are highlighted;
details are in Azizi et al. (2014).

amples of previously studied genes are presented. The
identified regulators of each module and enriched annota-
tions confirm known functions for some regulators, such as
the role of KstR (Rv3574) in regulating lipid metabolism
(Kendall et al., 2007), confirmed in modules M26 and M11;
and DosR (Rv3133c) in nitrosative stress response (Voskuil
et al., 2003) (module M1) and transcription (Rustad et al.,
2008) (module M25). Novel functions for other regulators
and the combinations of regulators acting together are also
presented.

As shown in figure 4, many modules are controlled by more
than one regulator, highlighting the significance of combi-
natorial regulations (see supplemantary material for inter-
pretations). One inferred module is M11 shown in figure 5
which is regulated by Rv0081 and KstR (Rv3574). Rv0081
is known to be involved in hypoxic adaptation (Galagan
et al., 2013) while KstR is known to be involved in choles-
terol and lipid catabolism (Kendall et al., 2007) and the
module is enriched for “Energy production and conversion”
and “Lipid transport and metabolism” COG categories (ta-
ble 1 in Azizi et al. (2014)). The inferred program in figure
5 shows that either of the two regulators can repress the
expression of the 48 genes assigned to this module, which
include lipases and genes involved in fatty acid S-oxidation
and triacylglycerides cycle metabolic pathways. KstR itself
is also regulated by Rv0081, and thus Rv0081 regulates
lipid metabolism genes through KstR. Figure 3 in supple-
mantary material shows another module M25 containing
161 genes, with two hypoxic adaptation regulators mediat-
ing the induction of a second hierarchy of regulators with a

Rv0081

Rv0081

KstR

Gene Expressions
TF-Gene Interactions

context (a) (b) (c)

Figure 5. Inferred regulatory program for module M11 of fig. 4
showing that either of Rv0081 and KstR can repress the module
in contexts (a) and (c)

time delay, explaining a late hypoxic response.

We showed in section 3 that integration of network data
has theoretical advantages in terms of model identifiabil-
ity. Here, we show that it can also reduce the number of
false positive regulatory links in MTB data. As a gold stan-
dard, we used previously validated links (by EMSA, RTq-
PCR) for two MTB regulators, including 48 known links
for DosR from (Voskuil et al., 2003) and 72 known links
for KstR from (Kendall et al., 2007). We calculated the
area under precision-recall for our method by comparing
posterior probabilities for DosR and KstR links to known
links (table 1). As comparison, we also applied common
methods shown to have best performance in DREAM chal-
lenge contests (Marbach et al., 2012) in inferring regulatory
networks from gene expression only. These include Mutual
Information between expression profiles (MI), CLR (Faith
et al., 2007), GENIE3 (Irrthum et al., 2010). We applied
these on the above MTB expression data, and compared
the inferred links to the gold standard set. As the number
of validated links in MTB are small, we also scored the
predictions from co-expression methods to the MTB ChIP-
Seq data (Galagan et al., 2013) for the same two regulators.
Also, none of these methods assume modular structures.

We then applied Module Networks (Segal et al., 2005)
to the same expression dataset and compared predictions
to known links and ChIP-Seq data (table 2). We set the
maxmimum number of modules to 10 and constrained the
candidate pool of regulators to the 50 ChIPped regulators
only. On average 2.8 £ 0.63 regulators were assigned to
each module, with a mode of 3, whereas the ChIP-Seq net-
work shows a mode of 1 for in-degree of genes (Galagan
et al., 2013), i.e. most genes have only one regulator bind-
ing. As the predicted links from module networks are de-
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Table 1. Area under precision-recall AUPR(%) calculated for
link prediction using proposed method and other common co-
expression methods, applied to MTB data. The predictions are
scored vs known and ChIP-Seq links for two regulators

Gold Standard Validated Links ChIP-Seq Links
Regulator DosR KstR DosR KstR
No. of Targets (48) (72) (528) (503)
MI 39.04 9.24 25.00 17.85
CLR 48.25 9.37 21.44 16.77
GENIE3 62.26 31.37 21.55 19.44
Proposed Model ~ 72.13 65.72 79.62 70.06

terministic, an AUPR score can not be reported, thus we
compared to precision and recall of posterior mode from
our models. Note small precision values are due to small
number of validated links, i.e. if a link is not validated ex-
perimentally it may not be wrong. For a fair comparison of
models without the effect of interaction data, we also com-
pared to performance of our model for variables data only
(table 2). These results show that module networks and in
general co-expression methods have many false positives
and integrating interaction data is necessary for inference
of direct regulatory relationships.

Table 2. Percentage of Precision (P) and Recall (R) for link pre-
diction using module networks and proposed models.

Gold Standard Validated Links ChIP-Seq Links
Regulator DosR KstR DosR KstR

P R P R P R P R
Module Networks 38 812 6.5 86.1 40.1 76.3 35.8 67.4
Proposed Model for 4.6 77.1 7.2 77.8 55.0 83.7 52.5 80.5

Variables (mode)

Proposed Integrated 6.5 89.6 10.6 84.7 75.4 93.4 83.6 95.6

Model (mode)

6. Conclusion

We proposed a model for learning dependency structures
between modules, from network data and node variables
data. We showed that the assumption of shared parents
and parameters for nodes in a module, together with in-
tegration of network data deals with under-determination
and un-identifiability, improves statistical robustness and
avoids over-fitting. We presented a reversible-jump in-
ference procedure for learning model posterior. Our re-
sults showed high performance on synthetic data and in-
terpretable structures on synthetic data and real data from
M. tuberculosis gene network. Results for MTB gene
regulatory network revealed feed-forward loops and in-
sights into condition-specific regulatory programs for lipid
metabolism and hypoxic adaptation. One future direction is
to propose faster algorithms based on generalized method

of moments (Azari Soufiani et al., 2014; 2013; Anandku-
mar et al., 2012) for estimators of this model.
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