
Journal of Machine Learning Research 26 (2025) 1-44 Submitted 5/23; Revised 1/25; Published 1/25

Improving Graph Neural Networks on Multi-node Tasks with
the Labeling Trick

Xiyuan Wang wangxiyuan@pku.edu.cn
Institute for Artificial Intelligence
Peking University
Beijing, China

Pan Li panli@gatech.edu
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, USA

Muhan Zhang∗ muhan@pku.edu.cn

Institute for Artificial Intelligence

Peking University

Beijing, China

Editor: Samy Bengio

Abstract

In this paper, we study using graph neural networks (GNNs) for multi-node representation
learning, where a representation for a set of more than one node (such as a link) is to be
learned. Existing GNNs are mainly designed to learn single-node representations. When
used for multi-node representation learning, a common practice is to directly aggregate
the single-node representations obtained by a GNN. In this paper, we show a fundamental
limitation of such an approach, namely the inability to capture the dependence among
multiple nodes in the node set. A straightforward solution is to distinguish target nodes
from others. Formalizing this idea, we propose labeling trick, which first labels nodes in
the graph according to their relationships with the target node set before applying a GNN
and then aggregates node representations obtained in the labeled graph for multi-node rep-
resentations. Besides node sets in graphs, we also extend labeling tricks to posets, subsets
and hypergraphs. Experiments verify that the labeling trick technique can boost GNNs on
various tasks, including undirected link prediction, directed link prediction, hyperedge pre-
diction, and subgraph prediction. Our work explains the superior performance of previous
node-labeling-based methods and establishes a theoretical foundation for using GNNs for
multi-node representation learning.

Keywords: graph neural networks, multi-node representation, subgraph, link prediction

1. Introduction

Graph neural networks (GNNs) (Scarselli et al., 2009; Bruna et al., 2014; Duvenaud et al.,
2015; Li et al., 2016; Kipf and Welling, 2017; Defferrard et al., 2016; Dai et al., 2016;
Veličković et al., 2018; Zhang et al., 2018b; Ying et al., 2018) have achieved great suc-
cesses in recent years. While GNNs have been well studied for single-node tasks (such as

* correspondence to Muhan Zhang

c©2025 Xiyuan Wang, Pan Li, and Muhan Zhang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v26/23-0560.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v26/23-0560.html

Wang, Li, and Zhang

node classification) and whole-graph tasks (such as graph classification), using GNNs on
tasks that involve multi-nodes is less studied and less understood. Among such multi-node
representation learning problems, link prediction (predicting the link existence/class/value
between a set of two nodes) is perhaps the most important one due to its wide applications
in practice, such as friend recommendation in social networks (Adamic and Adar, 2003),
movie recommendation in Netflix (Bennett et al., 2007), protein interaction prediction (Qi
et al., 2006), drug response prediction (Stanfield et al., 2017), and knowledge graph com-
pletion (Nickel et al., 2016). Besides link prediction, other multi-node tasks, like subgraph
classification and hyperedge prediction, are relatively new but have found applications in
gene set analysis (Wang et al., 2020), user profiling (Alsentzer et al., 2020), drug interaction
prediction (Srinivasan et al., 2021), temporal network modeling (Liu et al., 2022), group
recommendation Amer-Yahia et al. (2009), etc. In this paper, we study the ability of GNNs
to learn multi-node representations. As the link task is the simplest multi-node case, we
mainly use link prediction in this paper to visualize and illustrate our method and theory.
However, our theory and method apply generally to all multi-node representation learning
problems such as subgraph (Alsentzer et al., 2020), hyperedge (Zhang et al., 2018a) and
network motif (Liu et al., 2022) prediction tasks.

Starting from the link prediction task, we illustrate the deficiency of existing GNN
models for multi-node representation learning which motivates our labeling trick. There are
two main classes of GNN-based link prediction methods: Graph AutoEncoder (GAE) (Kipf
and Welling, 2016) and SEAL (Zhang and Chen, 2018; Li et al., 2020). GAE and its
variational version VGAE (Kipf and Welling, 2016) first apply a GNN to the entire graph
to compute a representation for each node. The representations of the two end nodes of the
link are then aggregated to predict the target link. On the contrary, SEAL assigns node
labels according to their distances to the two end nodes before applying the GNN on the
graph. SEAL often shows much better practical performance than GAE. The key lies in
SEAL’s node labeling step.

We first give a simple example to show when GAE fails. In Figure 1a, v2 and v3
have symmetric positions in the graph—from their respective views, they have the same
h-hop neighborhood for any h. Thus, without node features, GAE will learn the same
representation for v2 and v3. Therefore, when predicting which one of v2 and v3 is more
likely to form a link with v1, GAE will aggregate the representations of v1 and v2 as the
link representation of (v1, v2), and aggregate the representations of v1 and v3 to represent
(v1, v3), thus giving (v1, v2) and (v1, v3) the same representation and prediction. The failure
to distinguish links (v1, v2) and (v1, v3) that have different structural roles in the graph
reflects one key limitation of GAE-type methods: by computing v1 and v2’s representations
independently of each other, GAE cannot capture the dependence between two end nodes of
a link. For example, (v1, v2) has a much smaller shortest path distance than that of (v1, v3);
and (v1, v2) has both nodes in the same hexagon, while (v1, v3) does not. We can also
consider this case from another perspective. Common neighbor (CN) (Liben-Nowell and
Kleinberg, 2007), one elementary heuristic feature for link prediction, counts the number of
common neighbors between two nodes to measure their likelihood of forming a link. It is
the foundation of many other successful heuristics such as Adamic-Adar (Adamic and Adar,
2003) and Resource Allocation (Zhou et al., 2009), which are also based on neighborhood
overlap. However, GAE cannot capture such neighborhood-overlap-based features. As

2

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

𝑣2

𝑣1

𝑣3

𝑣4

(a) (b)

Figure 1: (a) In this graph, nodes v2 and v3 are in the same orbit; links (v1, v2) and (v4, v3)
are isomorphic; link (v1, v2) and link (v1, v3) are not isomorphic. However, if we
aggregate two node representations learned by a GNN as the link representation,
we will give (v1, v2) and (v1, v3) the same prediction. (b) In this graph, nodes v3
and v4 are isomorphic. Aggregating the node embeddings within the subgraph,
GNNs will produce equal embeddings for subgraphs (v1, v2, v3) and (v1, v2, v4),
while the two subgraphs are not isomorphic. This problem was first observed
by You et al. (2019), which was interpret as the failure of GNNs to capture node
positions, and later became more formalized in (Srinivasan and Ribeiro, 2020).

shown in Figure 1a, there is 1 common neighbor between (v1, v2) and 0 between (v1, v3),
but GAE always gives (v1, v2) and (v1, v3) the same representation. The failure to learn
common neighbor demonstrates GAE’s severe limitation for link prediction. The root cause
still lies in that GAE computes node representations independently of each other, and when
computing the representation of one end node, it is unaware of the other end node.

In fact, GAE represents a common practice of using GNNs to learn multi-node rep-
resentations. That is, obtaining individual node representations through a GNN and then
aggregating the representations of those target nodes as the multi-node representation. Sim-
ilar failures caused by independence of node representation learning also happen in general
multi-node representation learning problems. In the subgraph representation learning task,
which is to learn representations for subgraphs inside a large graph (Alsentzer et al., 2020),
representations aggregated from independently computed node representations will fail to
differentiate nodes inside and outside the subgraph. Figure 1b (from Wang and Zhang
(2022)) shows an example. Directly aggregating node embeddings produced by a GNN
will lead to the same representation for subgraphs (v1, v2, v3) and (v1, v2, v4). However, the
former subgraph forms a triangle while the latter one does not.

This paper solves the above type of failures from a structural representation learning
point of view. We adopt and generalize the notion most expressive structural representa-
tion (Srinivasan and Ribeiro, 2020), which gives multi-node substructure the same represen-
tation if and only if they are isomorphic (a.k.a. symmetric, on the same orbit) in the graph.
For example, link (v1, v2) and link (v4, v3) in Figure 1a are isomorphic, and a most expressive
structural representation should give them the same representation. On the other hand, a
most expressive structural representation will discriminate all non-isomorphic links (such as
(v1, v2) and (v1, v3)). According to our discussion above, GAE-type methods that directly
aggregate node representations cannot learn a most expressive structural representation.
Then, how to learn a most expressive structural representation of node sets?

3

Wang, Li, and Zhang

To answer this question, we revisit the other GNN-based link prediction framework,
SEAL, and analyze how node labeling helps a GNN learn better node set representations.
We find that two properties of the node labeling are crucial for its effectiveness: 1) target-
node distinguishing, which ensures that target nodes receive labels that differentiate them
from other nodes in the graph and 2) permutation equivariance. With these two properties,
we define set labeling trick, which considers each multi-node substructure as a node set and
unifies previous node labeling methods into a single and most general form. Theoretically,
we prove that with set labeling trick, a sufficiently expressive GNN can learn most expres-
sive structural representations of node sets (Theorem 12), which reassures GNN’s node set
prediction ability. It also closes the gap between the nature of GNNs to learn node repre-
sentations and the need of multi-node representation learning in node-set-based inference
tasks.

Set labeling trick is for multi-node structure of a node set and can be used on a wide
range of tasks including link prediction and subgraph classification. However, to describe
and unify even more tasks and methods, we propose three extensions of set labeling trick.
One is poset labeling trick. In some tasks, target nodes may have intrinsic order relations
in real-world problems. For example, in citation graphs, each link is from the citing article
to the cited one. In such cases, describing multi-node substructures with node sets leads to
loss of order information. This motivates us to add order information to the label and use
poset instead to describe substructures. Another extension is subset labeling trick. It unifies
labeling methods besides SEAL (Zhang and Chen, 2018), like ID-GNN (You et al., 2021)
and NBFNet (Zhu et al., 2021). These works label only a subset of nodes each time. We
formalize these methods and analyze the expressivity: when using GNNs without strong
expressivity, subset labeling trick exhibits higher expressivity than labeling tricks in some
cases. Last but not least, by converting hypergraph to bipartite graph, we straightforwardly
extend labeling trick to hypergraph.

2. Preliminaries

In this section, we introduce some important concepts that will be used in the analysis of
the paper, including permutation, poset-graph isomorphism and most expressive structural
representation.

We consider a graph G = (V,E,A), where V = {1, 2, . . . , n} is the set of n vertices,
E ⊆ V × V is the set of edges, and A ∈ Rn×n×k is a 3-dimensional tensor containing node
and edge features. In this paper, we let all graphs have a node set numbered from 1 to the
total number of nodes in the graph. The diagonal components Ai,i,: denote features of node
i, and the off-diagonal components Ai,j,: denote features of edge (i, j). The node/edge types
can also be expressed in A using integers or one-hot encoding vectors for heterogeneous
graphs. We further use A ∈ {0, 1}n×n to denote the adjacency matrix of G with Ai,j = 1 iff
(i, j) ∈ E, where it is possible Ai,j 6= Aj,i. We let A be the first slice of A, i.e., A = A:,:,1.
Since A contains the complete information of a graph, we also directly denote the graph by
A.

4

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

2.1 Permutation

The same graph can index nodes in different orders, and these different indices can be
connected with permutation.

Definition 1 A permutation π is a bijective mapping from {1, 2, . . . , n} to {1, 2, . . . , n}.
All n! possible π’s constitute the permutation group Πn.

Depending on the context, permutation π can mean assigning a new index π(i) to node
i ∈ V , or mapping node i to node π(i) of another graph. Slightly extending the notation, we
let the permutation of a set/sequence denote permuting each element in the set/sequence.
For example, permutation π maps a set of nodes S ⊆ V to π(S) = {π(i)|i ∈ S} and maps
a set of node pairs S′ ⊆ V × V to π(S′) = {π((i, j))|(i, j) ∈ S′} = {(π(i), π(j))|(i, j) ∈ S′}.
The permutation of a graph’s tensor A, denoted as π(A), can also be defined: π(A)π(i),π(j) =
Ai,j , where original i-th node and j-th node will have new index π(i), π(j) while keeping
the features of the pair Ai,j .

Permutation is closely related to graph isomorphism, whether two graphs describe the
same structure. Intuitively, as nodes in graphs have no order, no matter what permutation
is applied to a graph, the transformed graph should be isomorphic to the original graph.
Similarly, if one graph can be transformed into another under some permutation, the two
graphs should also be isomorphic. Formally speaking,

Definition 2 Two graphs A ∈ Rn×n×d,A′ ∈ Rn′×n′×d′ are isomorphic iff there exists
π ∈ Πn, π(A) = A′.

In whole graph classification tasks, models should give isomorphic graphs the same predic-
tion as they describe the same structure, and differentiate non-isomorphic graphs.

2.2 Poset-Graph Isomorphism

To describe a substructure defined by a subset of nodes with internal relation, like a directed
edge, we introduce poset. A poset is a set with a partial order. Partial order is a reflexive,
antisymmetric, and transitive homogeneous relation on the set (Davey and Priestley, 2002).

Definition 3 A poset S is a tuple (U,≤S), where U is a set, and ≤S⊆ U ×U is a relation
on U . Let u ≤S v denote (u, v) ∈≤S. ≤S fulfills the following conditions.

1. Reflexivity. ∀v ∈ U, v ≤S v.

2. Antisymmetry. ∀u, v ∈ U , if u ≤S v and v ≤S u, then u = v.

3. Transitivity. ∀u, v, w ∈ U , if u ≤S v and v ≤S w, then u ≤S w.

The permutation operation on partial order relation and poset is defined as follows.

π(≤S) = π({(u, v) | (u, v) ∈≤S}) = {(π(u), π(v)) | (u, v) ∈≤S},
π(S) = π((U,≤S)) = (π(U), π(≤S)).

To describe when two posets derive the same substructure, we define poset-graph iso-
morphism, which generalizes graph isomorphism to arbitrary node posets in a graph.

5

Wang, Li, and Zhang

Definition 4 (Poset-graph isomorphism) Given two graphs G = (V,E,A), G′ = (V ′, E′,A′),
and two node posets S = (U,≤S), U ⊆ V , S′ = (U ′,≤S′), U ′ ⊆ V ′, we say substructures
(S,A) and (S′,A′) are isomorphic (denoted by (S,A) ' (S′,A′)) iff ∃π ∈ Πn, S = π(S′)
and A = π(A′).

A set is a particular case of poset, where the partial order only contains reflexive relations
u ≤S u, u ∈ U . It can describe substructures without order, like undirected edges and
subgraphs. Abusing the notation of poset, we sometimes also use S to denote a set and
omit the trivial partial order relation. Then, set-graph isomorphism is defined as follows.

Definition 5 (Set-graph isomorphism) Given two graphs G = (V,E,A), G′ = (V ′, E′,A′),
and two node sets S ⊆ V , S′ ⊆ V ′, we say substructures (S,A) and (S′,A′) are isomorphic
(denoted by (S,A) ' (S′,A′)) iff ∃π ∈ Πn, S = π(S′) and A = π(A′).

Note that both set- and poset-graph isomorphism are more strict than graph isomor-
phism. They not only need a permutation which maps one graph to the other but also
require the permutation to map a specific node poset S to S′.

In practice, when the target node poset does not contain all nodes in the graph, we are
often more concerned with the case of A = A′, where isomorphic node posets are defined in
the same graph. For example, when S = {i}, S′ = {j} and (i,A) ' (j,A), we say nodes i
and j are isomorphic in graph A (or they have symmetric positions/same structural role in
graph A). An example is v2 and v3 in Figure 1a. Similarly, edge and subgraph isomorphism
can also be defined as the isomorphism of their node posets.

2.3 Structural Representations

Graph models should produce the same prediction for isomorphic substructures. We define
permutation invariance and equivariance to formalize this property. A function f defined
over the space of (S,A) is permutation invariant (or invariant for abbreviation) if ∀π ∈ Πn,
f(S,A) = f(π(S), π(A)). Similarly, f is permutation equivariant if ∀π ∈ Πn, π(f(S,A)) =
f(π(S), π(A)), where for example f(S,A) can be a tensor L ∈ Rn×n×d, π(f(S,A))π(i)π(j) =
f(S,A)ij . Permutation invariance/equivariance ensures that representations learned by a
GNN are invariant to node indexing, a fundamental design principle of GNNs.

Now we define the most expressive structural representation of a substructure (S,A),
following (Srinivasan and Ribeiro, 2020; Li et al., 2020). It assigns a unique representation
to each equivalence class of isomorphic substructures.

Definition 6 Given an invariant function Γ(·) mapping node subsets in graphs to a latent
space, Γ(·) is a most expressive structural representation, if ∀S,A, S′,A′, Γ(S,A) =
Γ(S′,A′)⇔ (S,A) ' (S′,A′).

For simplicity, we will directly use structural representation to denote most expressive
structural representation in the rest of the paper. We will omit A if it is clear from context.
For a graph A, we call Γ(A) = Γ(∅,A) a structural graph representation, Γ(i,A) a structural
node representation for node i, and call Γ({i, j},A) a structural link representation for link
(i, j). For a general node poset S, we call Γ(S,A) a structural multi-node representation for
S.

6

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

Definition 6 requires that the structural representations of two substructures are the
same if and only if the two substructures are isomorphic. That is, isomorphic substructures
always have the same structural representation, while non-isomorphic substructures always
have different structural representations. Due to the permutation invariance requirement,
models should not distinguish isomorphic substructures. This implies that structural rep-
resentations can discriminate all substructures that any invariant model can differentiate,
and structural representations reach the highest expressivity.

3. The Limitation of Directly Aggregating Node Representations

In this section, taking GAE for link prediction as an example, we show the critical limitation
of directly aggregating node representations as a multi-node representation.

3.1 GAE for Multi-Node Representation

GAE (Kipf and Welling, 2016) is a kind of link prediction model with GNN. Given a graph
A, GAE first uses a GNN to compute a node representation zi for each node i, and then
use the inner product of zi and zj to predict link {i, j}:

Âi,j = sigmoid(z>i zj), where zi=GCN(i,A), zj =GCN(j,A).

Here Âi,j is the predicted score for link {i, j}. The model is trained to maximize the
likelihood of reconstructing the true adjacency matrix. The original GAE uses a two-layer
GCN (Kipf and Welling, 2017). In principle, we can replace GCN with any GNN, use any
aggregation function over the set of target node embeddings including mean, sum, and max
other than inner product, and substitute sigmoid with an MLP. Then, GAE can be used
for multi-node tasks. It aggregates target node embeddings produced by the GNN:

zS = MLP(AGG({zi | i ∈ S})) where zi=GNN(i,A),

where AGG is an aggregation function, which takes a multiset instead of set by default.
We will use GAE to denote this general class of GNN-based multi-node representation
learning methods in the following. Two natural questions are: 1) Is the node representation
learned by the GNN a structural node representation? 2) Is the multi-node representation
aggregated from a set of node representations a structural representation for the node set?
We answer them respectively in the following.

3.2 GNN and Structural Node Representation

Practical GNNs (Gilmer et al., 2017) usually simulate the 1-dimensional Weisfeiler-Lehman
(1-WL) test (Weisfeiler and Lehman, 1968) to iteratively update each node’s representation
by aggregating its neighbors’ representations. We use 1-WL-GNN to denote a GNN with
1-WL discriminating power, such as GIN (Xu et al., 2019).

A 1-WL-GNN ensures that isomorphic nodes always have the same representation. How-
ever, the opposite direction is not guaranteed. For example, a 1-WL-GNN gives the same
representation to all nodes in an r-regular graph, in which non-isomorphic nodes exist. De-
spite this, 1-WL is known to discriminate almost all non-isomorphic nodes as the number of

7

Wang, Li, and Zhang

nodes grows to infinity (Babai and Kucera, 1979), which indicates that a 1-WL-GNN can
give different representations to almost all non-isomorphic nodes in large real-world graphs.

To study GNN’s maximum expressivity, we define a node-most-expressive (NME) GNN,
which gives different representations to all non-isomorphic nodes.

Definition 7 A GNN is node-most-expressive (NME) if there exists a parameteriza-
tion of the GNN that ∀i,A,j,A′, GNN(i,A) = GNN(j,A′)⇔ (i,A) ' (j,A′).

NME GNN learns structural node representations. We define such a GNN because our
primary focus is on multi-node representation. By ignoring the limitations of single-node
expressivity, NME GNN simplifies our analysis. Although a polynomial-time implementa-
tion is not known for NME GNNs, many practical software tools can discriminate between
all non-isomorphic nodes efficiently (McKay and Piperno, 2014), providing a promising
direction.

3.3 GAE Cannot Learn Structural Multi-Node Representations

Suppose GAE is equipped with an NME GNN producing structural node representations.
Then the question becomes: does the aggregation of structural node representations of the
target nodes result in a structural representation of the target node set? The answer is
no. We have already illustrated this problem in the introduction: In Figure 1a, we have
two isomorphic nodes v2 and v3, and thus v2 and v3 will have the same structural node
representation. By aggregating structural node representations, GAE will give (v1, v2) and
(v1, v3) the same link representation. However, (v1, v2) and (v1, v3) are not isomorphic in
the graph. Figure 1b gives another example on the multi-node case involving more than
two nodes. Previous works have similar examples (Srinivasan and Ribeiro, 2020; Zhang and
Chen, 2020). All these results indicate that:

Proposition 8 (Srinivasan and Ribeiro (2020)) GAE cannot learn structural multi-node
representations no matter how expressive node representations a GNN can learn.

The root cause of this problem is that GNN computes node representations indepen-
dently without being aware of the other nodes in the target node set S. Thus, even though
GNN learns the most expressive single-node representations, there is never a guarantee that
their aggregation is a structural representation of a node set. In other words, the multi-node
representation learning problem is not breakable into multiple independent single-node
representation learning problems. We need to consider the dependency between the target
nodes when computing their single-node representations.

4. Labeling Trick for Set

Starting from a common case in real-world applications, we first describe the multi-node
substructure defined by a node set (instead of a poset) in the graph and define set labeling
trick. The majority of this part is included in our conference paper (Zhang et al., 2021a).

4.1 Definition of Set Labeling Trick

The set labeling trick is defined as follows.

8

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

Definition 9 (Set labeling trick) For a graph A and a set S of nodes in the graph,
we stack a labeling tensor L(S,A) ∈ Rn×n×k in the third dimension of A to get a new
A(S) ∈ Rn×n×(k+d). L satisfies: ∀S,A, S′,A′, π ∈ Πn,

1. (target-nodes-distinguishing) L(S,A) = π(L(S′,A′))⇒ S = π(S′).

2. (permutation equivariance) S = π(S′),A = π(A′)⇒ L(S,A) = π(L(S′,A′)).

To explain a bit, labeling trick assigns a label vector to each node/edge in graph A,
which constitutes the labeling tensor L(S,A). By concatenating A and L(S,A), we get
the new labeled graph A(S). By definition, we can assign labels to both nodes and edges.
However, in this paper, we consider node labels only by default for simplicity, i.e., we
let the off-diagonal components L(S,A)i,j,:, i 6= j be all zero.

The labeling tensor L(S,A) should satisfy two properties in Definition 9. Property 1
requires that if a permutation π preserving node labels (i.e., L(S,A) = π(L(S′,A′))) exists
between nodes of A and A′, then the nodes in S′ must be mapped to nodes in S by π (i.e.,
S = π(S′)). A sufficient condition for property 1 is to make the target nodes S have distinct
labels from those of the rest nodes so that S is distinguishable from others. Property 2
requires that when (S,A) and (S′,A′) are isomorphic under π (i.e., S = π(S′),A = π(A′)),
the corresponding nodes i ∈ S, j ∈ S′, i = π(j) must always have the same label (i.e.,
L(S,A) = π(L(S′,A′))). A sufficient condition for property 2 is to make the labeling function
permutation equivariant, i.e., when the target (S,A) changes to (π(S), π(A)), the labeling
tensor L(π(S), π(A)) should equivariantly change to π(L(S,A)).

4.2 How Labeling Trick Works

Obviously, labeling trick puts extra information into the graph, while the details remain
unclear. To show some intuition on how labeling trick boosts graph neural networks, we
introduce a simplest labeling trick satisfying the two properties in Definition 9.

Definition 10 (Zero-one labeling trick) Given a graph A and a set of nodes S to predict,
we give it a diagonal labeling matrix Lzo(S,A) ∈ Rn×n×1 such that

Lzo(S,A)i,i,1 =

{
1 if i ∈ S
0 otherwise

.

In other words, the zero-one labeling trick assigns 1 to nodes in S and labels 0 to all
other nodes in the graph. It is a valid labeling trick because nodes in S get distinct labels
from others, and the labeling function is permutation equivariant by always giving nodes
in the target node set label 1. These node labels serve as additional node features fed to a
GNN together with the original node features.

Let’s return to the example in Figure 1a to see how the zero-one labeling trick helps
GNNs learn better multi-node representations. This time, when we want to predict link
(v1, v2), we will label v1, v2 differently from the rest nodes, as shown by the distinct colors in
Figure 2 left. When computing v2’s representation, GNN is also “aware” of the source node
v1 with nodes v1 and v2 labeled, rather than treating v1 the same as other nodes. Similarly,
when predicting link (v1, v3), the model will again label v1, v3 differently from other nodes

9

Wang, Li, and Zhang

𝑣!

𝑣"

𝑣!

𝑣"𝑣#

𝑣$

𝑣"

𝑣$

𝑣#

Figure 2: When predicting (v1, v2), we will label these two nodes differently from the rest so that
a GNN is aware of the target link when learning v1 and v2’s representations. Similarly,
when predicting (v1, v3), nodes v1 and v3 will be labeled differently. This way, the
representation of v2 in the left graph will be different from that of v3 in the right graph,
enabling GNNs to distinguish the non-isomorphic links (v1, v2) and (v1, v3).

as shown in Figure 2 right. This way, v2 and v3’s node representations are no longer the
same in the two differently labeled graphs (due to the presence of the labeled v1), and the
model can predict (v1, v2) and (v1, v3) differently. The key difference of model with labeling
trick from GAE is that the node representations are no longer computed independently, but
are conditioned on each other in order to capture the dependence between nodes.

4.3 Expressivity of GNN with Labeling Trick

We include all proofs in the appendix.

Labeling trick first bridges the gap between whole-graph representation (the focus of
graph level GNNs) and node set representations.

Proposition 11 (Zhang et al., 2021a) For any node set S in graph A and S′ in graph A′,

given a set labeling trick, (S,A) ' (S′,A′)⇔ A(S) ' A′
(S′)

.

The problem of graph-level tasks on a labeled graph (A(S) as defined in Definition 9) is
equivalent to that of multi-node tasks. However, the complexity of these graph-level GNNs
are usually larger than GNNs encoding nodes. We further want to connect node set rep-
resentations with node representations. Now we introduce our main theorem showing that
with a valid labeling trick, an NME GNN can learn structural representations of node sets.

Theorem 12 (Zhang et al., 2021a) Given an NME GNN and an injective set aggregation
function AGG, for any S,A, S′,A′, GNN(S,A(S)) = GNN(S′,A′(S

′)) ⇔ (S,A) ' (S′,A′),
where GNN(S,A(S)) := AGG({GNN(i,A(S)) | i ∈ S}).

Remember that directly aggregating the structural node representations learned from
the original graph A does not lead to structural representations of node sets (Section 3.3).
In contrast, Theorem 12 shows that aggregating the structural node representations learned
from the labeled graph A(S), somewhat surprisingly, results in a structural representation
for (S,A).

The significance of Theorem 12 is that it closes the gap between the nature of GNNs
for single-node representations and the requirement of multi-node representations for node

10

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

set prediction problems. Although GNNs alone have severe limitations for multi-node rep-
resentations, GNNs + labeling trick can learn structural representations of node sets by
aggregating structural node representations obtained in the labeled graph.

Theorem 12 assumes an NME GNN. To augment Theorem 12, we give the following
theorems, which demonstrate the power of labeling trick for 1-WL-GNNs on link prediction.

Theorem 13 (Zhang et al., 2021a) Given an h-layer 1-WL-GNN, in any non-attributed

graph with n nodes, if the degree of each node in the graph is between 1 and
(
(1−ε) log n

)1/(2h+2)

for any constant ε ∈
(

log logn
(2h+2) logn , 1

)
, there exists ω(n2ε) pairs of non-isomorphic links

(u,w), (v, w) such that 1-WL-GNN gives u, v the same representation, while with 1-WL-
GNN + zero-one labeling trick gives u, v different representations.

Theorem 13 shows that in any non-attributed graph there exists a large number (ω(n2ε))
of link pairs (like the examples (v1, v2) and (v1, v3) in Figure 1a) which are not distinguish-
able by 1-WL-GNNs alone but distinguishable by 1-WL-GNNs + labeling trick. This means,
labeling trick can boost the expressive power of 1-WL-GNNs on link prediction tasks.

How labeling trick boosts link prediction can also be shown from another perspective:
1-WL-GNN + zero-one labeling trick can learn various link prediction heuristics while
vanilla 1-WL-GNN cannot.

Proposition 14 Given a link prediction heuristic of the following form,

f
({ ∑

v∈N(i)

g2(deg(v,A)),
∑

v∈N(j)

g2(deg(v,A))
}
,

∑
v∈N(i)

⋂
N(j)

g1(deg(v,A))
)
,

where deg(v,A) is the degree of node v in graph A, g1, g2 are positive functions, and f is
injective w.r.t. the second input with the first input fixed. There exists a 1-WL-GNN + zero-
one labeling trick implementing this heuristic. In contrast, 1-WL-GNN cannot implement
it.

The heuristic defined in the above proposition covers many widely-used and time-tested
link prediction heuristics, such as common neighbors (CN) (Barabási and Albert, 1999),
resource allocation(RA) (Zhou et al., 2009), and Adamic-Adar(AA) (Adamic and Adar,
2003). These important structural features for link prediction are not learnable by vanilla
GNNs but can be learned if we augment 1-WL-GNNs with a simple zero-one labeling trick.

Labeling trick can also boost graph neural networks in subgraph tasks with more than
two nodes. The following proposition.

Proposition 15 (Wang and Zhang (2022)) Given an h-layer 1-WL-GNN, in any non-
attributed graph with n nodes, if the degree of each node in the graph is between 1 and(
(1−ε) log n

)1/(2h+2)
for any constant ε > 0, there exists w(2nn2ε−1) pairs of non-isomorphic

subgraphs such that that 1-WL-GNN produces the same representation, while 1-WL-GNN
+ labeling trick can distinguish them.

Theorem 15 extends Theorem 13 to more than 2 nodes. It shows that an even larger number
of node set pairs need labeling tricks to help 1-WL-GNNs differentiate them.

11

Wang, Li, and Zhang

4.4 Complexity

Despite the expressive power, labeling trick may introduce extra computational complexity.
The reason is that for every node set S to predict, we need to relabel the graph A according
to S and compute a new set of node representations within the labeled graph. In contrast,
GAE-type methods compute node representations only in the original graph.

Let m denote the number of edges, n denote the number of nodes, and q denote the
number of target node sets to predict. As node labels are usually produced by some fast non-
parametric method, we neglect the overhead for computing node labels. Then we compare
the inference complexity of GAE and GNN with labeling trick. For small graphs, GAE-
type methods can compute all node representations first and then predict multiple node
sets at the same time, which saves a significant amount of time. In this case, GAE’s time
complexity is O(m+ n+ q), while GNN with labeling trick takes up to O(q(m+ n)) time.
However, for large graphs that cannot fit into the GPU memory, extracting a neighborhood
subgraph for each node set to predict has to be used for both GAE-type methods and
labeling trick, resulting in similar computation cost O(q(ns + ms)), where ns,ms are the
average number of nodes and edges in the segregated subgraphs. We also measures time
and GPU memory consumption on link prediction task in Appendix D.

5. Labeling Trick for Poset

Figure 3: Set labeling with Graph Neural
Networks (GNNs) fails to distin-
guish between non-isomorphic di-
rected links, such as the edge from
v1 to v2 versus the edge from v2
to v3, because it does not account
for the order of nodes within the
target node pairs.

The previous section describes multi-node sub-
structures (S,A) defined by node set S, which
assumes that nodes in S have no order relation.
However, the assumption may lose some critical
information in real-world tasks. For example,
the citing and cited articles should be differen-
tiated in citation graphs. As shown in Figure 3,
using set labeling trick cannot discriminate the
link direction by giving the two directed links the
same representation, yet the two directed links
are obviously non-isomorphic. Therefore, intro-
ducing order relation into node set is necessary
for substructures with internal relation. In this
section, we use poset to define multi-node sub-
structures and extend set labeling trick to poset
labeling trick. Note that node order is only addi-

tionally introduced for S because the graph A already allows directed edges in our definition.

Definition 16 (Poset labeling trick) Given a graph A and a poset S of nodes in it,
we stack a labeling tensor L(S,A) ∈ Rn×n×d in the third dimension of A to get a new
A(S) ∈ Rn×n×(k+d), where L satisfies: for all poset S of nodes in graph A, poset S′ of nodes
in graph A′, and π ∈ Πn,

1. (target-nodes-and-order-distinguishing) L(S,A) = π(L(S′,A))⇒ S = π(S′).

2. (permutation equivariance) S = π(S′),A = π(A′)⇒ L(S,A) = π(L(S′,A′)).

12

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

The definition of poset labeling trick is nearly the same as that of set labeling trick, except
that we require permutation of poset and poset-graph isomorphism (Definition 3 and 4).
Poset labeling trick still assigns a label vector to each node/edge in graph A. The labels
distinguish the substructure from other parts of the graph and keep permutation equiv-
ariance. As we will show, poset labeling trick enables maximum expressivity for poset
learning. Below we first discuss how to design poset labeling tricks that satisfy the two
above properties.

5.1 Poset Labeling Trick Design

To describe general partial order relations between nodes in a poset, we introduce Hasse
diagram, a graph that uniquely determines the partial order relation.

Definition 17 The Hasse diagram of a poset S = (U,≤S), denoted as HS, is a directed
graph (VH , EH), VH = U , EH = {(u, v) | v 6= u and v covers u}, where v covers u means
that u ≤S v and there exists no w ∈ U,w /∈ {u, v}, u ≤S w and w ≤S v.

Figure 4 shows some examples of Hasse diagram. The reason we use Hasse diagram to encode
partial order relation is that we prove any poset labeling trick satisfying Definition 16 must
give non-isomorphic nodes in a Hasse diagram different labels.

Proposition 18 Let L be the labeling function of a poset labeling trick. If ∃π ∈ Πn,L(S,A) =
π(L(S′,A′)), then for all v′ ∈ S′, π(v′) is in S, and ({v′},HS′) ' ({π(v′)},HS). Further-
more, in the same HS, non-isomorphic nodes must have different labels.

(a) (b) (c) (d)

Figure 4: Different Hasse diagrams

Proposition 18 shows that a valid poset
labeling trick should differentiate non-
isomorphic nodes in a Hasse diagram. The-
oretically, we can run an NME GNN on the
Hasse diagram so that the node embeddings
can serve the purpose. Such a poset labeling
trick is defined as follows.

Definition 19 Given an NME GNN, Hasse
embedding labeling trick is

L(S,A)u,u,: =

{
iso(u,HS) if u ∈ S
0 otherwise

This labeling trick fulfills the two requirements in Definition 16. iso(u,HS) denotes the iso-
morphism type (non-zero) of node u in Hasse diagramHS , where iso(u1,HS1) = iso(u2,HS2)
iff (u1,HS1) ' (u2,HS2). Hasse embedding labeling trick is similar to the zero-one labeling
trick for set in Definition 10. It assigns nodes outside the target poset the same label and
distinguishes nodes inside based on their isomorphism class in the Hasse diagram, while the
zero-one labeling trick does not differentiate nodes inside the poset.

The above poset labeling trick can work on posets with arbitrary complex partial orders,
at the cost of first identifying node isomorphism types in the Hasse diagram. In most real-
world tasks, differentiating non-isomorphic nodes in Hasse diagrams is usually quite easy.

13

Wang, Li, and Zhang

For example, in the directed link prediction task, the target posets all have same simple
Hasse diagram: only two roles exist in the poset—source node and target node of the link,
which is shown in Figure 4(a). Then we can assign a unique color to each equivalent class
of isomorphic nodes in the Hasse diagram as the node labels, e.g., giving 1 to the source
node, 2 to the target node, and 0 to all other nodes in directed link prediction. We can also
design other simple poset labeling tricks. Two cases are discussed in the following.
Linear Order Set. Linear order set means a poset whose each pair of nodes are compa-
rable, so that the Hasse diagram is a chain as shown in Figure 4(b). Therefore, S can be
sorted in u1 ≤S u2 ≤S u3 ≤S ... ≤S uk, where S = (U,≤S), U = {u1, u2, ..., uk}. Then we
can assign ui label i and give nodes outside S 0 label. Such a labeling trick is a valid poset
labeling trick and can be used to learn paths with different lengths.
Nearly Linear Order Set. Nearly linear order set means there exists a partition of S,
{S1, S2, ..., Sl}, ≤S=

⋃l−1
i=1 Si×Si+1. As shown in Figure 4(c), the Hasse diagram is nearly a

chain whose nodes are replaced with a set of nodes with no relations. We can assign nodes
in Si label i and give nodes outside S 0 label. It is still a valid poset labeling trick. Nearly
linear order set can describe a group in an institute, where the top is the leader.

5.2 Poset Labeling Trick Expressivity

We first show that poset labeling trick enables maximum expressivity for poset learning.

Proposition 20 For any node poset S in graph A and S′ in graph A′, given a set labeling

trick, (S,A) ' (S′,A′)⇔ A(S) ' A′
(S′)

.

Proposition 20 shows that structural poset representation is equivalent to the structural
whole graph representation of labeled graph. Poset labeling trick can also bridge the gap
between node representations and poset representations.

Theorem 21 Given an NME GNN and an injective aggregation function AGG, for any
node posets S, S′ in graphs A,A′, GNN(S,A(S)) = GNN(S′,A′(S

′)) ⇔ (S,A) ' (S′,A′),
where GNN(S,A(S)) = AGG({GNN(u,A(S) | u ∈ S})).

Theorem 21 shows that with an NME GNN, poset labeling trick will produce structural
representations of posets. To augment this theorem, we also discuss 1-WL-GNNs with
poset labeling trick. 1-WL-GNNs cannot capture any partial order information and cannot
differentiate arbitrary different posets with the same set of nodes. Differentiating different
posets with different sets is also hard for 1-WL-GNNs as they fail to capture relations
between nodes. Poset labeling trick can help in both cases.

Proposition 22 In any non-attributed graph with n nodes, if the degree of each node in the

graph is between 1 and
(
(1−ε) log n

)1/(2h+2)
for any constant ε > 0, there exist w(n2ε) pairs

of links and w((n!)2) pairs of non-isomorphic node posets such that any h-layer 1-WL-GNN
produces the same representation, while with Hasse embedding labeling trick 1-WL-GNN can
distinguish them.

Proposition 22 illustrates that poset labeling trick can help 1-WL-GNNs distinguish signif-
icantly more pairs of node posets.

14

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

6. Subset Labeling Trick for Multi-Node Representation Learning

Besides set labeling trick, there exist other methods that append extra features to the
adjacency to boost GNNs. Among them, ID-GNN (You et al., 2021) and NBFNet (Zhu
et al., 2021) assign special features to only one node in the target node set and also achieve
outstanding performance. In this section, we propose subset labeling trick. As its name
implies, subset labeling trick assigns labels only to a subset of nodes in the target node set.
We compare set labeling trick with subset labeling trick in different problem settings. In
some cases, subset labeling trick is even more expressive than set labeling trick.

6.1 Subset Labeling Trick

Similar to set labeling trick, subset labeling trick also have two properties.

Definition 23 (subset labeling trick) Given set S in graph A and its subset P ⊆ S,
we stack a labeling tensor L(P,A) ∈ Rn×n×d in the third dimension of A to get a new
A(P) ∈ Rn×n×(k+d), where L satisfies: ∀S,A, S′,A′, P ⊆ S, P ′ ⊆ S′, π ∈ Πn,

1. (target-subset-distinguishing) L(P,A) = π(L(P ′,A′))⇒ P = π(P ′).

2. (permutation equivariance) P = π(P ′),A = π(A′)⇒ L(P,A) = π(L(P ′,A′)).

Like set labeling trick, subset labeling trick distinguishes the selected subset in the target
set and keeps permutation equivariance. However, it does not need to distinguish all target
nodes. Subset(k) labeling trick means the subset size is k.

Subset zero-one labeling trick is a simplest subset labeling trick fulfilling the require-
ments in Definition 23.

Definition 24 (Subset zero-one labeling trick) Given a graph A, a set of nodes S to
predict, and a subset P ⊆ S, we give it a diagonal labeling matrix L(P,A) ∈ Rn×n×1 such
that L(P,A)i,i,1 = 1 if i ∈ P and L(P,A)i,i,1 = 0 otherwise.

To explain a bit, the subset zero-one labeling trick assigns label 1 to nodes in the selected
subset P , and label 0 to all nodes not in P . It only contains the subset identity information.

Then a natural problem arises: how to select subset P from the target node set S?
Motivated by previous methods, we propose two different routines: subset-pooling and
one-head.

6.2 How to Select Subset

6.2.1 Subset Pooling

ID-GNN (You et al., 2021) proposes an a GNN for node set learning. For each node in
the target node set, it labels the node one and all other nodes zero. Then, it uses a 1-
WL-GNN to produce the representations of the node. By pooling all node representations,
ID-GNN produces the node set representation. As isomorphic node sets can have different
embeddings due to different subset selections, choosing only one node randomly can break
permutation equivariance. But pooling the representation of all subset selection eliminates
the non-determinism caused by selection and solves this problem. Generalizing this method,

15

Wang, Li, and Zhang

we propose the subset pooling routine. Subset(k) pooling enumerates all size-k subsets and
then pools the embeddings of them.

AGG({GNN(S,A(P)) | P ⊆ S, |P | = k}),
where AGG is an injective set aggregation function.

As for all π ∈ Πn and target node set S in graph A,

AGG({GNN(S,A(P)) | P ⊆S, |P |=k}) = AGG({GNN(π(S), π(A)(P)) | P ⊆π(S), |P |=k}),
the subset pooling routine keeps permutation equivariance.

6.2.2 One Head Routine

Contrary to the subset pooling routine, link prediction model NBFNet (Zhu et al., 2021)
labels only one head of the link. This design breaks permutation equivariance but improves
the scalability. We propose the one head routine to generalize this method to general node
set tasks. It selects only one subset to label. Some policies are shown in the following.

• Random Selection. For a target set, we can select a subset in it randomly. For example,
we can randomly choose one head of each target edge in link prediction task.

• Graph Structural Selection. We can select a node with maximum degree in the target
node set. Note that it cannot keep permutation equivariance either.

• Partial Order Relation Selection. If the least element exists in a poset, we can choose
it as the subset. For example, in directed link prediction task, the source node of each
link can be the subset. This method can keep permutation equivariance.

6.2.3 Complexity

The efficiency gain of subset labeling trick compared with set labeling trick comes from
sharing results across target node sets. GNN with set labeling trick has to compute the
representations of each target node set separately. With the target node distinguishing
property, no labeling trick can remain unchanged across different target nodes sets. There-
fore, the input adjacency will change and node representations have to be reproduced by
the GNN.

In contrast, GNN with subset labeling trick can compute the representations of multiple
node sets with the same selected subset simultaneously. The subset label is only a function
of the selected subset and the graph, so we can maintain the subset label for different
target node sets by choosing the same subset. For example, in link prediction task, all
links originating from a node share this same source node. By choosing the source node
as the subset, these links have the same label and input adjacency to GNN, so the node
representations produced by the GNN can be reused. This routine is especially efficient in
the knowledge graph completion setting, where a query involves predicting all possible tail
entities connected from a head entity with a certain relation.

16

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

6.3 Expressivity

When the subset size k equals the target node set size |S|, subset labeling trick is equivalent
to set labeling trick. What is more interesting is, when k = |S| − 1, subset labeling trick
with the subset pooling routine can achieve the same power as set labeling trick.

Theorem 25 Given an NME GNN, for any graph A,A′, and node sets S, S′ in A,A′ re-
spectively, we have

AGG({GNN(S,A(P)) | P ⊆S, |P |= |S|−1})=AGG({GNN(S′,A′(P
′)) | P ′⊆S′, |P ′|= |S′|−1})
⇔ (S,A)'(S′,A′). (1)

Theorem 25 illustrates that when the selected subset is of |S| − 1 size, GNNs can produce
structural representation with the subset-pooling routine. This theorem is especially useful
when |S| = 2, in other words, link prediction task. Labeling only one node each time and
pooling the two results can achieve the same high expressivity.

Under the one head routine, we have the following theorem.

Theorem 26 Given an NME GNN, for any graph A,A′, and node sets S, S′ in A,A′ re-
spectively, we have

(S,A) 6'(S′,A′)⇒

∀P ⊆ S, P ′ ⊆ S′, |P | = |S| − 1, |P ′| = |S′| − 1,GNN(S,A(P)) 6= GNN(S,A′(P
′)). (2)

Though one-head routine may produce different representations for isomorphic sets, the
above theorem shows that it maintains the capacity to differentiate non-isomorphic sets.

For larger target node set, subset(|S| − 1) labeling trick is of little use, as the |S| − 1
labeling can hardly be reused by other target sets. In contrast, we focus on the expressivity
of subset(1) labeling trick, since it is much more common for target node sets to share node
rather than sharing another (|S| − 1) node set.

When using NME GNN, according to Theorem 12, set labeling trick leads to the highest
expressivity. The problem left is whether subset(1) labeling trick can help NME GNN
produce structural representations.

Proposition 27 Given an NME GNN, there exists pairs of set S in graph A and set S′

in graph A′ such that AGG({GNN(u,A(u)) | u ∈ S}) = AGG({GNN(u′,A′(u
′)) | u′ ∈ S′})

while (S,A) 6'(S′,A′).

Proposition 27 shows that with NME GNN, subset(1) labeling trick cannot learn structural
representation and is less expressive than set labeling trick. However, using 1-WL-GNNs,
the expressivity of subset(1) labeling trick is incomparable to that of set labeling trick. In
other words, there exists non-isomorphic node sets which are distinguishable by subset(1)
labeling trick and indistinguishable by set labeling trick, and vice versa.

Proposition 28 Given a 1-WL-GNN, there exists S,A, S′,A′ such that (S,A) 6' (S′,A′),
AGG({GNN(u,A(u)) | u ∈ S}) 6= AGG({GNN(u′,A′(u

′)) | u′ ∈ S′}) while

GNN(S,AS) = GNN(S′,A′
(S′)

). There also exists S,A, S′,A′ such that (S,A) 6' (S′,A′),
AGG({GNN(u,A(u)) | u ∈ S}) = AGG({GNN(u′,A′(u

′)) | u′ ∈ S′}) while GNN(S,A(S)) 6=
GNN(S′,A′

(S′)
).

17

Wang, Li, and Zhang

(a) (b)

Figure 5: An example of when subset labeling trick differentiates two node sets, while set
labeling trick does not. First row: labeled graphs. Second row: rooted subtrees
of v.

And 1-WL-GNN with subset(1) labeling trick can also differentiate many pairs of node sets
that 1-WL-GNN cannot differentiate, as shown in the following theorem.

Proposition 29 In any non-attributed graph with n nodes, if the degree of each node in

the graph is between 1 and
(
(1− ε) log n

)1/(2h+2)
for any constant ε ∈

(
log logn

(2h+2) logn , 1
)

, there

exist w(n2ε) pairs of links and w(2nn3ε−1) pairs of non-isomorphic node sets such that any
h-layer 1-WL-GNN produces the same representation, while with subset(1) labeling trick
1-WL-GNN can distinguish them.

6.3.1 Why Subset Labeling Trick Outperforms Labeling Trick in Some
Cases?

In this section, we take a closer look at some special cases and then give some intuitions
on subset labeling trick and set labeling trick. NME GNN is too expressive to show some
weakness of set labeling trick, so we focus on 1-WL-GNN.

Subset labeling trick helps differentiate nodes with the same label. Taking the two graphs
in Figure 5 as an example, the target set is the whole graph. With zero-one labeling trick,
1-WL-GNN cannot differentiate them as all nodes in the two graphs have the same rooted
subtree (see Figure 5a). However, subset zero-one labeling trick can solve this problem.
The rooted subtree in the first graph always contains a nodes with label 1, whereas in
the second graph, the rooted subtree may sometimes contain no labeled nodes, leading to
different 1-WL-GNN embeddings.

The drawback of subset labeling trick is that it captures pair-wise relation only and loses
high-order relations. As shown in Figure 6, the two target node sets (each containing three
nodes) are non-isomorphic, but every node pair from the first set is isomorphic to a node
pair from the second set. This difference is also reflected in the rooted subtree of target
nodes (see the bottom of Figure 6), where set labeling trick (Figure 6a) can differentiate v
while subset(1) labeling trick (Figure 6b) cannot.

18

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

(a) (b)

Figure 6: An example of when subset labeling trick fails to differentiate two node sets while
set labeling trick does. First row: labeled graphs. Second row: rooted subtrees
of v.

7. Comparison between Labeling Trick and High-Order Graph Neural
Network

Unlike ordinary GNNs which produce single-node representations, High-Order Graph Neu-
ral Networks (HOGNNs) generate representations for node tuples. HOGNNs encompass
various approaches, including k-dimensional Graph Neural Networks (k-GNNs) (Morris
et al., 2019) inspired by the k-dimensional Weisfeiler-Lehman test (k-WL) (Cai et al.,
1992), Provably Powerful Graph Neural Networks (Maron et al., 2019a) based on the
2-dimensional folklore Weisfeiler-Lehman test (2-FWL), k-Invariant Graph Networks (k-
IGN) (Maron et al., 2019b), Local Relational Pooling methods (Chen et al., 2020) that
create permutation-invariant functions with adjacency matrices as input, and subgraph
GNNs (Bevilacqua et al., 2022; Zhao et al., 2022; Zhang and Li, 2021; Qian et al., 2022;
Zhang et al., 2023) which apply ordinary 1-WL-GNNs to subgraphs extracted from the
original graph.

These methods all target whole-graph tasks by pooling the generated node tuple repre-
sentations to graph representations, whereas our labeling trick are designed for multi-node
tasks. Nevertheless, HOGNNs also yield representations for node tuples and can be em-
ployed for multi-node tasks. Moreover, their ability to handle multi-node tasks is closely
linked to their effectiveness in whole-graph tasks as follows.

Proposition 30 Let c(S,A) denote the color produced by a HOGNN for a graph G =
(V,E,A) and a node tuple S ∈ V k in the graph. Let AGG denote an injective pooling
function. Given two graphs G1 = (V1, E1,A1), G2 = (V2, E2,A2), AGG({{c(S,A1) | S ∈
V k
1 }}) 6= AGG({{c(S,A2) | S ∈ V k

2 }}) (HOGNNs can differentiate the two graphs) is equiv-
alent to the node tuple embedding function c being able to differentiate two multisets of node
tuples in two graphs.

A direct corollary is that if there exist two non-isomorphic graphs that a HOGNN can-
not differentiate, then there exist two node tuples that the tuple representations output
by HOGNN cannot differentiate. Moreover, if the node tuple embedding function c1 is

19

Wang, Li, and Zhang

more expressive than c2, such that c1(S1,A1) = c1(S2,A2) ⇒ c2(S1,A1) = c2(S2,A2),
the HOGNN corresponding to c1 is also more expressive than that corresponding to c2.
Therefore, we can establish expressivity comparisons between labeling tricks for multi-node
representations with HOGNNs by comparing their node tuple embedding functions. Follow-
ing Zhou et al. (2023), we first define the comparison between two HOGNNs for whole-graph
representations.

Definition 31 For any algorithm A and B, we denote the final color of graph G computed
by them as cA(G) and cB(G). We say:

• A is more expressive than B (B � A) if for any pair of graphs G and H, cA(G) =
cA(H)⇒ cB(G) = cB(H). Otherwise, there exists a pair of graphs that B can differ-
entiate while A cannot, denoted as B 6� A.

• A is as expressive as B (A ∼= B) if B � A ∧A � B.

• A is strictly more expressive than B (B ≺ A) if B � A ∧ A � B, i.e., for any
pair of graphs G and H, cA(G) = cA(H)⇒ cB(G) = cB(H), and there exists at least
one pair of graphs G,H s.t. cB(G) = cB(H), cA(G) 6= cA(H).

• A and B are incomparable (A � B) if A � B ∧ B � A. In this case, A can
distinguish a pair of non-isomorphic graphs that cannot be distinguished by B and
vice versa.

k-dimensional Weisfeiler-Lehman (k-WL) test has strong expressivity and forms the
basis of HOGNNs’ expressivity hierarchy. It assigns colors to all k-tuples and iteratively
updates them. The initial colors c0k(S,G) of tuples S ∈ V (G)k are determined by their
isomorphism types (Maron et al., 2019a). Two tuples S ∈ [n]k in graph G, and S′ ∈ [n]k in
graph G′ receive the same isomorphism type if and only if (1) there exists a permutation
function π such that π(Si) = S′i for all i = 1, 2, ..., k; and (2) the subgraphs G[S] and G′[S′]
induced by tuples S and S′ (with nodes Si in G[S] and nodes S′i in G′[S′] assigned extra
label i correspondingly for i = 1, 2, ..., k) are isomorphic. At the t-th iteration, the color
updating scheme is

ctk(S,G) = Hash(ct−1k (S,G), ({{ct−1k (ψi(S, u), G) | u ∈ V (G)}} | i ∈ [k])),

where ψi(S, u) means replacing the i-th element in S with u. The color of S is updated
by its original color and the color of its high-order neighbors ψi(S, u). The iterative up-
date continues until the color converges, e.g. ∀S, S′ ∈ V (G)k, ct+1

k (S,G) = ct+1
k (S′, G) ⇔

ctk(S,G) = ctk(S
′, G). Let ck(S,G) denote the k-WL color of tuple S in graph G. The color

of the whole graph is the multiset of all tuple colors,

ck(G) = Hash({{ck(S,G) | S ∈ V (G)k}}).
k-WL can also be used to produce l-tuple representations (l ≤ k), Given S ∈ V (G)l, its
color is

ck(S) = Hash({{ck(S‖S′, G) | S′ ∈ V (G)k−l}}),

where ‖ means concatenation. The HOGNN corresponding to this tuple representation is
Hash({{ck(S) | S ∈ V (G)l}}. This algorithm, namely k-WL with l-pooling in this work,
shares the same expressivity as k-WL.

20

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

Proposition 32 Given l < k, k-WL is as expressive as k-WL with l pooling.

Therefore, we slightly abuse the notation of k-WL and use k-WL instead of k-WL with l
pooling when analyzing k-WL for l-tuple representation.

7.0.1 k, l-WL and Poset Labeling Trick for Linear Order Set

As most HOGNNs learn representations for node tuples, we first compare HOGNNs with
the labeling trick for node tuples, where node tuple is essentially poset with linear order.
We use k, l-WL (Zhou et al., 2023) to represent a general framework for HOGNNs, which
includes k-WL-based methods (Morris et al., 2019), subgraph GNNs (Zhang and Li, 2021;
Zhao et al., 2022; Qian et al., 2022; Bevilacqua et al., 2022; Zhang et al., 2023) and relational
pooling (Chen et al., 2020).

Definition 33 (k, l-WL) For a graph G = (V,E,A), the graph color produced by k, l-WL
is as follows.

1. For each l-tuple of node S, the labeled graph GS is G with the i-th node Si in tuple S
augmented with an additional feature i.

2. Runs k-WL on each labeled graph GS, leading to graph color ck,l(S,A).

3. The final color of graph G is HASH({{ck,l(S,A) | S ∈ V l}}).

k, l-WL establishes a fine expressivity hierarchy for GNNs.

Proposition 34 (Zhou et al., 2023) For all k ≥ 2, l ≥ 0

• k + 1, l-WL is strictly more expressive than k, l + 1-WL.

• k, l + 1-WL is strictly more expressive than k, l-WL.

• k + 1, l-WL is strictly more expressive than k, l-WL.

• There exist two graphs that 2, l-WL can differentiate while l + 1-WL cannot.

Note that similar to k, l-WL, the poset labeling trick for linear order sets also assigns
node indices in the tuple as additional node features and runs GNN on the augmented
graph. Therefore, we have

Corollary 35 Given two graphs G1 = (V1, E1,A1), G2 = (V2, E2,A2) and two node tuples
S1 ∈ V l

1 , S2 ∈ V l
2 , the poset labeling trick with k-WL equivalent GNN can differentiate S1, S2

if and only if k, l-WL produces different tuple colors ck,l(S1,A1) 6= ck,l(S2,A2).

In other words, poset labeling trick for linear order sets (i.e., node tuples) combined with
k-WL is equivalent in expressivity to k, l-WL where l is the size of the set. Thus we can
readily inherit the k, l-WL hierarchy to analyze labeling trick. For example, in real-world
applications, the labeling trick is typically used with 1-WL-GNNs, which have the same
expressivity as 2-WL. Therefore,

21

Wang, Li, and Zhang

Corollary 36 Using 1-WL-GNN together with the poset labeling trick for linear order sets,
for node tuples of size l, there exist two node tuples that l+1-WL cannot differentiate, while
1-WL-GNN with the labeling trick can differentiate. Moreover, for any two node tuples of
size l, if l + 2-WL cannot differentiate, 1-WL-GNN with the labeling trick cannot either.

Despite having the same expressivity, as the labeling trick only needs to compute repre-
sentation of the query node tuple, it can be much more scalable than HOGNNs for multi-
node tasks (saving nl times time and space, where l is the size of node tuple).

8. Labeling trick for hypergraph

Graph is appropriate to describe bilateral relations between entities. However, high-order
relations among several entities are also worth studying (Agarwal et al., 2006). Hypergraph,
composed of nodes and hyperedges, can model such high-order relations naturally. In this
section, we study multi-node representation learning in hypergraphs.

We consider a hypergraph H := (V,E,H,XV ,XE), where V is the node set {1, 2, ..., n},
E is the hyperedge set {1, 2, ...,m}, and H ∈ {0, 1}n×m is the incidence matrix with Hi,j = 1
if node i is in hyperedge j and 0 otherwise. Each hyperedge contains at least one node.
XV ∈ Rn×d and XE ∈ Rm×d are node and hyperedge features respectively, where XVi,: is of

node i, and XEj,: is of hyperedge j.

We define a hypergraph permutation π = (π1, π2) ∈ Πn×Πm. Its action on a hypergraph
H = (V,E,H,XV ,XE) is π(H) = (π1(V), π2(E), π(H), π1(X

V), π2(X
E)), where incidence

matrix permutation is π(H)π1(i),π2(j) = Hi,j .

The graph isomorphism and poset-graph isomorphism of hypergraph are defined as
follows.

Definition 37 Hypergraphs H,H ′ are isomorphic iff there exists π ∈ Πn×Πm, π(H) = H ′.
Given node posets S in H and S′ in H ′, (S,H), (S′, H ′) are isomorphic iff there exists
π = (π1, π2) ∈ Πn ×Πm, (π1(S), π(H)) = (S′, H ′).

We can define labeling trick for hypergraph similar to that of graph from scratch. How-
ever, converting the hypergraph problem to a graph problem is more convenient. We for-
malize the known convertion (Bretto, 2013) as follows.

Definition 38 (Incidence graph) Given a hypergraph H = (V,E,H,XV ,XE), V =
{1, 2, ..., n}, E = {1, 2, ...,m}, H ∈ {0, 1}n×m, XV ∈ Rn×d,XE ∈ Rm×d, its incidence
graph is IGH = (VH , EH ,A), where the node set VH = {1, 2, ..., n, n+1, ..., n+m}, edge set
EH = {(i, j) | i ∈ V, j ∈ E,Hi,j = 1}, adjacency tensor A ∈ R(n+m)×(n+m)×(d+1). For all
i ∈ V, j ∈ E, Ai,i,:d = XVi,:, Ai,i,d+1 = XVi,:, An+j,n+j,:d = XEj,:, Ai,n+j,d+1 = Hi,j. All other
elements in A are 0.

The incidence graph IGH considers H’s nodes and hyperedges both as its nodes. Two nodes
in IGH are connected iff one is a node and the other is a hyperedge containing it in H.

The incidence graph contains all information in the hypergraph. Hypergraph isomor-
phism and poset-hypergraph isomorphism are equivalent to the graph isomorphism and
poset-graph isomorphism in the corresponding incidence graphs.

22

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

Theorem 39 Given node posets S in hypergraph H, S′ in hypergraph H ′, (S,H) ' (S′, H ′)
iff (S, IGH) ' (S′, IGH′).

Therefore, a hypergraph task can be converted to a graph task. Labeling tricks can be
extended to hypergraph by using them on the corresponding incidence graph.

Corollary 40 Given an NME GNN, and an injective aggregation function AGG, for any
S,H, S′, H ′, let A,A′ denote the adjacency tensors of graphs IGH , IGH′ respectively. Then
GNN(S,A(S)) = GNN(S′,A′(S

′))⇔ (S,H)'(S′, H ′).

With NME GNN, set labeling trick can still produce structural representations on hyper-
graph. This enables us to boost the representation power of hyperedge prediction tasks.

9. Related work

There is emerging interest in recent study of graph neural networks’ expressivity. Xu et al.
(2019) and Morris et al. (2019) first show that the 1-WL test bounds the discriminating
power of GNNs performing neighbor aggregation. Many works have since been proposed to
increase the power of GNNs by simulating higher-order WL tests (Morris et al., 2019; Maron
et al., 2019a; Chen et al., 2019; Azizian and Lelarge, 2021), approximating permutation
equivariant functions (Maron et al., 2019b; Geerts, 2020; Maron et al., 2019a; Puny et al.,
2022; Chen et al., 2020), , encoding subgraphs (Frasca et al., 2022; Zhang and Li, 2021; Feng
et al., 2022), utilizing graph spectral features (Kreuzer et al., 2021; Lim et al., 2023), etc.
However, most previous works focus on improving GNN’s whole-graph representation power.
Little work has been done to analyze GNN’s substructure representation power. Srinivasan
and Ribeiro (2020) first formally studied the difference between structural representations
of nodes and links. Although showing that structural node representations of GNNs cannot
perform link prediction, their way to learn structural link representations is to give up GNNs
and instead use Monte Carlo samples of node embeddings learned by network embedding
methods. In this paper, we show that GNNs combined with labeling tricks can also learn
structural link representations, which reassures using GNNs for link prediction.

Many works have implicitly assumed that if a model can learn node representations
well, then combining the pairwise node representations can also lead to good node set (for
example link) representations (Grover and Leskovec, 2016; Kipf and Welling, 2016; Hamilton
et al., 2017). However, we argue in this paper that simply aggregating node representations
fails to discriminate a large number of non-isomorphic node sets (links), and with labeling
trick the aggregation of structural node representations leads to structural representations.

Li et al. (2020) proposed distance encoding (DE), whose implementations based on S-
discriminating distances can be shown to be specific labeling tricks. You et al. (2019) also
noticed that structural node representations of GNNs cannot capture the dependence (in
particular distance) between nodes. To learn position-aware node embeddings, they propose
P-GNN, which randomly chooses some anchor nodes and aggregates messages only from
the anchor nodes. In P-GNN, nodes with similar distances to the anchor nodes, instead of
nodes with similar neighborhoods, have similar embeddings. Thus, P-GNN cannot learn
structural node/link representations. P-GNN also cannot scale to large datasets.

Finally, although labeling trick is formally defined in our conference paper (Zhang et al.,
2021a), various forms of specific labeling tricks have already been used in previous works. To

23

Wang, Li, and Zhang

our best knowledge, SEAL (Zhang and Chen, 2018) proposes to add shortest path distance
to target node to each node’s feature, which is designed to improve GNN’s link prediction
power. To our best knowledge, it is the first labeling trick. It is later adopted in the
completion of inductive knowledge graphs (Teru et al., 2020) and matrix completion (Zhang
and Chen, 2020), and is generalized to DE (Li et al., 2020) and GLASS (Wang and Zhang,
2022), which works for the cases |S| > 2. Wan et al. (2021) use labeling trick for hyperedge
prediction. Besides these set labeling tricks, some labeling methods similar to the subset
labeling trick also exist in existing works. ID-GNN (You et al., 2021) and NBFNet (Zhu
et al., 2021) both use a mechanism equivalent to the one head routine of subset labeling
trick. RWL (Huang et al., 2023) further generalize these methods to a general framework
similar to our subset labeling trick with subset size = 1 and connects its expressivity with
logical boolean classifier.

10. Experiments

Our experiments include various multi-node representation learning tasks: undirected link
prediction, directed link prediction, hyperlink prediction, and subgraph prediction. Label-
ing trick boosts GNNs on all these tasks. All metrics in this section are the higher the
better. Datasets are detailed in Appendix C. Our code is available at https://github.

com/GraphPKU/LabelingTrick. In all experiments, we use GNNs without labeling trick
(NO) for ablation.

10.1 Undirected link prediction

In this section, we use a two-node task, link prediction, to empirically validate the effec-
tiveness of set and subset labeling trick.

Following the setting in SEAL (Zhang and Chen, 2018), we use eight datasets: USAir,
NS, PB, Yeast, C.ele, Power, Router, and E.coli. These datasets are relatively small. So we
additionally use four large datasets in Open Graph Benchmark (OGB) (Hu et al., 2020):
ogbl-ppa, ogbl-collab, ogbl-ddi, ogbl-citation2. To facilitate the comparison, we use
the same metrics, including auroc, Hits@K, and MRR, as in previous works.

We use the following baselines for comparison. We use 4 non-GNN methods: CN
(Common-Neighbor), AA (Adamic-Adar), MF (matrix factorization) and Node2vec (Grover
and Leskovec, 2016). CN and AA are two simple link prediction heuristics based on count-
ing common neighbors. MF uses free-parameter node embeddings trained end-to-end as
the node representations. Two set labeling trick methods are used: ZO and SEAL. ZO
uses the zero-one labeling trick, and SEAL uses the DRNL labeling trick (Zhang and Chen,
2018). Three subset labeling trick methods are compared: subset zero-one labeling trick
with subset pooling (ZO-S), subset distance encoding labeling trick with subset pooling
(DE-S), subset zero-one labeling trick with one-head routine (ZO-OS).
Results and discussion. We present the main results in Table 1. Compared with all non-
GNN methods, vanilla 1-WL-GNN with no labeling trick (NO) gets lower auroc on almost all
datasets. However, with labeling trick or subset labeling trick, 1-WL-GNN can outperform
the baselines on almost all datasets. ZO, SEAL use set labeling trick and outperform
non-GNN methods by 4% and 9% respectively on average. The performance difference
between ZO and SEAL illustrates that labeling trick implementation can still affect the

24

https://github.com/GraphPKU/LabelingTrick
https://github.com/GraphPKU/LabelingTrick

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

USAir NS PB Yeast Cele Power Router Ecoli

CN 93.80±1.22 94.42±0.95 92.04±0.35 89.37±0.61 85.13±1.61 58.80±0.88 56.43±0.52 93.71±0.39

AA 95.06±1.03 94.45±0.93 92.36±0.34 89.43±0.62 86.95±1.40 58.79±0.88 56.43±0.51 95.36±0.34

NV 91.44±1.78 91.52±1.28 85.79±0.78 93.67±0.46 84.11±1.27 76.22±0.92 65.46±0.86 90.82±1.49

MF 94.08±0.80 74.55±4.34 94.30±0.53 90.28±0.69 85.90±1.74 50.63±1.10 78.03±1.63 93.76±0.56

NO 89.04±2.14 74.10±2.62 90.87±0.56 83.04±0.93 73.25±1.67 65.89±1.65 92.47±0.76 93.27±0.49

ZO 94.08±1.43 95.60±0.93 91.82±1.26 94.69±0.45 74.94±2.01 73.85±1.37 93.21±0.66 92.09±0.67

SEAL 97.09±0.70 97.71±0.93 95.01±0.34 97.20±0.64 86.54±2.04 84.18±1.82 95.68±1.22 97.22±0.28

ZO-S 96.15±1.06 98.10±0.67 94.15±0.50 97.41±0.37 86.31±1.80 78.31±0.91 94.52±0.72 97.48±0.23

DE-S 94.97±0.61 99.29±0.14 94.44±0.52 98.17±0.41 85.95±0.36 94.16±0.14 99.33±0.09 98.91±0.08

ZO-OS 94.62±0.63 97.42±0.49 94.36±0.26 97.46±0.06 88.04±0.52 84.95±0.30 93.77±0.20 95.53±0.62

Table 1: Results on undirected link prediction task: auroc (%) ± standard deviation.

Dataset collab ddi citation2 ppa

metrics Hits@50 Hits@20 MRR Hits@100

NO 44.75±1.07 37.07±5.07 84.74±0.21 18.67±1.32

ZO 53.29±0.23 23.90±0.75 78.50±1.08 37.75±3.42
SEAL 54.71±0.49 30.56±3.86 87.67±0.32 48.80±3.16

ZO-OS 49.17±3.29 41.24±1.49 82.85±0.43 43.27±1.19
ZO-S 54.69±0.51 29.27±0.53 82.45±0.62 36.04±4.50

Table 2: Results on undirected link prediction task.

expressivity of 1-WL-GNN. However, even the simplest labeling trick can still boost 1-WL-
GNNs by 6%. Subset(1) labeling trick ZO-S and DE-S also achieve 9% and 11% score
increase on average. Compared with ZO, though ZO-S also uses only the target set identity
information, it distinguishes nodes in the target node set and achieves up to 5% performance
increase on average, which verifies the usefulness of subset labeling trick. Last but not least,
though subset labeling trick with one-head routine (ZO-OS) loses permutation invariance
compared with subset pooling routine (ZO-S), it still achieves outstanding performance and
even outperforms ZO-S on 4/8 datasets.

We also conduct experiments on some larger datasets as shown in Table 2. GNN aug-
mented by labeling tricks achieves the best performance on all datasets.

10.2 Directed link prediction tasks

To illustrate the necessity of introducing partial order to labeling trick, we compare set la-
beling trick and poset labeling trick on the directed link prediction task. Following previous
work (He et al., 2022), we use six directed graph datasets, namely Cornell, Texas, Wisconsin,
CoraML, Citeseer, and Telegram. Our baselines includes previous state-of-the-art GNNs for
directed graph, including DGCN (Tong et al., 2020b), DiGCN and DiGCNIB (Tong et al.,

25

Wang, Li, and Zhang

Cornell Texas Wisconsin CoraML CiteSeer Telegram

DGCN 70.4±9 69.7±6 69.8±6 77.2±1 71.2±2 86.4±1

DiGCN 69.3±7 69.7±7 66.2±7 75.1±1 73.0±1 78.2±1

DiGCNIB 65.7±3 63.7±6 67.6±6 75.9±4 73.7±2 79.8±2

MagNet 70.4±8 73.1±7 70.4±7 77.3±1 71.8±1 86.7±1

NO 67.5±7 72.0±4 71.6±5 78.7±1 74.3±1 84.1±1

PL 71.5±4 78.0±4 79.0±3 82.2±1 79.8±1 91.7±1

ZO 71.1±5 77.6±5 74.0±2 79.4±1 79.9±1 85.6±1

Table 3: Results on directed link prediction tasks: accuracy (%) ± standard deviation.

NDC-c NDC-s tags-m tags-a email-En email-EU congress

ceGCN 61.4±0.5 42.1±1.4 59.9±0.9 54.5±0.5 61.8±3.2 66.4±0.3 41.2±0.3
ceSAGE 65.7±2.0 47.9±0.7 63.5±0.3 59.7±0.7 59.4±4.6 65.1±1.9 53.0±5.5
seRGCN 67.6±4.9 52.5±0.6 57.2±0.3 54.5±0.6 59.9±4.0 66.1±0.6 54.4±0.4

FS 76.8±0.4 51.2±3.2 64.2±0.6 60.5±0.2 68.5±1.6 68.7±0.2 56.6±1.1

NO 60.2±2.3 45.6±0.8 56.6±1.4 56.5±1.8 56.9±1.7 57.2±0.9 54.1±0.5

ZO 82.5±1.3 63.6±1.5 71.4±0.5 70.4±0.8 66.1±1.2 72.1±1.1 65.1±0.2
ZO-S 75.8±0.7 62.2±1.2 71.0±0.4 69.6±0.7 67.7±1.8 73.3±0.5 64.2±0.3

Table 4: Results on hyperedge prediction tasks: f1-score (%) ± standard deviation.

2020a), and MagNet (Zhang et al., 2021c). Our models include NO (vanilla 1-WL-GNN),
PL (poset labeling trick which labels the source node as 1, target node as 2, other nodes as
0), ZO (zero-one labeling trick).

The results are shown in Table 3. The existing state-of-the-art method MAGNet (Zhang
et al., 2021b) outperforms 1-WL-GNN by 0.25% on average. However, 1-WL-GNN with
labeling trick outperforms all baselines. Moreover, poset labeling trick (PL) achieves 2%
performance gain compared with the set labeling trick (ZO). These results validate the
power of poset labeling trick and show that modeling partial order relation is critical for
some tasks.

10.3 Hyperedge prediction task

We use the datasets and baselines in (Srinivasan et al., 2021). Our datasets includes two
drug networks (NDC-c, NDC-s), two forum networks (tags-m, tags-a), two email networks
(email-En, email-Eu), and a network of congress members (congress). We use four GNNs
designed for hypergraph as baselines, including ceGCN, ceSAGE, seRGCN, and FS (fam-
ily set) (Srinivasan et al., 2021). Our models include ZO (zero-one labeling trick), ZO-S
(subset(1) labeling trick with subset pooling), NO (vanilla 1-WL-GNN).ZO and ZO-S out-
perform all other methods significantly.

26

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

Method density coreness cutratio ppi-bp hpo-metab hpo-neuro em-user

SubGNN 91.9±0.6 65.9±3.1 62.9±1.3 59.9±0.8 53.7±0.8 64.4±0.6 81.6±1.3
Sub2Vec 45.9±1.2 36.0±1.9 35.4±1.4 38.8±0.1 47.2±1.0 61.8±0.3 77.9±1.3

NO 47.8±2.9 47.8±5.3 81.4±1.5 61.3±0.9 59.7±1.2 66.8±0.7 84.7±2.1

ZO 98.4±1.2 87.3±15.0 93.0±1.3 61.9±0.7 61.4±0.5 68.5±0.5 88.8±0.6
ZO-S 94.3±6.9 75.8±7.0 85.6±2.5 61.7±0.4 60.4±1.1 67.4±1.3 86.3±2.5

Table 5: Results on subgraph tasks: f1-score (%) ± standard deviation.

10.4 Subgraph prediction task

We use the datasets and baselines in (Alsentzer et al., 2020). We use three synthetic
datasets, namely density, coreness, and cutratio, and four real-world datasets, namely ppi-
bp, hpo-metab, hpo-neuro, em-user. SubGNN (Alsentzer et al., 2020) and Sub2Vec (Ad-
hikari et al., 2018) are models designed for subgraph. Our models include ZO (zero-one
labeling trick, results on ppi-bp, hpo-metab, hpo-neuro, em-user are from Wang and Zhang
(2022)), ZO-S (subset labeling trick), and NO (vanilla 1-WL-GNN without labeling trick,
results on ppi-bp, hpo-metab, hpo-neuro, em-user are from Wang and Zhang (2022)). Com-
pared with NO, Labeling tricks boost vanilla 1-WL-GNN significantly. Moreover, vanilla
GNN augmented by labeling trick also outperforms GNN designed for subgraph on all
datasets. Moreover, ZO outperforms ZO-S, which illustates that subset labeling tricks,
while ZO can capture high-order relations better as shown in Section 6.3.1.

11. Conclusions

In this paper, we proposed a theory of using GNNs for multi-node representation learning.
We first pointed out the key limitation of a common practice in previous works that directly
aggregates node representations as a node-set representation. To address the problem, we
proposed set labeling trick which gives target nodes distinct labels in a permutation equiv-
ariant way and characterized its expressive power. We further extended set labeling trick
to poset and subset labeling trick, as well as extending graph to hypergraph. Our theory
thoroughly discusses different variants and scenarios of using labeling trick to boost vanilla
GNNs, and provides a solid foundation for future researchers to develop novel labeling
tricks.

Acknowledgments

This work is supported by the National Key R&D Program of China (2022ZD016030) and
National Natural Science Foundation of China (62276003).

27

Wang, Li, and Zhang

Appendix A. Proofs

A.1 Proof of Proposition 11 and Proposition 20

For Proposition 11,

(S,A) ' (S′,A′)⇔ ∃π ∈ Πn, π(S) = S′, π(A) = A′

⇔ ∃π ∈ Πn, π(L(S,A)) = L(S′,A′), π(A) = A′

⇔ ∃π ∈ Πn, π(A(S)) = A′
(S′)

For Proposition 20, we can simply replace set S above with poset.

A.2 Proof of Theorem 12

Following Zhang et al. (2021a), we restate Theorem 12: Given an NME GNN and an injec-
tive set aggregation function AGG, for any S,A, S′,A′, GNN(S,A(S)) = GNN(S′,A′(S

′))⇔
(S,A)'(S′,A′), where GNN(S,A(S)) := AGG({GNN(i,A(S))|i ∈ S}).
Proof

We need to show AGG({GNN(i,A(S))|i ∈ S}) = AGG({GNN(i,A′(S
′)|i ∈ S′}) ⇔

(S,A) ' (S′,A′).
To prove ⇒, we notice that with an injective AGG,

AGG({GNN(i,A(S)))|i ∈ S}) = AGG({GNN(i,A′(S
′)))|i ∈ S′})

=⇒ ∃ v1 ∈ S, v2 ∈ S′, such that GNN(v1,A
(S)) = GNN(v2,A

′(S′)) (3)

=⇒ (v1,A
(S)) ' (v2,A

′(S′)) (because GNN is node-most-expressive) (4)

=⇒ ∃ π ∈ Πn, such that v1 = π(v2),A
(S) = π(A′(S

′)). (5)

Remember A(S) is constructed by stacking A and L(S,A) in the third dimension, where
L(S,A) is a tensor satisfying: ∀π ∈ Πn, (1) L(S,A) = π(L(S′,A′)) ⇒ S = π(S′), and (2)
S = π(S′),A = π(A′)⇒ L(S,A) = π(L(S′,A′)). With A(S) = π(A′(S

′)), we have both

A = π(A′), L(S,A) = π(L(S′,A′)).

Because L(S,A) = π(L(S′,A′))⇒ S = π(S′), continuing from Equation (5), we have

AGG({GNN(i,A(S))|i ∈ S}) = AGG({GNN(i,A′(S
′))|i ∈ S′})

=⇒ ∃ π ∈ Πn, such that A = π(A′), L(S,A) = π(L(S′,A′))

=⇒ ∃ π ∈ Πn, such that A = π(A′), S = π(S′)

=⇒ (S,A) ' (S′,A′).

Now we prove ⇐. Because S = π(S′),A = π(A′)⇒ L(S,A) = π(L(S′,A′)), we have:

(S,A) ' (S′,A′)

=⇒ ∃ π ∈ Πn, such that S = π(S′),A = π(A′)

=⇒ ∃ π ∈ Πn, such that S = π(S′),A = π(A′),L(S,A) = π(L(S′,A′))

=⇒ ∃ π ∈ Πn, such that S = π(S′),A(S) = π(A′(S
′))

=⇒ ∃ π ∈ Πn, such that ∀v2 ∈ S′, v1 = π(v2) ∈ S,GNN(v1,A
(S)) = GNN(v2,A

′(S′))

=⇒ AGG({GNN(v1,A
(S))|v1 ∈ S}) = AGG({GNN(v2,A

′(S′))|v2 ∈ S′}),

28

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

which concludes the proof.

A.3 Proof of Theorem 13 and Theorem 29

Following Zhang et al. (2021a), as an h-layer 1-WL-GNN only encodes an h-hop neighbors
for each node, we define locally h-isomorphism.

Definition 41 For all S,A, S′,A′, (S,A) and (S′,A′) are locally h-isomorphic iff (S,AS,h) '
(S′,AS′,h), where AS,h means the subgraph of A induced by the node set {v ∈ V |∃u ∈
S, dsp(u, v,A) ≤ h}, and dsp(u, v,A) means the shortest path distance between node u, v in
graph A.

We restate Theorem 13(Theorem 29): In any non-attributed graph with n nodes, if the

degree of each node in the graph is between 1 and ((1− ε) log n)1/(2h+2) for any constant
ε > 0, then there exists ω(n2ε) many pairs of non-isomorphic links (u,w), (v, w) such that
an h-layer 1-WL-GNN gives u, v the same representation, while with zero-one labeling trick
(subset zero-one labeling trick) the 1-WL-GNN gives u, v different representations. These
two theorems can be proved together because the special cases we build can be solved by
both of them.
Proof

Our proof has two steps. First, we would like to show that there are ω(nε) nodes that
are locally h-isomorphic to each other. Then, we prove that among these nodes, there are
at least ω(n2ε) pairs of nodes such that there exists another node constructing locally h
non-isomorphic links with either of the two nodes in each node pair.
Step 1. Consider an arbitrary node v and denote the node set induced by the nodes that

are at most h-hop away from v as G
(h)
v (the h-hop enclosing subgraph of v). As each node

is with degree d ≤
(
(1 − ε) log n

)1/(2h+2)
, then the number of nodes in G

(h)
v , denoted by

|V (G
(h)
v)|, satisfies

|V (G(h)
v)| ≤

h∑
i=0

di ≤ dh+1 =
(
(1− ε) log n

)1/2
.

We set K = maxv∈V |V (G
(h)
v)| ≤

(
(1− ε) log n

)1/2
.

Now we expand subgraphs G
(h)
v to Ḡ

(h)
v by adding K − |V (G

(h)
v)| independent nodes for

each node v ∈ V . Then, all Ḡ
(h)
v have the same number of nodes, which is K, though they

may not be connected graphs. Next, we consider the number of non-isomorphic graphs
over K nodes. Actually, the number of non-isomorphic graph structures over K nodes is
bounded by

2(K2) ≤ 2(1−ε) logn = n1−ε.

Therefore, due to the pigeonhole principle, there exist ω(n/n1−ε) = ω(nε) many nodes

v whose Ḡ
(h)
v are isomorphic to each other. Denote the set of these nodes as Viso, which

consist of nodes that are all locally h-isomorphic to each other.
Step 2. Let us partition Viso = ∪qi=1Vi so that for all i ∈ {1, 2, ..., q}, nodes in Vi share the
same first-hop neighbor sets. Note that all nodes in each Vi share the same neighbors, so |Vi|

29

Wang, Li, and Zhang

is no more than maximum degree ((1− ε) log n)1/(2h+2) < nε when ε > 1
(2h+2) logn(log log n).

Then, consider any pair of nodes u, v such that u, v are from different Vi’s. Since u, v
share identical h-hop neighborhood structures, an h-layer 1-WL-GNN will give them the
same representation. Then, we may pick one w ∈ N(u)−N(v) (If w does not exists, then
N(u)−N(v) =, so N(v)−N(u) 6= ∅ because of the definition of Vi. We can simply exchange
u and v). As w is u’s first-hop neighbor and is not v’s first-hop neighbor, (u,w) and (v, w)
are not isomorphic. With labeling trick, the h-layer 1-WL-GNN will give u, v different
representations immediately after the first message passing round due to w’s distinct label.
Therefore, we know such a (u,w), (v, w) pair is exactly what we want.

Based on the partition Viso, we know the number of such non-isomorphic link pairs
(u,w) and (v, w) is at least:

Y ≥
q∑

i,j=1,i<j

|Vi||Vj | =
1

2

[
(

q∑
i=1

|Vi|)2 −
q∑
i=1

|Vi|2
]
. (6)

Because of the definitions of the partition,
∑q

i=1 |Vi| = |Viso| = ω(nε) and the size of
each Vi satisfies

1 ≤ |Vi| ≤ dw ≤
(
(1− ε) log n

)1/(2h+2)
,

where w is one of the common first-hop neighbors shared by all nodes in Vi and dw is its
degree.

By plugging in the range of |Vi|, Eq.6 leads to

Y ≥ 1

2
[(

q∑
i=1

|Vi|)2 −
q∑
i=1

|Vi|(max
j∈{1,2,...,q}

|Vj |)]

=
1

2
(ω(n2ε)− ω(nε)O

((
(1− ε) log n

)1/(2h+2)
)

= ω(n2ε),

which concludes the proof.

A.4 Proof of Theorem 15

Proof This proof shares the same first step as Appendix A.3.

Step 2. Let us partition Viso =
⋃q
i=1 Vi, nodes in each Vi share the same one-hop neighbor.

Consider two nodes u ∈ Vi, v ∈ Vj , i 6= j. There exists a node w ∈ N(u), w /∈ N(v) (If
w does not exists, then N(u) − N(v) =, so N(v) − N(u) 6= ∅ because of the definition of
Vi. We can simply exchange u and v). Let Ṽu,v,w denote V − {u, v, w} − N(v). Ṽu,v,w ≥
n − 3 −

(
(1 − ε) log n

)1/(2h+2)
. Consider arbitrary subset V ′ of Ṽu,v,w. Let S1 denote the

subgraph induced by V ′
⋃
{u,w}, S2 denote the subgraph induced by V ′

⋃
{v, w}. Compared

with S2, S1 has the same number of nodes. Moreover, S2 has edge between nodes in V ′ and
edges between V ′ and w, while S1 further has more edge (u,w) and edges between V ′ and
u, so the density of S1 is higher than S2. And 1-WL-GNN with zero-one labeling trick can
fit density perfectly (Theorem 1 in (Wang and Zhang, 2022)), so 1-WL-GNN with labeling
trick can distinguish S1 and S2, while 1-WL-GNNs cannot.

30

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

The number of pair (u, v, w) is w(n2ε). Therefore, the number of these pairs of subgraphs
is bounded by

w(n2ε)2n−3−((1−ε) logn)
1/(2h+2)

= w(2nn3ε−1).

A.5 Proof of Theorem 22

This proof shares the same first step as Appendix A.3.

Number of link: the same as the step 2 in Appendix A.3.

Number of subgraph: similar to the step 2 in Appendix A.4. Let us partition Viso =⋃q
i=1 Vi, nodes in each Vi share the same one-hop neighbor. Consider two nodes u ∈ Vi, v ∈

Vj , i 6= j. There exists a node w ∈ N(u), w /∈ N(v). Let Ṽu,v,w denote V −{u, v, w}−N(u).

|Vv| ≥ n − 3 −
(
(1 − ε) log n

)1/(2h+2)
. Consider arbitrary subset V ′ of Ṽu,v,w and a partial

order ≤V ′ . Let S1 denote the subgraph induced by poset
(
(V ′

⋃
{u,w}),≤V ′ ∪{(u, a)|a ∈

sV ′} ∪ {(w, a)|a ∈ sV ′ ∪ {u}}
)
, S2 denote the subgraph induced by poset

(
V ′
⋃
{v, w},≤V ′

∪{(v, a)|a ∈ sV ′} ∪ {(w, a)|a ∈ V ′ ∪ {v}}
)
. 1-WL-GNN with labeling trick can distinguish

S1 and S2 as the edges between (u,w) and (v, w) are distinct, while 1-WL-GNNs cannot.

The number of pair (u, v, w) is w(n2ε). Therefore, the number of these pairs of subgraphs
is bounded by

w(n2ε)w(n− 3−
(
(1− ε) log n

)1/(2h+2)
)! = w

((
(1− ε)n

)
!
)
.

A.6 Proof of Proposition 14

As shown in Figure 1a, 1-WL-GNN cannot count common neighbor and thus fail to im-
plement h. Now we prove that with zero-one labeling trick, 1-WL-GNN can implement
h.

Given a graph A and a node pair (i, j), let z
(k)
k denote the embedding of node i at kth

message passing layer.

z
(0)
k =

[
1

δki + δkj

]
.

The first dimension is all 1 (vanilla node feature), and the second dimension is zero-one
label.

The first layer is,

z
(1)
k =

g1(a
(1)
k [1])

g2(a
(1)
k [1])

a
(1)
k [2] > 2


where a

(1)
k =

∑
l∈N(k) z

(0)
l , [1] means the first element of vector, and [2] means the second

element.

The second layer is

z
(2)
k =

[∑
l∈N(k) z

(1)
k [3]z

(1)
k [2]∑

l∈N(k)(1− z
(1)
k [3])z

(1)
k [1]

]

31

Wang, Li, and Zhang

The pooling layer is

zij = f({zi[2], zj [2]}, zi[1] + zj [1]

2
)

A.7 Proof of Theorem 21

Proof ⇐: When (S,A) ' (S′,A′), there exists a permutation π, π(S) = S′, π(A) = A′.

GNN(S,A(S)) = AGG({GNN(v,A(S)|v ∈ S}) (7)

= AGG({GNN(π(v), π(A(S)))|v ∈ S}) (8)

= AGG({GNN(π(v),A′(S
′)|v ∈ S}) (9)

= AGG({GNN(v′,A′(S
′))|v′ ∈ S′}) (10)

= GNN(S′,A′
(S′)

) (11)

⇒:

GNN(S,A(S)) = GNN(S′,A′
(S′)

)

AGG({GNN(v,A(S))|v ∈ S}) = AGG({GNN(v′,A′
(S′)

)|v′ ∈ S′})

As AGG is injective, There exist v0 ∈ S, v′0 ∈ S′,

GNN(v0,A
(S)) = GNN(v′0,A

(S′))

As GNN is node most expressive,

∃π, π(v0) = v′0, π(A) = A′, π(L(S,A)) = L(S′,A′).

Therefore, π(L(S,A)) = L(S′,A′)).

A.8 Proof of Theorem 25

Proof ⇐: When (S,A) ' (S′,A′), there exists a permutation π, π(S) = S′, π(A) = A′.

AGG
({

AGG({GNN(u,A(S−{v}))|u ∈ S})|v ∈ S
})

= AGG({AGG({GNN(π(u), π(A(S−{v}))|u ∈ S})|v ∈ S})
= AGG({AGG({GNN(π(u),A′(π(S)−{π(v)})|u ∈ S})|v ∈ S})

= AGG({AGG({GNN(u′,A′(S
′−{v′}))|u′ ∈ S′})|v′ ∈ S′})

⇒:

AGG({AGG({GNN(u,A(S−{v}))|u ∈ S})|v ∈ S})

= AGG({AGG({GNN(u′,A′(S
′−{v′}))|u′ ∈ S′})|v′ ∈ S′}).

As AGG is injective,

{AGG({GNN(u,A(S−{v}))|v ∈ S})|u ∈ S} = {{AGG({GNN(u′,A(S′−{v′}))|v′ ∈ S′})}.

32

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

There exist v0 ∈ S, v′0 ∈ S′,

AGG({GNN(u,A(S−{v0}))|u ∈ S}) = AGG({GNN(u′,A(S′−{v′0}))|u′ ∈ S′}).
Similarly, there exists u′0 ∈ S′

GNN(v0,A
(S−{v0})) = GNN(u′0,A

(S′−{v′0})).

As GNN is node most expressive,

∃π, π(v0) = u′0, π(A) = A′, π(L(S − {v0},A)) = L(S′ − {v′0},A′)).
Therefore, π(S − {v0}) = S′ − {v′0}. Note that v0 /∈ S − {v0}, so u′0 = π(v0) /∈ S′ − {v′0},
while u′0 ∈ S′, therefore u′0 = v′0.

Therefore, π(S) = S′, and π(A) = A′, so (S,A) ' (S′,A′).

A.9 Proof of Theorem 26

We prove it by contradiction: If ∃v0 ∈ S, v′0 ∈ S′,

GNN(S,A(S−{v0})) = GNN(S′,A′
(S′−{v′0}))

Therefore, there exists u0 ∈ S, u′0 ∈ S′

GNN(v0,A
(S−{v0})) = GNN(u′0,A

(S′−{v′0})).

As GNN is node most expressive,

∃π, π(v0) = u′0, π(A) = A′, π(L(S − {v0},A)) = L(S′ − {v′0},A′)).
Therefore, π(S − {v0}) = S′ − {v′0}. Note that v0 /∈ S − {v0}, so u′0 = π(v0) /∈ S′ − {v′0},
while u′0 ∈ S′, therefore u′0 = v′0.

Therefore, π(S) = S′, and π(A) = A′, so (S,A) ' (S′,A′), which contradicts to that
(S,A) 6' (S′,A′).

A.10 Proof of Proposition 27

Figure 6 provides an example.

A.11 Proof of Proposition 28

Figure 5 and Figure 6 provide example.

A.12 Proof of Proposition 18

Due to the property 1 in Definition 16, L(S,A) = π(L(S′,A′))⇒ S = π(S′). Therefore, for
all v ∈ S, π−1(v) ∈ S. Moreover, ∀v′ ∈ S′, ∃v ∈ S, π−1(v) = v′.

Consider an edge (u, v) in HS . According to Definition 17, u 6= v,u ≤S v, and there
exists no node w ∈ S,w /∈ u, v that u ≤S w and w ≤S v. As π(S′) = S, π−1(u) 6=
π−1(v),π−1(u) ≤S′ π−1(v), and there exists no node π−1(w) ∈ S′, π−1(w) /∈ π−1(u), π−1(v)
that π−1(u) ≤S′ π−1(w) and π−1(w) ≤S′ π−1(v). Therefore, when S = π(S′), for all edge
(u, v) in HS , edge (π−1(u), π−1(v)) exists in HS′ .

33

Wang, Li, and Zhang

Similarly, as S′ = π−1(S), for all edge (π−1(u), π−1(v)) in HS′ , edge

((π−1)−1(π−1(u)), (π−1)−1(π−1(v))) = (u, v),

exists in HS′ . So HS = π(HS′). Equivalently, for all v ∈ S′, π(v) is in S, and ({v},HS′) '
({π(v)},HS).

Assume that u, v are not isomorphic in S, but L(S,A)u,u,: = L(S,A)v,v,:. Define permu-
tation π : V → V as follows,

π(i) =


v if i = u

u if i = v

i otherwise

.

π(L(S,A)) = L(S,A) ⇒ π(S) = S ⇒ (v,HS) ' (u,HS). Equivalently, non-isomorphic
nodes in the same hasse diagram should have different labels.

A.13 Proof of Theorem 39

The main gap between hypergraph isomorphism and corresponding graph isomorphism is
that hypergraph permutation is composed of two permutation transforms node and edge
order independently, while corresponding graph isomorphism is only related to one node
permutation, so we first define ways to combine and split permutations.

Sorting of corresponding graph: Let IV (IGH) = {i|(IGH)i,i,d+1 = 1} denote nodes
in G(H) corresponding to nodes in H. Let IE(IGH) = {i|(IGH)i,i,d+1 = 0} denote the
nodes representing hypergraph edges. We define a permutation πIV ,IE ∈ Πn+m, πIV ,IE ,
πIV ,IE (IV) = [n], πIV ,IE (IE) = {n+ 1, n+ 2, ..., n+m}.

Concatenation of permutation: Let π1 ∈ Πn, π2 ∈ Πm. Their concatenation π1||π2 ∈
Πm+n

π1||π2(i) =

{
π1(i) i ≤ n
n+ π2(i− n) otherwise

When S1, S2 have different sizes, orH1, H2 have different number of nodes or hyperedges,
two poset are non-isomorphic. So we only discuss the case that the poset and hypergraph
sizes are the same. Let n,m denote the number of nodes and hyperedges in the hypergraph.
Then the corresponding graph has n+m nodes.

We first prove ⇒: When (S,H) ∼ (S′, H ′), according to Definition 37, there exists π1 ∈
Πn, π2 ∈ Πm, (π1, π2)(H) = H ′, π1(S) = S′. Then, (π1||π2)(IGH) = IGH′ and (π1||π2)(S) =
S′.

Then we prove⇐: When (S, IGH) ' (S′, IGH′). We can first sort two incidence graph.
Let π = πIV (IGH),IE(IGH) and π′ = πIV (IGH′),IE(IGH′). Then two posets and graphs are still
isomorphic.

(π(S), π(IGH)) ' (π′(S′), π′(IGH′))

Therefore, ∃π0 ∈ Πn+m, π(S) = π0(π
′(S′)), π(IGH) = π0(π

′(IGH′)). Let A,A′ ∈ R(n+m)×(n+m)×d+1

denote the adjacency tensor of π(IGH), π′(IGH′) respectively. Therefore,

A = π0(A
′)⇒ Aπ0(i),π0(i),d+1 = A′i,i,d+1, ∀i ∈ {1, 2, ...,m+ n}.

As the nodes in A,A′ are sorted, Ai,i,d+1 = 1,A′i,i,d+1 = 1 if i ≤ n, and Ai,i,d+1 = 0,A′i,i,d+1 =
0 if i > n. Therefore, π0 maps {1, 2, ..., n} to {1, 2, ..., n} and {n + 1, n + 2, ..., n + m} to

34

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

{n+ 1, n+ 2, ..., n+m}. Therefore, we can decompose π0 into two permutation π1, π2.

π1(i) = π0(i), i ∈ {1, 2, ..., n}

π2(i) = π0(i+ n)− n, i ∈ {1, 2, ...,m}

Then, S = π1(S
′) and H = (π1, π2)(H

′).

A.14 Proof for Section 7

We first define some notations

Isomorphism type of node tuple k, l-WL and k-WL use the isomorphism type of
tuple to initialize colors, which is defined as follows:

Given graphs G1 = (V 1,A1), G2 = (V 2,A2) and k-tuples S1, S2 in G1, G2 respectively.
S1, S2 have the same isomorphism type iff

1. ∀i1, i2 ∈ [k], S1
i1

= S1
i2
↔ S2

i1
= S2

i2
.

2. ∀i, j ∈ [k],A1
S1
i S

1
j

= A2
S2
i S

2
j
.

A.14.1 Expressivity comparison

Given two function f, g, f can be expressed by g means that there exists a function φ that
φ ◦ g = f , which is equivalent to given arbitrary input H,G, f(H) = f(G)⇒ g(H) = g(G).
We use f → g to denote that f can be expressed with g. If both f → g and g → f , there
exists a bijective mapping between the output of f to the output of g, denoted as f ↔ g.

Here are some basic rule.

• g → h⇒ f ◦ g → f ◦ h.

• g → h, f → s⇒ f ◦ g → s ◦ h.

• f is bijective, f ◦ g → g

A.14.2 Proof of Proposition 32

The graph color of k-WL with l-pooling is

c
(l)
k (G)Hash({{Hash({{ck(S‖S′, G)|S′ ∈ V (G)k−l}})|S ∈ V (G)l}})

The graph color of k-WL with is

ck(G) = Hash({{ck(S,G)|S ∈ V (G)k}}).

c
(l)
k (G)→ {{ck(S,G)|S ∈ V (G)k}} → ck(G)

Moreover, as

ck(S‖S′, G)→ {{ck(S‖φ0(S′, v), G)|v ∈ V (G)}}
→ {{ck(S‖φ2(φ1(S′, v1), v2), G)|v1, v2 ∈ V (G)}}
→ ...→ {{ck(S‖S′)|S′ ∈ V (G)k−l}}

35

Wang, Li, and Zhang

Data BaseGNN #layer hiddim bs lr #hop

Table 1 PB, Ecoli GIN 3 32 32 1e-4 2
Others GIN 3 32 32 1e-4 1

Table 2 collab GIN 3 256 32 1e-4 1
ddi GIN 3 96 32 1e-4 1

citation2 GIN 3 32 32 1e-4 1
ppa GIN 3 32 32 1e-4 1

Table 3 All GIN 3 32 48 3e-3 -1
Table 6 NDC-s, Email-Eu max 4 64 96 5e-3 -1

Others max 4 64 96 4e-3 -1
Table 5 All GIN 1 64 64 1e-3 -1

Table 6: Hyperparameters for our models. BaseGNN: GNN used to encoding graph and
labels, max means using max aggregator. #layer: the number of GNN layers.
hiddim: hidden dimension. bs: batch size, lr: learning rate. #hop: the number of
hops for sampling subgraph, -1 means using whole graph.

Therefore,

ck(G)→ {{ck(S‖S′′, G)|S ∈ V (G)k, S′′ ∈ V (G)k−l}}
→ {{{{ck(S‖S′, G)|S′ ∈ V (G)k−l}}S ∈ V (G)k, S′′ ∈ V (G)k−l}}}}

→ {{c(l)k (G)|S′′ ∈ V (G)k−l}} → c
(l)
k (G)

Appendix B. Experimental settings

Computing infrastructure. We leverage Pytorch Geometric and Pytorch for model
development. All our models run on an Nvidia 3090 GPU on a Linux server.

Hyperparameters We use Adam optimizer and constant learning rate for all our mod-
els. Main hyperparameters for our models are listed in Table 6. More detailed configuration
of each experiments is provided in our code.

Model Implementation. For undirected link prediction tasks, our implementation
is based on the code of SEAL (Zhang and Chen, 2018), which segregates an ego subgraph
from the whole graph for each link. For other tasks, our model runs on the whole graph. We
use optuna to perform random search. Hyperparameters were selected to optimize scores
on the validation sets.

Appendix C. More Details about the Datasets

C.1 Undirected Link Prediction

We use eight real-world datasets from SEAL (Zhang and Chen, 2018): USAir is a network
of US Air lines. NS is a collaboration network of researchers. PB is a network of US
political blogs. Power is an electrical grid of western US. Router is a router-level Internet.

36

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

Ecoli is a metabolic network in E.coli. Cele is a neural network of C.elegans. Yeast is a
protein-protein interaction network in yeast.

We also use OGB datasets (Hu et al., 2020): ogbl-ppa, ogbl-collab, ogbl-ddi, and
ogbl-citation2. Among them, ogbl-ppa is a protein-protein association graph where the
task is to predict biologically meaningful associations between proteins. ogbl-collab is an
author collaboration graph, where the task is to predict future collaborations. ogbl-ddi is
a drug-drug interaction network, where each edge represents an interaction between drugs
which indicates the joint effect of taking the two drugs together is considerably different
from their independent effects. ogbl-citation2 is a paper citation network, where the task
is to predict missing citations. We present the statistics of these datasets in Table 7. More
information about these datasets can be found in (Hu et al., 2020).

Table 7: Statistics and evaluation metrics of undirected link prediction datasets.

Dataset #Nodes #Edges Avg. node deg. Split ratio Metric

USAir 332 2,126 12.81 0.85/0.05/0.10 auroc
NS 1,589 2,742 3.45 0.85/0.05/0.15 auroc
PB 1,222 16,714 27.36 0.85/0.05/0.15 auroc
Yeast 2,375 11,693 9.85 0.85/0.05/0.15 auroc
C.ele 297 2,148 14.46 0.85/0.05/0.15 auroc
Power 4,941 6,594 2.67 0.85/0.05/0.15 auroc
Router 5,022 6,258 2.49 0.85/0.05/0.15 auroc
E.coli 1,805 14,660 16.24 0.85/0.05/0.15 auroc
ogbl-ppa 576,289 30,326,273 105.25 fixed Hits@100
ogbl-collab 235,868 1,285,465 10.90 fixed Hits@50
ogbl-ddi 4,267 1,334,889 625.68 fixed Hits@20
ogbl-citation2 2,927,963 30,561,187 20.88 fixed MRR

C.2 Directed Link Prediction

We use the same settings and datasets as He et al. (2022). The task is to predict whether
a directed link exists in a graph. Texas, Wisconsin, and Cornell consider websites as nodes
and links between websites as edges. Cora-ML and CiteSeer are citation networks. Telegram
is an influence graph between Telegram channels. Their statistics are shown in Table 8.

Table 8: Statistics and evaluation metrics of directed link prediction datasets.

Dataset #Nodes #Edges Avg. node deg. Split ratio Metric

wisconsin 251 515 4.10 0.80/0.05/0.15 accuracy
cornell 183 298 3.26 0.80/0.05/0.15 accuracy
texas 183 325 3.55 0.80/0.05/0.15 accuracy
cora ml 2,995 8,416 5.62 0.80/0.05/0.15 accuracy
telegram 245 8,912 72.75 0.80/0.05/0.15 accuracy
citeseer 3,312 4,715 2.85 0.80/0.05/0.15 accuracy

37

Wang, Li, and Zhang

C.3 Hyperedge Prediction Datasets

We use the datasets and baselines in (Srinivasan et al., 2021). NDC-c (NDC-classes) and
NDC-s (NDC-substances) are both drug networks. NDC-c takes each class label as a node
and the set of labels applied to a drug as a hyperedge. NDC-s takes substances as nodes
and the set of substances contained in a drug as a hyperedge. Tags-m (tags-math-sx) and
tags-a (tags-ask-ubuntu) are from online Stack Exchange forums, where nodes are tags and
hyperedges are sets of tags for the same questions. Email-En (email-Enron) and email-Eu
are two email networks where each node is a email address and email hyperedge is the set
of all addresses on an email. Congress (congress-bills) takes Congress members as nodes,
and each hyperedge corresponds to the set of members in a committe or cosponsoring a bill.
Their statistics are shown in Table 9.

Table 9: Statistics and evaluation metrics of directed link prediction datasets.

Dataset #Nodes #Hyperdges Split ratio Metric

NDC-c 6,402 1,048 5-fold f1-score
NDC-s 49,886 6,265 5-fold f1-score
tags-m 497,129 145,054 5-fold f1-score
tags-a 591,904 169,260 5-fold f1-score
email-En 4,495 1,458 5-fold f1-score
email-EU 85,109 24,400 5-fold f1-score
congress 732,300 83,106 5-fold f1-score

C.4 Subgraph Prediction Tasks

Following (Wang and Zhang, 2022), we use three synthetic datasets: density, cut ratio,
coreness. The task is to predict the corresponding properties of randomly selected subgraphs
in random graphs. Their statistics are shown in Table 10.

Table 10: Statistics and evaluation metrics of directed link prediction datasets.

Dataset #Nodes #Edges #Subgraphs Split ratio Metric

density 5,000 29,521 250 0.50/0.25/0.25 f1-score
cut-ratio 5,000 83,969 250 0.50/0.25/0.25 f1-score
coreness 5,000 118,785 221 0.50/0.25/0.25 f1-score

Appendix D. Time and GPU Memory in Link Prediction Task

To illustrate the scalability of GNNs, we measure the time and GPU memory consumption
on ppa dataset. The process we measure including all precomputation and prediction a
number of edges in one batch. The results are shown in Figure 7. For GNNs with labeling

38

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

50 100 150 200 250
#edge

0.0

0.1

0.2

0.3

0.4

0.5
tim

e/
s

ZO-S
ZO-OS
ZO
SEAL
No
GAE

50 100 150 200 250
#edge

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

GP
U

M
em

or
y/

GB

Figure 7: Time and GPU memory consumption for link prediction task on ppa dataset.

tricks (ZO-S, ZO-OS, ZO, SEAL) and GNN without labeling trick for ablation (No), they all
have nearly the same time and memory consumption, as the only difference is integer label
computation and one embedding layer for encoding labels. They all sample subgraphs from
the whole graph and do not need to precompute embeddings for all nodes in the graph, so
when the number of edges is small, the time and memory approaches 0. In contrast, GAE
precomputes all nodes’ embeddings, leading to large time and GPU consumption even for
few edges. It has lower time and GPU consumption after the precomputation. For large real-
world graphs, putting whole graphs into memory is impossible and thus sampling subgraphs
is a must (even for GNNs without labeling trick), so labeling trick will not introduce a high
extra cost.

References

Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25
(3):211–230, 2003.

Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B. Aditya Prakash. Sub2vec: Fea-
ture learning for subgraphs. In KDD, 2018.

Sameer Agarwal, Kristin Branson, and Serge J. Belongie. Higher order learning with graphs.
In ICML, 2006.

Emily Alsentzer, Samuel Finlayson, Michelle Li, and Marinka Zitnik. Subgraph neural
networks. NeurIPS, 2020.

Sihem Amer-Yahia, Senjuti Basu Roy, Ashish Chawlat, Gautam Das, and Cong Yu. Group
recommendation: Semantics and efficiency. VLDB, 2(1):754–765, 2009.

39

Wang, Li, and Zhang

Wäıss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural
networks. In ICLR, 2021.

László Babai and Ludik Kucera. Canonical labelling of graphs in linear average time. In
sfcs, pages 39–46. IEEE, 1979.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD cup and
workshop, page 35. New York, 2007.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai,
Gopinath Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph
aggregation networks. In ICLR, 2022.

Alain Bretto. Hypergraph Theory. 2013.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
locally connected networks on graphs. ICLR, 2014.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 12(4):389–410, 1992.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between
graph isomorphism testing and function approximation with gnns. In NeurIPS, 2019.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks
count substructures? In NeurIPS, 2020.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for
structured data. In ICML, 2016.

Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order, Second Edition.
2002. ISBN 978-0-521-78451-1.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural net-
works on graphs with fast localized spectral filtering. In NeurIPS, 2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy
Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for
learning molecular fingerprints. In NeurIPS, 2015.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are
k-hop message passing graph neural networks. NeurIPS, 2022.

Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, and Haggai Maron. Under-
standing and extending subgraph gnns by rethinking their symmetries. In NeurIPS,
2022.

40

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

Floris Geerts. The expressive power of kth-order invariant graph networks. CoRR,
abs/2007.12035, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In ICML, 2017.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
SIGKDD, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

Yixuan He, Xitong Zhang, Junjie Huang, Mihai Cucuringu, and Gesine Reinert. Pytorch
geometric signed directed: A survey and software on graph neural networks for signed
and directed graphs. arXiv preprint arXiv:2202.10793, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. NeurIPS, 2020.

Xingyue Huang, Miguel Romero, İsmail İlkan Ceylan, and Pablo Barceló. A theory of link
prediction via relational weisfeiler-leman on knowledge graphs. In NeurIPS, 2023.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. ICLR, 2017.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Pruden-
cio Tossou. Rethinking graph transformers with spectral attention. In NeurIPS, 2021.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning. NeurIPS,
2020.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence
neural networks. ICLR, 2016.

David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks.
Journal of the American society for information science and technology, 58(7):1019–1031,
2007.

Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess E. Smidt, Suvrit Sra, Haggai
Maron, and Stefanie Jegelka. Sign and basis invariant networks for spectral graph repre-
sentation learning. 2023.

Yunyu Liu, Jianzhu Ma, and Pan Li. Neural predicting higher-order patterns in temporal
networks. In WWW, 2022.

41

Wang, Li, and Zhang

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. In NeurIPS, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equiv-
ariant graph networks. In ICLR, 2019b.

Brendan D McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal of Sym-
bolic Computation, 60:94–112, 2014.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph
neural networks. In AAAI, 2019.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of
relational machine learning for knowledge graphs. Proc. IEEE, 104(1):11–33, 2016.

Omri Puny, Matan Atzmon, Edward J. Smith, Ishan Misra, Aditya Grover, Heli Ben-Hamu,
and Yaron Lipman. Frame averaging for invariant and equivariant network design. In
ICLR, 2022.

Yanjun Qi, Ziv Bar-Joseph, and Judith Klein-Seetharaman. Evaluation of different biolog-
ical data and computational classification methods for use in protein interaction predic-
tion. Proteins: Structure, Function, and Bioinformatics, 63(3):490–500, 2006.

Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris.
Ordered subgraph aggregation networks. In NeurIPS, 2022.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Mon-
fardini. The graph neural network model. IEEE Transactions on Neural Networks, 20
(1):61–80, 2009.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional
node embeddings and structural graph representations. In ICLR, 2020.

Balasubramaniam Srinivasan, Da Zheng, and George Karypis. Learning over families of
sets-hypergraph representation learning for higher order tasks. In SDM, 2021.

Zachary Stanfield, Mustafa Coşkun, and Mehmet Koyutürk. Drug response prediction as a
link prediction problem. Scientific reports, 7(1):1–13, 2017.

Komal Teru, Etienne Denis, and Will Hamilton. Inductive relation prediction by subgraph
reasoning. In ICML, 2020.

Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David S. Rosenblum, and Andrew
Lim. Digraph inception convolutional networks. In NeurIPS, 2020a.

Zekun Tong, Yuxuan Liang, Changsheng Sun, David S. Rosenblum, and Andrew Lim.
Directed graph convolutional network. CoRR, abs/2004.13970, 2020b.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. ICLR, 2018.

42

Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick

Changlin Wan, Muhan Zhang, Wei Hao, Sha Cao, Pan Li, and Chi Zhang. Principled
hyperedge prediction with structural spectral features and neural networks. arXiv preprint
arXiv:2106.04292, 2021.

Sheng Wang, Emily R Flynn, and Russ B Altman. Gaussian embedding for large-scale gene
set analysis. Nature machine intelligence, 2(7):387–395, 2020.

Xiyuan Wang and Muhan Zhang. GLASS: GNN with labeling tricks for subgraph repre-
sentation learning. In ICLR, 2022.

Boris Weisfeiler and AA Lehman. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? ICLR, 2019.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In
NeurIPS, 2018.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. ICML,
2019.

Jiaxuan You, Jonathan Michael Gomes Selman, Rex Ying, and Jure Leskovec. Identity-
aware graph neural networks. 2021.

Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expressiveness
hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. In ICML, 2023.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In NeurIPS,
2018.

Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural net-
works. In ICLR, 2020.

Muhan Zhang and Pan Li. Nested graph neural networks. In NeurIPS, 2021.

Muhan Zhang, Zhicheng Cui, Shali Jiang, and Yixin Chen. Beyond link prediction: Pre-
dicting hyperlinks in adjacency space. In AAAI, 2018a.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep
learning architecture for graph classification. In AAAI, 2018b.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory
of using graph neural networks for multi-node representation learning. NeurIPS, 2021a.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn.
Magnet: A neural network for directed graphs. NeurIPS, 2021b.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew J. Hirn.
Magnet: A neural network for directed graphs. In NeurIPS, 2021c.

43

Wang, Li, and Zhang

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting
any GNN with local structure awareness. In ICLR, 2022.

Cai Zhou, Xiyuan Wang, and Muhan Zhang. From relational pooling to subgraph gnns: A
universal framework for more expressive graph neural networks. In ICML, 2023.

Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information.
The European Physical Journal B, 71(4):623–630, 2009.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal A. C. Xhonneux, and Jian Tang. Neural
bellman-ford networks: A general graph neural network framework for link prediction.
In NeurIPS, 2021.

44

	Introduction
	Preliminaries
	Permutation
	Poset-Graph Isomorphism
	Structural Representations

	The Limitation of Directly Aggregating Node Representations
	GAE for Multi-Node Representation
	GNN and Structural Node Representation
	GAE Cannot Learn Structural Multi-Node Representations

	Labeling Trick for Set
	Definition of Set Labeling Trick
	How Labeling Trick Works
	Expressivity of GNN with Labeling Trick
	Complexity

	Labeling Trick for Poset
	Poset Labeling Trick Design
	Poset Labeling Trick Expressivity

	Subset Labeling Trick for Multi-Node Representation Learning
	Subset Labeling Trick
	How to Select Subset
	Subset Pooling
	One Head Routine
	Complexity

	Expressivity
	Why Subset Labeling Trick Outperforms Labeling Trick in Some Cases?

	Comparison between Labeling Trick and High-Order Graph Neural Network
	k, l-WL and Poset Labeling Trick for Linear Order Set

	Labeling trick for hypergraph
	Related work
	Experiments
	Undirected link prediction
	Directed link prediction tasks
	Hyperedge prediction task
	Subgraph prediction task

	Conclusions
	Proofs
	Proof of Proposition 11 and Proposition 20
	Proof of Theorem 12
	Proof of Theorem 13 and Theorem 29
	Proof of Theorem 15
	Proof of Theorem 22
	Proof of Proposition 14
	Proof of Theorem 21
	Proof of Theorem 25
	Proof of Theorem 26
	Proof of Proposition 27
	Proof of Proposition 28
	Proof of Proposition 18
	Proof of Theorem 39
	Proof for Section 7
	Expressivity comparison
	Proof of Proposition 32

	Experimental settings
	More Details about the Datasets
	Undirected Link Prediction
	Directed Link Prediction
	Hyperedge Prediction Datasets
	Subgraph Prediction Tasks

	Time and GPU Memory in Link Prediction Task

