[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Entanglement transformations of pure Gaussian states

Published: 01 May 2003 Publication History

Abstract

We present a theory of entanglement transformations of Gaussian pure states with local Gaussian operations and classical communication. This is the experimentally accessible set of operations that can be realized with optical elements such as beam splitters, phase shifts and squeezers, together with homodyne measurements. We provide a simple necessary and sufficient condition for the possibility to transform a pure bipartite Gaussian state into another one. We contrast our criterion with what is possible if general local operations are available.

References

[1]
W. Vogel, D.-G. Welsch, and S. Wallentowitz, Quantum Optics, An Introduction (Wiley-VCH, Berlin, 2001).
[2]
L. Vaidman, Phys. Rev. A 49, 1473 (1994); S.L. Braunstein and H.J. Kimble, Phys. Rev. Lett. 80, 869 (1998); A. Furusawa, J.L. Sørensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, and E.S. Polzik, Science 282, 706 (1998); W.P. Bowen, N. Treps, B.C. Buchler, R. Schnabel, T.C. Ralph, H.-A. Bachor, T. Symul, and P.K. Lam, Phys. Rev. Lett. 89 253601 (2002).
[3]
M.D. Reid and D.F. Walls, Phys. Rev. A 32, 1260 (1986); Ch. Silberhorn, P.K. Lam, O. Weiss, F. König, N. Korolkova, G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001); C. Schori, J.L. Sørensen, and E.S. Polzik, quant-ph/0205015; S. Scheel and D.G. Welsch, quant-ph/0207114; M.M. Wolf, J. Eisert, and M.B. Plenio, Phys. Rev. Lett. 90, 047904 (2003).
[4]
G. Lindblad, J. Phys. A 33, 5059 (2000); N.J. Cerf, A. Ipe, and X. Rottenberg, Phys. Rev. Lett. 85, 1754 (2000).
[5]
B. Yurke and D. Stoler, Phys. Rev. Lett. 79, 4941 (1997); A. Gilchrist, P. Deuar, and M.D. Reid, Phys. Rev. Lett. 80, 3169 (1998); W.J. Munro, Phys. Rev. A. 59, 4197 (1999); T.C. Ralph, W.J. Munro, and R.E.S. Polkinghorne, Phys. Rev. Lett. 85, 2035 (2000); A. Dragan and K. Banaszek, Phys. Rev. A 63, 062102 (2001); J. Wenger, M. Hafezi, F. Grosshans, R. Tualle-Brouri, and P. Grangier, Phys. Rev. A 67, 012105 (2003).
[6]
M. Hillery, Phys. Rev. A 62, 062308 (2000); T.C. Ralph, Phys. Rev. A 61, 061303R (2000); D. Gottesman and J. Preskill, Phys. Rev. A 63, 22309 (2001); F. Grosshans and P. Grangier, Phys. Rev. Lett. 88, 057902 (2002); Ch. Silberhorn, N. Korolkova, and G. Leuchs, Phys. Rev. Lett. 88, 167902 (2002).
[7]
B. Julsgaard, A. Kozhekin, and E.S. Polzik, Nature 413, 400 (2000); A. Kuzmich and E.S. Polzik, Phys. Rev. Lett. 85, 5639 (2000).
[8]
L.-M. Duan, G. Giedke, J.I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000); R. Simon, Phys. Rev. Lett. 84, 2726 (2000); G. Giedke, B. Kraus, M. Lewenstein, and J.I. Cirac, Phys. Rev. Lett. 87, 167904 (2001); R.F. Werner and M.M. Wolf, Phys. Rev. Lett. 86, 3658 (2001).
[9]
G. Giedke, L.-M. Duan, J.I. Cirac and P. Zoller, Quant. Inf. Comp. 1(3), 79 (2001).
[10]
S. Parker, S. Bose, and M.B. Plenio, Phys. Rev. A 61, 032305 (2000); O. Krüger, Diploma thesis (University of Braunschweig, September 2001); J. Eisert, C. Simon, and M.B. Plenio, J. Phys. A 35, 3911 (2002).
[11]
M.A. Nielsen, Phys. Rev. Lett. 83, 436 (1999).
[12]
J. Eisert and M.B. Plenio, Phys. Rev. Lett. 89, 097901 (2002).
[13]
G. Giedke and J.I. Cirac, Phys. Rev. A 66, 032316 (2002).
[14]
J. Eisert, S. Scheel, and M.B. Plenio, Phys. Rev. Lett. 89, 137903 (2002).
[15]
J. Fiurášek, Phys. Rev. Lett. 89, 137904 (2002).
[16]
A. Holevo and R. F. Werner, Phys. Rev. A 63, 032312 (2001).
[17]
A. Botero and B. Reznik, quant-ph/0209026.
[18]
R. Simon, E.C.G. Sudarshan, and N. Mukunda, Phys. Rev. A 36, 3868 (1987).
[19]
B. Demoen, P. Vanheuverzwijn, and A. Verbeure, Lett. Math. Phys. 2, 161 (1977); B. Demoen, P. Vanheuverzwijn, and A. Verbeure, Rep. Math. Phys. 15, 27 (1979).
[20]
A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972).
[21]
R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1987).
[22]
H.-K. Lo and S. Popescu, Phys. Rev. A 63, 022301 (2001).
[23]
In particular, this holds for the 'eigenstates' of the position operator, which are elements of the dual space of Schwartz space.
[24]
D. Jonathan and M.B. Plenio, Phys. Rev. Lett. 83, 3566 (1999); J. Eisert and M. Wilkens, Phys. Rev. Lett. 85, 437 (2000); G. Vidal and J.I. Cirac, Phys. Rev. Lett. 88, 167903 (2002).
[25]
G. Vidal, Phys. Rev. Lett. 83, 1046 (1999); D. Jonathan and M.B. Plenio, Phys. Rev. Lett. 83, 1455 (1999).
[26]
D.E. Browne, J. Eisert, S. Scheel, and M.B. Plenio, quant-ph/0211173.
[27]
Care must be taken when extending state transformation results to infinite dimensional systems. E.g., it is no longer true, that all states with equal Schmidt coefficients can be converted into each other by local unitaries, as the counterexample ψ = Σ n cn |n〉 |n〉, ψ′ = Σ n cn |n + 1〉 |n + 1〉 demonstrates. Nevertheless, the majorisation criterion can be used in this infinite dimensional setting when "ρ can be converted into ρ′ is now defined to mean that there is a sequence of local transformations Tk that for each k map ρ to ρk′ such that ρk′ approaches ρ′ in trace norm; i.e., while it may not be possible to transform the states exactly, the target state can be approximated to arbitrary accuracy and with probability 1 via LOCC. In the finite dimensional case this definition of convertibility is equivalent to the usual one. Then the equivalence of the majorisation condition and convertibility can be formally derived for all norm-approachable states, e.g., by investigating sequences of the finite-dimensional pure states ρ k and ρ k ′ obtained by projecting ρ, ρ′ onto the subspaces corresponding to the k largest Schmidt coefficients. Considering the finite case for all k ∈ N, one immediately arrives at the majorisation criterion in the infinite-dimensional case.
[28]
Note that transformations that are both symplectic and orthogonal reflect all those unitary Gaussian operations that can be implemented by means of passive optical elements (beam splitters and phase shifts).

Cited By

View all
  • (2008)ε-convertibility of entangled states and extension of Schmidt rank in infinite-dimensional systemsQuantum Information & Computation10.5555/2011752.20117558:1(30-52)Online publication date: 1-Jan-2008
  • (2007)An introduction to entanglement measuresQuantum Information & Computation10.5555/2011706.20117077:1(1-51)Online publication date: 1-Jan-2007

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Quantum Information & Computation
Quantum Information & Computation  Volume 3, Issue 3
May 2003
88 pages

Publisher

Rinton Press, Incorporated

Paramus, NJ

Publication History

Published: 01 May 2003
Revised: 14 April 2003
Received: 19 January 2003

Author Tags

  1. Gaussian states
  2. entanglement
  3. state transformations

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2008)ε-convertibility of entangled states and extension of Schmidt rank in infinite-dimensional systemsQuantum Information & Computation10.5555/2011752.20117558:1(30-52)Online publication date: 1-Jan-2008
  • (2007)An introduction to entanglement measuresQuantum Information & Computation10.5555/2011706.20117077:1(1-51)Online publication date: 1-Jan-2007

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media