[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 293))

  • 1217 Accesses

Abstract

Consider the following process on a simple undirected connected graph \( {\text{G}}\left( {V,E} \right) \). At the beginning, only a set S of vertices are active. Subsequently, a vertex is activated if at least an \( \alpha \in \left( {0,1} \right) \) fraction of its neighbors are active. The process stops only when no more vertices can be activated. Following earlier papers, we call S an α perfect target set, abbreviated α-PTS, if all vertices are activated at the end. Chang [1] proposes a randomized polynomial-time algorithm for finding an α-PTS of expected size \( (2\sqrt 2 + 3)\left\lceil {\alpha |{\text{V}}|} \right\rceil \), where the expectation is taken over the random coin tosses of the algorithm. We note briefly that the method of conditional expectation can be used to derandomize Chang’s algorithm. So the derandomized algorithm finds an α-PTS of size no more than \( (2\sqrt 2 + 3)\left\lceil {\alpha |{\text{V}}|} \right\rceil \) given any simple undirected connected graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, C. -L. (2011). Triggering cascades on undirected connected graphs. Information Processing Letters, 11(19), 973–978.

    Google Scholar 

  2. Peleg, D. (2002). Local majorities, coalitions and monopolies in graphs: A review. Theoretical Computer Science, 282(2), 231–257.

    Article  MathSciNet  Google Scholar 

  3. Flocchini, P., Geurts, F., & Santoro, N. (2001). Optimal irreversible dynamos in chordal rings. Discrete Applied Mathematics, 113(1), 23–42.

    Article  MathSciNet  Google Scholar 

  4. Flocchini, P., Královic, R., Ruzicka, P., Roncato, A., & Santoro, N. (2003). On time versus size for monotone dynamic monopolies in regular topologies. Journal of Discrete Algorithms, 1(2), 129–150.

    Article  MathSciNet  Google Scholar 

  5. Flocchini, P., Lodi, E., Luccio, F., Pagli, L., & Santoro, N. (2004). Dynamic monopolies in tori. Discrete Applied Mathematics, 137(2), 197–212.

    Article  MathSciNet  Google Scholar 

  6. Adams, S. S., Troxell, D. S., & Zinnen, S. L. (2011). Dynamic monopolies and feedback vertex sets in hexagonal grids. Computers and Mathematics with Applications, 62(11), 4049–4057.

    Article  MathSciNet  Google Scholar 

  7. Chang, C. -L., & Lyuu, Y. -D. (2010). Bounding the number of tolerable faults in majority-based systems. In Proceedings of the 7th International Conference on Algorithms and Complexity (pp. 109–119). Rome, Italy.

    Google Scholar 

  8. Ackerman, E., Ben-Zwi, O., & Wolfovitz, G. (2010). Combinatorial model and bounds for target set selection. Theoretical Computer Science, 411(44–46), 4017–4022.

    Article  MathSciNet  Google Scholar 

  9. Khoshkhah, K., Soltani, H., & Zaker, M. (2012). On dynamic monopolies of graphs: The average and strict majority thresholds. Discrete Optimization, 9(2), 77–83.

    Article  MathSciNet  Google Scholar 

  10. Chen, N. (2008). On the approximability of influence in social networks. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Mathematics (pp. 1029–1037).

    Google Scholar 

  11. Dreyer, P. A., & Roberts, F. S. (2009). Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Applied Mathematics, 157(7), 1615–1627.

    Article  MathSciNet  Google Scholar 

  12. Kempe, D. Kleinberg, J, & Tardos, E. (2003). Maximizing the spread of influence through a social network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 137–146).

    Google Scholar 

  13. Kralovic, R. (2001). On majority voting games in trees. In Proceedings of the 28th Conference on Current Trends in Theory and Practice of Informatics (pp. 282–291.

    Google Scholar 

  14. Gleeson, J. P., & Cahalane, D. J. (2002). Seed size strongly affects cascades on random networks. Physical Review E, 75(5), 056103.

    Article  Google Scholar 

  15. Watts, D. J. (2002). A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences 99(9), 5766–5771.

    Google Scholar 

  16. Berger, E. (2001). Dynamic monopolies of constant size. Journal of Combinatorial Theory Series B, 83(2), 191–200.

    Article  MathSciNet  Google Scholar 

  17. Goles, E., & Olivos, J. (1980). Periodic behaviour of generalized threshold functions. Discrete Mathematics, 302, 187–189.

    Article  MathSciNet  Google Scholar 

  18. Kleinberg, J. (2000). The small-world phenomenon: An algorithm perspective. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (pp. 163–170.

    Google Scholar 

  19. Morris, S. (2000). Contagion. Review of Economic Studies, 67(1), 57–78.

    Article  MathSciNet  Google Scholar 

  20. Peleg, D. (1998). Size bounds for dynamic monopolies. Discrete Applied Mathematics, 86(2–3), 263–273.

    Article  MathSciNet  Google Scholar 

  21. Motwani, R., & Raghavan, P. (1995). Randomized algorithms. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgments

Ching-Lueh Chang is supported in part by the Ministry of Economic Affairs under grant 102-E0616 and the National Science Council under grant 101-2221-E-155-015-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Lueh Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, YL., Chang, CL. (2014). A Short Note on Derandomization of Perfect Target Set Selection. In: Juang, J., Chen, CY., Yang, CF. (eds) Proceedings of the 2nd International Conference on Intelligent Technologies and Engineering Systems (ICITES2013). Lecture Notes in Electrical Engineering, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-319-04573-3_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04573-3_59

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04572-6

  • Online ISBN: 978-3-319-04573-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics