

Features

- Organization: 1,048,576 words × 16 bits
- High speed
 - $50/60 \text{ ns} \overline{\text{RAS}}$ access time
- 20/25 ns hyper page cycle time
- 12/15 ns CAS access time
- Low power consumption
 - Active: 500 mW max (-60)
 - Standby: 3.6 mW max, CMOS DQ
- Extended data out

Pin arrangement

- 1024 refresh cycles, 16 ms refresh interval
- $\overline{\text{RAS}}\text{-only}$ or $\overline{\text{CAS}}\text{-before-}\overline{\text{RAS}}$ refresh or self-refresh

- Read-modify-write
- TTL-compatible, three-state DQ • JEDEC standard package and pinout
- 400 mil, 42-pin SOJ
 - 400 mil, 44/50-pin TSOP II
- 3V power supply (AS4LC1M16E5)
- 5V tolerant I/Os; 5.5V maximum V_{IH}
- Industrial and commercial temperature available

SOJ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{SS} DQ16 DQ15 DQ13 V _{SS} DQ12 DQ10 DQ10 DQ10 DQ10 DQ10 DQ10 DQ10 DQ9 NC <u>UCAS</u> <u>UCAS</u> <u>UCAS</u> <u>A9</u> A8 A7 A6 A5 A4 V _{SS}

	TSOP	II	
V _{CC} DQ1 DQ2 DQ3 DQ4 V _{CC} DQ5 DQ6 DQ7 DQ8 DQ8 NC	1 2 3 4 5 6 7 8 9 10 11	50 V _{SS} 49 DQ16 48 DQ15 47 DQ14 46 DQ13 45 V _{SS} 44 DQ12 43 DQ11 41 DQ9 40 NC	
NC U WE U RAS U NC U A0 U A1 U A2 U A3 U V _{CC} U	15 16 17 18 19 20 21 22 23 24 25	36 NC 35 ICAS 34 UCAS 33 OE 32 A9 31 A8 30 A7 29 A6 28 A5 27 A4 26 Vss	

Pin designation

0	
Pin(s)	Description
A0 to A9	Address inputs
RAS	Row address strobe
DQ1 to DQ16	Input/output
ŌĒ	Output enable
WE	Write enable
UCAS	Column address strobe, upper byte
LCAS	Column address strobe, lower byte
V _{CC}	Power
V _{SS}	Ground

Selection guide

	Symbol	-50	-60	Unit
Maximum RAS access time	t _{RAC}	50	60	ns
Maximum column address access time	t _{AA}	25	30	ns
Maximum CAS access time	t _{CAC}	10	12	ns
Maximum output enable (\overline{OE}) access time	t _{OEA}	10	12	ns
Minimum read or write cycle time	t _{RC}	80	100	ns
Minimum hyper page mode cycle time	t _{HPC}	20	25	ns
Maximum operating current	I _{CC1}	140	120	mA
Maximum CMOS standby current	I _{CC5}	1.0	1.0	mA

Shaded areas indicate advance information.

4/11/01; v.1.0

Functional description

The AS4LC1M16E5 is a high performance 16-megabit CMOS Dynamic Random Access Memory (DRAM) organized as 1,048,576 words \times 16 bits. The device is fabricated using advanced CMOS technology and innovative design techniques resulting in high speed, extremely low power and wide operating margins at component and system levels. The Alliance 16Mb DRAM family is optimized for use as main memory in personal and portable PCs, workstations, and multimedia and router switch applications.

The AS4LC1M16E5 features hyper page mode operation where read and write operations within a single row (or page) can be executed at very high speed by toggling column addresses within that row. Row and column addresses are alternately latched into input buffers using the falling edge of \overline{RAS} and \overline{xCAS} inputs, respectively. Also, \overline{RAS} is used to make the column address latch transparent, enabling application of column addresses prior to \overline{xCAS} assertion. The AS4LC1M16E5 provides dual \overline{UCAS} and \overline{LCAS} for independent byte control of read and write access.

Extended data out (EDO), also known as 'hyper-page mode,' enables high speed operation. In contrast to 'fast-page mode' devices, data remains active on outputs after \overline{xCAS} is de-asserted high, giving system logic more time to latch the data. Use \overline{OE} and \overline{WE} to control output impedance and prevent bus contention during read-modify-write and shared bus applications. Outputs also go to high impedance at the last occurrance of \overline{RAS} and \overline{xCAS} going high.

Refresh on the 1024 address combinations of A0 to A9 must be performed every 16 ms using:

- RAS-only refresh: RAS is asserted while \overline{xCAS} is held high. Each of the 1024 rows must be strobed. Outputs remain high impedence.
- Hidden refresh: \overline{xCAS} is held low while \overline{RAS} is toggled. Outputs remain low impedence with previous valid data.
- CAS-before-RAS refresh (CBR): At least one xCAS is asserted prior to RAS. Refresh address is generated internally. Outputs are high-impedence (OE and WE are don't care).
- Normal read or write cycles refresh the row being accessed.
- Self-refresh cycles

The AS4LC1M16E5 is available in the standard 42-pin plastic SOJ and 44/50-pin TSOP II packages, respectively. The AS4LC1M16E5 device operates with a single power supply of $3V \pm 0.3V$ and provides TTL compatible inputs and outputs.

Logic block diagram

Recommended operating conditions

Parameter		Symbol	Min	Nominal	Max	Unit
Supply voltage		V _{CC}	3.0	3.3	3.6	V
Supply voltage		GND	0.0	0.0	0.0	V
The second second		V _{IH}	2.0	_	5.5	V
Input voltage		V _{IL}	-0.5^{\dagger}	_	0.8	V
A	Commercial	- T	0	_	70	- °C
Ambient operating temperature	Industrial	I _A	-40	_	85	— L

 $^\dagger V_{IL}$ min -3.0V for pulse widths less than 5 ns.

Recommended operating conditions apply throughout this document unless otherwise specified.

Absolute maximum ratings

Parameter	Symbol	Min	Max	Unit
Input voltage	V _{DQ}	-1.0	+5.5	V
Power supply voltage	V _{CC}	-1.0	+4.0	V
Storage temperature (plastic)	T _{STG}	-65	+150	°C
Soldering temperature \times time	T _{SOLDER}	_	260 × 10	$^{\rm o}$ C × sec
Power dissipation	P _D	_	0.6	W
Short circuit output current	I _{out}	_	50	mA

Truth table

							Addr	esses	_	
Operation		RAS	LCAS	UCAS	WE	OE	t _R	t _C	DQ0 to DQ15	Notes
Standby		Н	H to X	H to X	Х	Х	Х	Х	High-Z	
Word read		L	L	L	Н	L	ROW	COL	Data out	
Lower byte read		L	L	Н	Н	L	ROW	COL	Lower byte, Upper byte, Data out	
Upper byte read		L	Н	L	Η	L	ROW	COL	Lower byte, Data out, Upper byte	
Word (early) write		L	L	L	L	Х	ROW	COL	Data in	
Lower byte (early) write		L	L	Н	L	Х	ROW	COL	Lower byte, Data in, Upper byte, High-Z	
Upper byte (early) write		L	Н	L	L	Х	ROW	COL	Lower byte, High-Z, Upper byte, Data in	
Read write		L	L	L	H to L	L to H	ROW	COL	Data out, Data in	1,2
	1st cycle	L	H to L	H to L	Н	L	ROW	COL	Data out	2
EDO read	2nd cycle	L	H to L	H to L	Η	L	n/a	COL	Data out	2
	Any cycle	L	L to H	L to H	Н	L	n/a	n/a	Data out	2
	1st cycle	L	H to L	H to L	L	Х	ROW	COL	Data in	1
EDO write	2nd cycle	L	H to L	H to L	L	Х	n/a	COL	Data in	1
EDO	1st cycle	L	H to L	H to L	H to L	L to H	ROW	COL	Data out, Data in	1,2
read write	2nd cycle	L	H to L	H to L	H to L	L to H	n/a	COL	Data out, Data in	1,2
RAS only refresh		L	Н	Н	Х	Х	ROW	n/a	High Z	
CBR refresh		H to L	L	L	Н	Х	Х	Х	High Z	3
Self refresh		H to L	L	L	Η	Х	Х	Х	High Z	3

DC electrical characteristics

			-!	50	-6	50		
Parameter	Symbol	Test conditions	Min	Max	Min	Max	Unit	Notes
Input leakage current	I_{IL}	$0V \le V_{in} \le V_{CC} (max)$ Pins not under test = $0V$	-2	+2	-2	+2	μΑ	
Output leakage current	I _{OL}	D_{OUT} disabled, $0V \le V_{out} \le V_{CC}$ (max)	-2	+2	-2	+2	μΑ	
Operating power supply current	I _{CC1}	RAS, UCAS, ICAS, Address cycling; t _{RC} =min	-	140	_	130	mA	4,5
TTL standby power supply current	I _{CC2}	$\overline{RAS} = \overline{UCAS} = \overline{LCAS} \ge V_{IH}$, all other inputs at V_{IH} or V_{IL}	-	2.0	_	2.0	mA	
Average power supply current, RAS refresh mode or CBR	I _{CC3}	$\label{eq:RAS} \begin{array}{l} \overline{\text{RAS}} \ \text{cycling,} \ \overline{\text{UCAS}} = \overline{\text{LCAS}} \geq \text{V}_{\text{IH}}, \\ \text{t}_{\text{RC}} = \min \ \text{of} \ \overline{\text{RAS}} \ \text{low after} \ \overline{\text{XCAS}} \ \text{low.} \end{array}$	-	80	_	70	mA	4
EDO page mode average power supply current	I _{CC4}	$\overline{RAS} = V_{IL}$, \overline{UCAS} or \overline{LCAS} , address cycling: $t_{HPC} = min$	-	85	_	75	mA	4, 5
CMOS standby power supply current	I _{CC5}	$\overline{\text{RAS}} = \overline{\text{UCAS}} = \overline{\text{LCAS}} = \text{V}_{\text{CC}} - 0.2 \text{V},$ F = 0	_	1	_	1	mA	
Output voltage	V _{OH}	$I_{OUT} = -5.0 \text{ mA}$	2.4	_	2.4	_	V	
Output vonage	V _{OL}	$I_{OUT} = 4.2 \text{ mA}$	-	0.4	—	0.4	V	
CAS before RAS refresh current	I _{CC6}	$\overline{\text{RAS}}$, $\overline{\text{UCAS}}$ or $\overline{\text{LCAS}}$ cycling, $t_{\text{RC}} = \min$	_	80	_	70	mA	
Self refresh current	I _{CC7}	$\overline{RAS} = \overline{UCAS} = \overline{LCAS} \le 0.2V,$ $\overline{WE} = \overline{OE} \ge V_{CC} - 0.2V,$ all other inputs at 0.2V or $V_{CC} - 0.2V$	_	0.5	_	0.5	mA	

AC parameters common to all waveforms

		-50		-6	50		
Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{RC}	Random read or write cycle time	80	-	100	-	ns	
t _{RP}	RAS precharge time	30	-	40	-	ns	
t _{RAS}	RAS pulse width	50	10K	60	10K	ns	
t _{CAS}	CAS pulse width	8	10K	10	10K	ns	
t _{RCD}	RAS to CAS delay time	15	35	15	43	ns	9
t _{RAD}	RAS to column address delay time	9	25	10	30	ns	10
t _{RSH}	$\overline{\text{CAS}}$ to $\overline{\text{RAS}}$ hold time	10	_	10	_	ns	
t _{CSH}	$\overline{\text{RAS}}$ to $\overline{\text{CAS}}$ hold time	40	_	50	_	ns	
t _{CRP}	$\overline{\text{CAS}}$ to $\overline{\text{RAS}}$ precharge time	5	_	5	_	ns	
t _{ASR}	Row address setup time	0	-	0	_	ns	
t _{RAH}	Row address hold time	8	-	10	_	ns	
t _T	Transition time (rise and fall)	1	50	1	50	ns	7,8
t _{REF}	Refresh period	-	16	_	16	ms	6
t _{CP}	CAS precharge time	8	-	10	_	ns	
t _{RAL}	Column address to \overline{RAS} lead time	25	-	30	_	ns	
t _{ASC}	Column address setup time	0	-	0	_	ns	
t _{CAH}	Column address hold time	8	_	10	_	ns	
	- d:			1		1	

Shaded areas indicate advance information.

Read cycle

Symbol Parameter t _{RAC} Access time from RAS	Min	Max	Min	Max	TT	
t_{RAC} Access time from \overline{RAS}				IVIAA	Unit	Notes
ICAC.	-	50	-	60	ns	9
t_{CAC} Access time from \overline{CAS}	-	12	-	15	ns	9,16
t _{AA} Access time from address	_	25	_	30	ns	10,16
t _{RCS} Read command setup time	0	-	0	-	ns	
t _{RCH} Read command hold time to CAS	0	_	0	_	ns	12
t _{RRH} Read command hold time to RAS	0	_	0	_	ns	12

Write cycle

		-50		-6	50		
Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{WCS}	Write command setup time	0	-	0	-	ns	14
t _{WCH}	Write command hold time	10	-	10	-	ns	14
t _{WP}	Write command pulse width	10	-	10	-	ns	
t _{RWL}	Write command to \overline{RAS} lead time	10	-	10	-	ns	
t _{CWL}	Write command to \overline{CAS} lead time	8	-	10	-	ns	
t _{DS}	Data-in setup time	0	-	0	-	ns	15
t _{DH}	Data-in hold time	8	-	10	_	ns	15

Shaded areas indicate advance information.

Read-modify-write cycle

	-0	-50		50	_	
Parameter	Min	Max	Min	Max	Unit	Notes
Read-write cycle time	113	_	135	_	ns	
$\overline{\text{RAS}}$ to $\overline{\text{WE}}$ delay time	67	-	77	-	ns	14
$\overline{\text{CAS}}$ to $\overline{\text{WE}}$ delay time	32	-	35	-	ns	14
Column address to $\overline{\mathrm{WE}}$ delay time	42	_	47	-	ns	14
-	Read-write cycle time \overline{RAS} to \overline{WE} delay time \overline{CAS} to \overline{WE} delay time	Parameter Min Read-write cycle time 113 RAS to WE delay time 67 CAS to WE delay time 32	ParameterMinMaxRead-write cycle time113-RAS to WE delay time67-CAS to WE delay time32-	ParameterMinMaxMinRead-write cycle time113-135RAS to WE delay time67-77CAS to WE delay time32-35	ParameterMinMaxMinMaxRead-write cycle time113-135-RAS to WE delay time67-77-CAS to WE delay time32-35-	ParameterMinMaxMinMaxUnitRead-write cycle time113-135-nsRAS to WE delay time67-77-nsCAS to WE delay time32-35-ns

Shaded areas indicate advance information.

Refresh cycle

		-50		-60		_	
Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{CSR}	$\overline{\text{CAS}}$ setup time ($\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$)	5	-	5	-	ns	6
t _{CHR}	$\overline{\text{CAS}}$ hold time ($\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$)	8	-	10	-	ns	6
t _{RPC}	$\overline{\text{RAS}}$ precharge to $\overline{\text{CAS}}$ hold time	0	-	0	-	ns	
t _{CPT}	CAS precharge time (CBR counter test)	10	_	10	_	ns	

Hyper page mode cycle

		-50		-60		_	
Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{CPWD}	$\overline{\text{CAS}}$ precharge to $\overline{\text{WE}}$ delay time	45	_	52	_	ns	
t _{CPA}	Access time from \overline{CAS} precharge	_	28		35	ns	16
t _{RASP}	RAS pulse width	50	100K	60	100K	ns	
t _{DOH}	Previous data hold time from CAS	5	_	5	_	ns	
t _{REZ}	Output buffer turn off delay from \overline{RAS}	0	13	0	15	ns	
t _{WEZ}	Output buffer turn off delay from $\overline{\mathrm{WE}}$	0	13	0	15	ns	
t _{OEZ}	Output buffer turn off delay from $\overline{\text{OE}}$	0	13	0	15	ns	
t _{HPC}	Hyper page mode cycle time	20	_	25	_	ns	
t _{HPRWC}	Hyper page mode RMW cycle	47	_	56	_	ns	
t _{RHCP}	\overline{RAS} hold time from \overline{CAS}	30	_	35	_	ns	

Shaded areas indicate advance information.

Output enable

		-50		-60			
Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{CLZ}	\overline{CAS} to output in Low Z	0	-	0	-	ns	11
t _{ROH}	$\overline{\text{RAS}}$ hold time referenced to $\overline{\text{OE}}$	8	-	10	_	ns	
t _{OEA}	OE access time	-	13	_	15	ns	
t _{OED}	OE to data delay	13	-	15	-	ns	
t _{OEZ}	Output buffer turnoff delay from $\overline{\text{OE}}$	0	13	0	15	ns	11
t _{OEH}	OE command hold time	10	-	10	-	ns	
t _{OLZ}	\overline{OE} to output in Low Z	0	-	0	_	ns	
t _{OFF}	Output buffer turn-off time	0	13	0	15	ns	11,13
al l l .							

Shaded areas indicate advance information.

Self refresh cycle

		-50		-60		_	
Std Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{RASS}	RAS pulse width (CBR self refresh)	100	-	100	_	μs	
t _{RPS}	RAS precharge time (CBR self refresh)	90	-	105	_	ns	
t _{CHS}	CAS hold time (CBR self refresh)	8	—	10	—	ns	

Notes

- 1 Write cycles may be byte write cycles (either $\overline{\text{LCAS}}$ or $\overline{\text{UCAS}}$ active).
- 2 Read cycles may be byte read cycles (either $\overline{\text{LCAS}}$ or $\overline{\text{UCAS}}$ active).
- 3 One \overline{CAS} must be active (either \overline{LCAS} or \overline{UCAS}).
- 4 $~~I_{\rm CC1},\,I_{\rm CC3},\,I_{\rm CC4},$ and $I_{\rm CC6}$ are dependent on frequency.
- 5 I_{CC1} and I_{CC4} depend on output loading. Specified values are obtained with the output open.
- 6 An initial pause of 200 μs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved. In the case of an internal refresh counter, a minimum of 8 CAS-before-RAS initialization cycles instead of 8 RAS cycles are required. 8 initialization cycles are required after extended periods of bias without clocks (greater than 8 ms).
- 7 AC Characteristics assume $t_T = 2$ ns. All AC parameters are measured with a load as described in AC test conditions below.
- $8 = V_{IH}$ (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}
- 9 Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .
- 10 Operation within the t_{RAD} (max) limit insures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time is controlled exclusively by t_{AA} .
- 11 Assumes three state test load (5 pF and a 380 Ω The venin equivalent).
- 12 Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 13 t_{OFF} (max) defines the time at which the output achieves the open circuit condition; it is not referenced to output voltage levels. t_{OFF} is referenced from rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.
- 14 t_{WCS} , t_{WCH} , t_{RWD} , t_{CWD} and t_{AWD} are not restrictive operating parameters. They are included in the datasheet as electrical characteristics only. If $t_{WS} \ge t_{WS}$ (min) and $t_{WH} \ge t_{WH}$ (min), the cycle is an early write cycle and data out pins will remain open circuit, high impedance, throughout the cycle. If $t_{RWD} \ge t_{RWD}$ (min), $t_{CWD} \ge t_{CWD}$ (min) and $t_{AWD} \ge t_{AWD}$ (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is satisfied, the condition of the data out at access time is indeterminate.
- 15 These parameters are referenced to CAS leading edge in early write cycles and to WE leading edge in read-write cycles.
- 16 Access time is determined by the longest of t_{CAA} or t_{CAC} or t_{CPA}
- 17 $t_{ASC} \ge t_{CP}$ to achieve t_{PC} (min) and t_{CPA} (max) values.
- 18 These parameters are sampled and not 100% tested.

AC test conditions

- Access times are measured with output reference levels of $V_{OH} = 2.4V$ and $V_{OL} = 0.4V$, $V_{IH} = 2.0V$ and $V_{IL} = 0.8V$
- Input rise and fall times: 2 ns

Key to switching waveforms

Rising input

Falling input

_____ Undefined output/don't care

Read waveform

Upper byte read waveform

Early write waveform

Lower byte early write waveform

Data in

 $t_{\rm DH}$

t_{DS}

t_{OED}

Upper DQ

Lower DQ

Read-modify-write waveform

Upper byte read-modify-write waveform

Lower byte read-modify-write waveform

®

Hyper page mode byte write waveform

Hyper page mode early write waveform

Hyper page mode byte early write waveform

®

Hyper page mode read-modify-write waveform

Hyper page mode byte read-modify-write waveform

®

Hidden refresh waveform (read)

Hidden refresh waveform (write)

\overline{CAS} before \overline{RAS} refresh counter test waveform

8

\overline{CAS} -before- \overline{RAS} self refresh cycle

Package dimensions

	42-pin SOJ				
	Min	Max			
А	0.128	0.148			
A1	0.025	-			
A2	0.105	0.115			
В	0.026	0.032			
b	0.015	0.020			
С	0.007	0.013			
D	1.070	1.080			
Е	0.370 NOM				
E1	0.395	0.405			
E2	0.435	0.445			
е	0.050 NOM				

	50-pin TSOP II				
	Min	Max			
	(mm)	(mm)			
А		1.2			
A ₁	0.05				
A ₂	0.95	1.05			
b	0.30	0.45			
С	0.12	0.21			
d	20.85	21.05			
Е	10.03	10.29			
H _e	11.56	11.96			
e	0.80 (typical)				
1	0.40	0.60			

 $f = 1 M H_7 T = D_{00} to m nor ot urg$

Capacitance 15

Capacitance			J = 1 WIT	z , $r_a - Koon$	rtemperature
Parameter	Symbol	Signals	Test conditions	Max	Unit
T	C _{IN1}	A0 to A9	$V_{in} = 0V$	5	pF
Input capacitance	C _{IN2}	$\overline{\text{RAS}}$, $\overline{\text{UCAS}}$, $\overline{\text{LCAS}}$, $\overline{\text{WE}}$, $\overline{\text{OE}}$	$V_{in} = 0V$	7	pF
DQ capacitance	C _{DQ}	DQ0 to DQ15	$V_{in} = V_{out} = 0V$	7	pF

AS4LC1M16E5 ordering information

Package \ RAS access time	50 ns	60 ns
Plastic SOJ, 400 mil, 42-pin	AS4LC1M16E5-50JC AS4LC1M16E5-50JI	AS4LC1M16E5-60JC AS4LC1M16E5-60JI
TSOP II, 400 mil, 44/50-pin	AS4LC1M16E5-50TC AS4LC1M16E5-50TI	AS4LC1M16E5-60TC AS4LC1M16E5-60TI

Shaded areas indicate advance information.

AS4LC1M16E5 part numbering system

AS4	LC	1M16E5	–XX	Х	X
DRAM prefix	C = 5V CMOS LC = 3.3V CMOS	Device number	RAS access time	Package: J = 42-pin SOJ 400 mil T = 44/50-pin TSOP II 400 mil	Temperature range C=Commercial, 0°C to 70°C I=Industrial, -40°C to 85°C

4/11/01; v.1.0

Alliance Semiconductor

P. 22 of 22

© Copyright Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product states here is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantice to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to finges for a particular purpose, investigation or use of any product described herein is and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights, mask works rights, trademarks, or any other intellectual property rights of Alliance does not authorize its products for use as a critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use.