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Research highlights

My research focuses on increasing the level of abstraction of our interface to the machines that carry out
computation on our behalf. I am interested in programming languages in all their forms.

Confinement and Ownership. Back in 1998, James Noble, John Potter and myself were convinced
that the spaghetti structure of the heap was a serious challenge to reasoning about object-oriented programs.
The combination of aliasing, mutability and subtyping were particularly tricky to deal with. We proposed a
mechanism for alias protection [130] which was later renamed to Ownership Types.1 One challenge of the early
work was the rather copious amount of annotations that had to be provided by programmers. To alleviate
this and codify software engineering practices familiar to programmers, we proposed Confined Types [46].
With confined types, the number of annotations required was drastically reduced. Furthermore, confinement
is sound [37] and can be inferred [34]. It also informed the development of the region types used for Real-time
Java programs in [30]. In that work, implicit type annotations were used to determine where object would be
allocated and their lifetime. The StreamFlex stream programming system [28] relied on a very similar notion
for memory managment. We also used similar ideas for enforcing thread locality [90]. Another variant of
ownership types was part of a version of the Safety Critical Java standard [149].

Dynamic languages. In collaboration with IBM research, I designed Thorn [88], a programming language
that allows programmers to evolve scripts into robust programs [155]. One of Thorn’s innovations is a type
system based on Like Types [85]. Like types are type annotations that can be added gradually; they are the first
gradual type system free of pathological performance degradation while still able to provide some guarantees.
Empirical evaluation demonstrated that like types can be used by an optmizing compiler to speedup annotated
programs (and can be adapted to a language such as TypeScript) [66]. Thorn motivated me to study the use,
in the wild, of dynamic languages. For this JavaScript was a perfect playground [156]. We analyzed thousands
of JavaScript web pages [82] yielding unique insights into programmers’ use of features such as reflection [80].
This led to the development of JSBench [79], a tool for transforming web sites into benchmark. JSBench
resulted from an unusual collaboration between Mozilla and Microsoft and was eventually adopted by Apple
as a browser performance benchmark. We also looked at techniques for automatically inferring the behavior
of calls to eval and replacing those calls by safer code [75].

Scalable Data Analytics. One of my long term interests is to help scientist with the analysis of complex
data sets. This can be done with domain specific languages that support runtime code generation, as show
with Terra [70], or with established languages like R. The R programming language is a widely used vehicle
for statistical computating which has serious limitations in its ability to handle larger data sets. We started
by trying to understand R, for this we formalized a small subset of the language and, in parallel, analyzed

1The term “ownership types” appears in over 4,000 papers according to Google Scholar attesting to the enduring
popularity of the idea; a language like Rust is an example of practical adoption of the ideas.
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statically and dynamically a body of 4 million lines of code [73]. The results of that effort motivated the
development of FastR [67], an optimizing virtual machine for the R language which was adopted by Oracle
research as the basis of their effort to integrate R with the Oracle database.

Language Implementation. I started my career with algorithms for speeding up some of the most
frequent operations performed by object oriented programs, namely, method dispatch and type tests. I
proposed a compact solution to the dispatching problem in dynamically typed languages in [136] and later
reduced space requirements in [134] and looked architectural impacts of these solutions [135]. Later, I revisited
dispatching with proposals for multiple dispatch policies [106], [31]. For type tests, the challenge was to find
data structures optimized for space and time. We tried compact bitset encodings based on graph coloring [132],
and then proposed an alternative that allowed constant time test [131] and finally devised an encoding that
could be easily recomputed on loading of new clases [119]. These techniques were used in the Fiji Java virtual
machine [154], [84]. I also led the Ovm project which delivered an open source framework for building language
runtimes. By design, Ovm can be specialized and assembled into a configuration customized for a particular
problem domain. Ovm was used in the first Real-Time Java virtual machine to be deployed and flight tested
on a Boeing-built UAV [33].

Real-Time and Embedded Computing. Part of the Ovm project involved trying to demonstate
that the Java language could be used for real-time computing. One obvious challenge was the memory
management (or garbage collection) subsystem. My group produced Schism [81], the most efficient real-time
garbage collection algortihm [87] in use in a commercial product [84]. We investigated real-time memory
management techniques in a number of contexts [100], [96], [93], [29]. For real-time stream processing we
achieved [28] periods of 50 µs without losing the portability or the memory safety of Java. StreamFlex offers
a dataflow programming model with zero copy [95] and it makes an interesting use of software transactional
memory [105] for communication with non-real-time tasks. The technology was transfered to IBM [92]. An
ongoing project aims to formalize the guarantees needed for safety critical applications in Java [157]. Part of
this work is being done in the context of the JSR-302 Safety Critical Java expert group. An early result is the
development of new memory model for Java suitable for proving the correctness of compiler optimizations [71].

Concurrency control. Our empirical study of the DACAPO benchmark suite [74] demonstrated the
limits of parallel execution in Java. New abstractions are needed to assist programmers. Our work on atomic
sets allows concurrency control to be synthesized from high-level specificaitions that are part of the data
declarations [83]. Atomic set leverage ideas from ownership types and confinement to decrease annotation
burden, most use-cases require only a handful of annotations [25] and deadlocks can be prevented by program
analysis [69]. I also investigated transactional memory abstractions: giving semantics to software transactional
memory in [39], tuning the garbage collector to be transaction-aware in [147], and providing the first non-trivial
benchmark suite [99] for transactional memory. Looking at the problem of ensuring predictable performance
in hard real-time environments, I came up with preemptible atomic regions [105] which were later adopted in
StreamFlex [91]. In another project, we looked at architectural support for real-time transactions [24].

Software Security. Ideas from the software transactional memory work came together with dynamic own-
ership tracking in our work on security for JavaScript based on delimited histories [68]. I investigated security
off and on, with forays into intrusion detection techniques for C programs based on inlining automata [108],
non-interference for a concurrent language, the box-π calculus, a minimal extension of the π-calculus with
encapsulation [44], distributed access control [116] and fine-grained access control to a key-value store in [45].

Mobile Computations. In my doctoral thesis, I tried to devise abstractions for programming wide area
networks, with the Seal calculus, a core model of mobile computations [47], [128]. The Seal calculus was among
the first to explore the design space of mobile languages from both theoretical and practical angles [41].

Towards Rigor in Experimental Computer Science. I have always been interested in improving
the state of empirical evaluation in our field. This is one of the motivation for developping benchmarks for
domains as different as software transaction [99], real-time computing [27], [152], web applications [79] and
concurrent programming [74]. More recently, I started advocating for rigor and repeatability of experimental
computer science [76], [194]. Science advance faster when one can build on existing results, and when new
ideas can easily be measured against the state of the art. This is exceedingly difficult in an environment
that does not reward the production of reusable software artifacts. Repeatability can be summed up as a
validation of the claims made in a paper by re-running a bundled software artifact prepared by the paper
authors. Repeatability is a cheap and easy test which clarifies the scientific contribution of a paper. It should
become a standard feature of the dissemination of research results. Together with Shriram Krishnamurthi, I
have led the effort on including artifact evaluation as a standard part of major conferences [22].
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tors (IVME), pp. 1–12, San Diego, June 2003.

[121] K. Palacz, G. Czaikowski, L. Daynes and J.
Vitek. Incommunicado: a communication sub-
strate for Isolates. In Conference on Object-
Oriented Programming Systems and Languages
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Jan Vitek 11

[197] J. Vitek. Compact dispatch tables for dynami-
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Object Management, pp. 333-344, U. of Geneva,
1990.

[201] J. Vitek, B. Junod, O. Nierstrasz, S. Renfer and
C. Werner. Events and sensors: enhancing the
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Invited Lectures

* Prof. Strangelove. Or: How I learned to stop
worrying and love dynamic languages. Invited talk
at the DLS Conference, Cascais, 2023.

* On the design and foundations of dynamic lan-
guages for scientific computing. Invited talk at
JuliCon, online 2021.

* On the design and foundations of dynamic lan-
guages for scientific computing. Keynote at the
JuliCon Conference, online 2021.

* Fitzcarraldo as a Metaphor for Research. Keynote
talk at the SPLASH 2020 Conference, online,
2020.

* R Melts Brains, or: How I Learned to Love Fail-
ing at Compiling R. Keynote talk at Why R?
2020 Conference, online, 2020.

• Getting everything wrong without doing any-
thing right! (On the perils of large-scale anal-
ysis of Github data). Invited talk at the Curry
On Conference, London, 2019.

* Adversarial Compilation. Keynote talk at Man-
aged Programming Languages and Runtimes (MPLR),
Athens, 2019.

* Meta-programming in Data Science. Keynote talk
at the META Workshop, Athens, 2019.

* Reasoning about programs: Soundness revis-
ited. Invited talk at the Prague computer sci-
ence seminar, Prague, 2019.

• On the perils of large-scale analysis of Github
data. Invited talk at PaperWeLove, London,
2019.

* The Beauty and the Beast – from Fortress to
Julia. Keynote talk at the International Con-
ference on Managed Languages and Runtimes
(ManLang), Linz, 2018.

* Engineering your software engineering resarch
career. Keynote talk at the ICSE Doctoral Sym-
posium, Gothenburg, 2018.

* Data analysis for the masses. Keynote talk at
the Federated Conference on Computer Science
and Information Systems, Prague, 2017.

* This is not a Type: Gradual typing in practice.
Keynote talk at the Scala Symposium, Amster-
dam, 2016.

* Benchmarks killed the beast: Understanding JS
performance for fun and profit. Keynote talk at
the International Large Scale JavaScript Con-
ference (MLOC.JS), Budapest, Hungary, 2015.

* Repeatability, reproducibility and rigor in CS
research. Invited talk at the SIGPLAN Pro-
gramming Language MentoringWorkshop, Mum-
bai, India, 2015.

* The Case for the Three R’s of Systems Research:
Repeatability, Reproducibility and Rigor.
Keynote talk at the Conference on Virtual Ex-
ecution Environments, Salt Lake City, March
2014.

* JavaScript Programmers Hate You: An ode to
dynamic languages. Invited talk at the Work-
shop on Software Correctness and Reliability,
Zurich, October 2013.

* Planet Dynamic or: How I Learned to Stop
Worrying and Love Reflection. Invited talk at
the SIGPLAN Programming Languages Men-
toring Workshop, Rome, 2013.

* JavaScript Programmers Hate You. Keynote talk
at at Formal Techniques for Java-like Programs,
Montpellier, 2013.

* Planet Dynamic or: How I Learned to Stop
Worrying and Love Reflection. Keynote talk
at the 10th Asian Symposium on Programming
Languages and Systems, Kyoto, 2012.

* Repeatability, Reproducibility and Rigor. In-
vited talk at the Conference on Languages Com-
pilers and Tools for Embedded Systems, Beijing,
2012.

* Thorn: Objects, Scripts and more... Invited
talk at the Concurrent Objects and Beyond Sym-
posium in Honor of Professor Akinori Yonezawa’s
65th Birthday, Kobe, 2012.

* The Rise of Dynamic Language for Scientific
Computing, Invited talk at the Microsoft Fac-
ulty Summit, Redmond, 2011.

* The Rise of Dynamic Language, Lecture at the
ECOOP Summer School, Lancaster, 2011.
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* Of Scripts and Programs: Tall tales, Urban Leg-
ends, and Future Prospects. Keynote talk at
the Analysis and Programming Languages for
Web Applications and Cloud Applications, Tor-
onto, 2010.

* Is Java Ready for Real-time?, Invited talk at
theMidwest Verification Day (MVD), U of Iowa,
September, 10.

* Of Scripts and Programs: Tall tales, Urban Leg-
ends and Future Prospects, Keynote talk at the
Dynamic Languages Symposium, Orlando, 2009.

* Programming Models for Concurrency and Real-
time. Keynote talk at the 47th International
Conference on Objects, Models, Components, Pat-
terns (TOOLS), Zurich, 2009.

* Memory Management for Hard Real-time Sys-
tems. Invited talk at the Workshop on Vir-
tual Machines and Intermediate Languages for
emerging modularization mechanisms, Nashville,
2008.

* Programming models for Concurrency and Real-
time. Invited talk at XII Brazilian Symposium
on Programming Languages, Fortaleza, 2008.

* Programming models for Concurrency and Real-
time. Invited talk at Programming Language
Approaches to Concurrency and Communication-
cEntric Software, Oslo, 2008.

* Semantics-based Intrusion Detection, Invited Talk
at the Foundations of Computer Security, Chicago,
2005.

* Java for Hard Real-Time, Invited Talk at the
Workshop on Implementation, Compilation, Op-
timization of Object-Oriented Languages, Pro-
grams and Systems, Nantes, 2006.

* Advances in Intrusion Detection, Keynote talk
at the Program Analysis for Security and Safety
Workshop (PASSWORD), Nantes, 2006.

Talks at International Meetings

* On the Impact of Programming Languages on
Code Quality. OOPSLA, Athens, 2019.

* Do programming languages matter for correct-
ness of code?, ETAPSMentoringWorkshop, Prague,
2019.

* Integrated Trustworthy Scripting Languages. ONR
TCP, Seattle, 2018.

* The Beauty and the Beast — from Fortress to
Julia. IFIP Working Group on Language De-
sign, Antwerp, 2018.

* What You Need to Know about Performance
Evaluation. ECOOP Summer School, Barcelona,
2017.

* Removing Abstraction Layers Dynamically. Work-
shop on Forming an Ecosystem Around Soft-
ware Transformation, (FEAST), Vienna, 2016.

* 25 years of OO. ECOOP Summer School, Rome,
2016.

* Making R Run Fast. Boston R Meet Up, Boston,
2016.

* A fast abstract syntax tree interpreter for R.
Virtual Exectuion Envinronments, Salt Lake City,
UT, March, 2014.

* Planet Dynamic or: How I Learned to Stop
Worrying and Love Reflection, NSA HCSS Con-
ference, May 13

* R in Java. UseR!, Albacete, July 13.

* Understanding R. Foundations of Scripting Lan-
guages, Dagstuhl, January, 12.

* Repeatability, Reproducibility and Rigor. IFIP
Working Group 2.4 , Vadvestena, Sweden, 12.

* Taming the Tiger: How to scale R to bigger
data. Purdue Symposium on Statistics, West
Lafayette, June 12.

* Evaluating the Design of the R Language. Eu-
ropean Conference on Object Oriented Program-
ming, Beijing, June 12.

* CDx: A Family of Real-time Java Benchmarks.
Workshop on Java Technologies for Real-time
and Embedded Systems , Madrid, September 09.

* A Technology Compatibility Kit for Safety Crit-
ical Java. Workshop on Java Technologies for
Real-time and Embedded Systems, Madrid, Septem-
ber 09.

* Software Hardening: A Research Agenda. Work-
shop on Script to Program Evolution, Genoa,
July 09.

* Programming Real-time Embedded Systems in
Java. Summer school part of the Wroclaw In-
formation Technology Initiative, Wroclaw, May
09.

* Java for Safety-Critical Applications, Certifica-
tion of Safety-Critical Software Controlled Sys-
tems, York, March 09.

* Large-Scale Embedded Programming, Software
Quality Symposium, ETHZ, Zurich, 07.

* Programming Highly Responsive Systems, IFIP
Working Group 2.4, Lake Arrowhead, CA, 07.

* Transactions and Composability: Transactions
Considered Harmful? IBM Workshop on Trans-
actional Memory and Programming Technolo-
gies, Armonk, March 07.

* Data-centric Synchronization, IBM Workshop
on Transactional Memory and Programming Tech-
nologies, Armonk, March 07.

* How not to get a job in research, Summer School
on Trends in Concurrency, Bertinoro, July 06.
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* Scoped Types and Aspects for Real-Time Sys-
tems, European Conference on Object Oriented
Programming, Nantes, July 06.

* Real-time Java in Avionics Applications. Real-
Time and Embedded Technology and Applica-
tions Symposium, 06.

* Preemptible Atomics, IFIP Working Group 2.4,
Jackson’s Mill, West Virginia, October, 05.

* Preemptible Atomics, IFIP Working Group 2.4
, Jackson’s

* Memory Safe RTSJ Programming, Safety & Mis-
sion Critical Workshop, Palo Alto, September
05.

* Preemptible Atomic Regions, SUN Microsys-
tems, August 05.

* Adopting Ownership Types, Dagstuhl Tool for
Types Workshop, Dagstuhl, June, 05.

* Stealth Types, Foundations of Object-Oriented
Languages panel on Extreme Typing, Long Beach,
CA, January 11, 05.

* The Real-time Specification for Java: issues and
opportunities, IFIP Working Group 2.4, Baden,
January 05.

* Scoped Types for Real-time Java, International
Real-Time Systems Symposium Lisbon, Decem-
ber 04.

* A semantic framework for designer transactions,
European Symposium on Programming, Barcelona,
April 04.

* Transactional Facilities for Java. Conference
on Object Oriented Programming Systems, Lan-
guages and Applications, Vancouver, 04.

* Security and Coordination. School on Foun-
dations of Security Analysis and Design, Italy,
September 04.

* Real-time Java with the Ovm virtual machine.
Real-time Java Symposium, DARPA, Arlington,
July 04.

* Engineering Intermediate Representations, IFIP
Working Group 2.4, Santa Cruz, July 03.

* Lightweight confinement for featherweight Java,
Conference on Object-Oriented Programming Sys-
tems and Languages, San Diego, October 03.

* Subtype tests in real time. In European Confer-
ence on Object Oriented Programming, Darm-
stadt, July 03.

* Engineering a customizable intermediate rep-
resentation, Workshop on Interpreters, Virtual
Machines and Emulators, San Diego, June 03.

* Encapsulating objects with confined types, Con-
ference on Object-Oriented Programming Sys-
tems and Languages, Tempa, October 01.

* Confined Types, IFIP Working Group 2.4, Italy,
July 01.

* Confined types, Conference on Object-Oriented
Programming Systems, Languages and Applica-
tions, Denver, October 1999.

* Efficient type inclusion tests, Conference on Object-
Oriented Programming Systems, Languages and
Applications, San Jose, October 1997.

* Near optimal hierarchical encoding of types, Eu-
ropean Conference on Object-Oriented Program-
ming, Jyvaskyla, June 1997.

* Compact dispatch tables for dynamically typed
object oriented languages, Conference on Com-
piler Construction, Linkoping, Sweden, April
1996.

* Taming message passing: efficient method look-
up for dynamically typed languages, European
Conference on Object-Oriented Programming,
Bologna, July 1994.

* Compile-time analysis of object-oriented pro-
grams, Conference on Compiler Construction,
Paderborn, October 1992.
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Talks at Universities and Labs
National University of Singapore (24), Huawei
Research (23), INRIA (22), Charles Univer-
sisy (22), Oxford University (22), Imperial Col-
lege (21), King’s College (21), MIT (21), Czech
Technical University (20), University of Mas-
sachusetts, Amherst (19), University of Lugano
(19), University of Massachusetts, Amherst (18),
Brown (17), EPFL (16), Czech Technical Univer-
sity (15), University of California, Irvine (14),
The University of Massachusetts, Amherst (14),
Technion Institute of Technology (14), Tel Aviv
University (14), The Open University (14), In-
diana University (14), National Science Foun-
dation (14), Northeastern University (14), In-
stitute of Science and Technology Austria (14).
Northeastern University (13), Boston (13), Sam-
sung (13), Facebook (13), Charles University
(13), Czech Technical University, Prague (13).
Google (12), Stanford (12), UIUC (12), Ts-
inghua, (12). INRIA Rocquencourt (11), Ini-
tiative de Recherche et Innovation sur le Logi-
ciel Libre (11), Laboratoire d’Informatique de
Paris 6 (11), Microsoft Research, Redmond (11),
ETHZ (11). INRIA-Rennes (10). Imperial Col-
lege (09), Microsoft Research (09), Brown Uni-
versity (09), EPFL (09), University of Central
Florida (09). University of Lugano (08), INRIA
Rocquencourt (08), INRIA Rennes (08), Ecole
Polytechnique Fédérale Lausanne (08), Imperial
College (08), University of California, Los An-
geles (08), Edinburgh University (07), IBM T.J.
Watson (07), Charles University (07), Microsoft
Research (07), IBM T.J. Watson (06), Swiss Fed-
eral Institute of Technology Zurich (06), Univer-
sity of Bern (06), Ecole Polytechnique Fédérale,
Lausanne (06), Portland State University (06),
Microsoft Research (06), University of Utah (06),
University of Washington (05), Carnegie Mellon
University (05), University of Victoria (05), Uni-
versity of Alberta (05), University of Nice (03),
Tokyo University (01), University of Waterloo
(1999), University of Syracuse (1999), University
of Pennsylvania (1999), University of Toronto
(1999), University of Victoria (1999), University
of Rennes (1999).
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Software artifacts

I have been instrumental in the development of some open source software systems.

[1] FastR: A partial implementation of the R language as a runtime-specializing abstract syntax tree
interpreter running on top of the JVM. Collaboration with Oracle Labs. Publications: [67], [73], [145].
Development: 2011–2014.
github.com/allr/fastr

[2] JSBench: A tool for extracting deterministic benchmark from JavaScript web pages using code in-
strumentation and record-replay. Collaboration with Microsoft, Mozilla and Apple. Publications: [79].
Development: 2011–2014. Press: https://www.facebook.com/PurdueCS/posts/10151644300119116
http://plg.uwaterloo.ca/~dynjs/jsbench/

[3] Thorn: A concurrent and distributed programming language which supports rapid software develop-
ment in the style of dynamic scripting languages as well as hardening of scripts into robust programs
with a gradual type system. Collaboration with IBM Research. Publications: [155], [156], [94], [88] ].
Development: 2008–2012.
http://www.thorn-lang.org

[4] PJAz: The Purdue JavaScript Analyzer package is a trace-based analysis engine for JavaScript. PJAz
has been used to show that common benchmarks used in the industry to measure JS performance are
not representative of real-world programs and has invalidated widely held misconceptions about how
the language is being used. Publications: [82], [80], [156]. Development: 2009–2011.
http://plg.uwaterloo.ca/~dynjs/

[5] CDx: A benchmark suite consisting of plain Java, real-time Java and C programs that emulate a
collision detection application. CDx has been used to evaluate the performance of real-time Java virtual
machines. Publications: [87], [89], [152], [151]. Development: 2004–2012.
https://www.cs.purdue.edu/sss/projects/cdx/

[6] Flexotasks: A programming model and runtime system that lets developers mix highly responsive tasks
and timing-oblivious Java applications. Collaboration with IBM Research and EPFL. Publications: [97],
[95], [92], [91], [28] ]. Development: 2007–2009.
http://flexotask.sourceforge.net

[7] StmBench7: A benchmark for evaluating TM implementations. It aims at providing a workload that
is both realistic and non-trivial to implement in a scalable way. The implementation (in Java and C++)
contains a lock-based synchronization strategy that can serve as a baseline for comparison with various
TMs. Collaboration with EPFL. Publications: [99]. Development: 2007–2010.
http://lpdserver.epfl.ch/transactions/wiki/doku.php?id=stmbench7

[8] Ovm: An open source framework for building virtual machines for Java-like languages. Ovm was used
in the first real-time JVM deployed on a UAV. Publications: [33], [40], [96], [98], [100], [101], [103],
[104], [105], [113], [120], [32], [31], [97], [102], [106]. Development: 2000–2008.
http://janvitek.org/soft/ovm/

[9] MBA: A tool for Model-Based protein backbone nuclear magnetic resonance Assignments. Publica-
tions: [35], [38], [107], [42]. Development: 2003–2005.
http://janvitek.org/soft/mba/

[10] Kacheck: A tool for analyzing Java programs for detecting confinement violations. Kacheck has been
used to analyze over 100MB of Java code. Publications: [34],[46], [47], [123], [127]. Development: 2000–
2002.
http://grothoff.org/christian/xtc/kacheck/

[11] JavaSeal: A mobile agent middleware system based on Java implementing the Seal Calculus. Publi-
cations: [41], [45], [128], [??], [164], [196], [165], [198]. Development: 1996–1999.

[12] Jazz: A compression tool for Java class files. Publication: [129]. Development: 1998.

github.com/allr/fastr
https://www.facebook.com/PurdueCS/posts/10151644300119116
http://plg.uwaterloo.ca/~dynjs/jsbench/
http://www.thorn-lang.org
http://plg.uwaterloo.ca/~dynjs/
https://www.cs.purdue.edu/sss/projects/cdx/
http://flexotask.sourceforge.net
http://lpdserver.epfl.ch/transactions/wiki/doku.php?id=stmbench7
http://janvitek.org/soft/ovm/
http://janvitek.org/soft/mba/
http://grothoff.org/christian/xtc/kacheck/
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Graduated Students

[1] Julia Belyakova PhD NEU, “Decidable Subtyp-
ing of Existential Types for the Julia Language”,
23.

[2] Artem Pelenitsyn PhD NEU, “Type Stability in
Julia: A simple and efficeint optimization tech-
nique”, 23.

[3] Benjamin Chung PhD NEU, “A Type System for
Julia”, 23.

[4] Petr Maj (CVUT) PhD CVUT, “Analyzing
Large Code Repositories”, 22.

[5] Alexi Turcotte PhD NEU (with Prof. F. Tip),
“Optimizing Asynchronous JavaScript Applica-
tions”, 23.

[6] Aviral Goel PhD NEU, “Data-driven ecosystem
migration: Non-intrusive migration of Re ecosys-
tem from Lazy to Strict semantics”, 23.

[7] Oliver Flückiger PhD NEU, “Just-in-timeL As-
sumptions and Speculations”, 22.

[8] Gregor Richards PhD, “Refinement of Web Soft-
ware Motivated by Real-World Patterns”, 14.
(University of Waterloo)

[9] Filip Pizlo PhD, “Fragmentation tolerant real-
time garbage collection”, 12. (Apple)

[10] Jacques Thomas PhD, “Accommodative Manda-
tory Access Control” 11. (Amazon)

[11] Jesper H. Spring PhD (with Prof. Guerraoui).
“Reflexes: Programming Abstractions for Highly
Responsive Computing in Java”, 08.

[12] Rajeev Gopalakrishna PhD (with Prof. Spaf-
ford). PhD. “Metric-driven feedback mechanism
for secure software development”, 06. (Intel).

[13] Bogdan Carbunar PhD. “Coverage Problems in
Wireless Sensor Networks”, 05 (U of Florida)

[14] Krzyzstof Palacz PhD. “Crusoe–Towards a Mul-
ticomputer Execution Environment for Java”, 04.
(Sun Labs).

[15] Jan Ječmen MSc. 24.

[16] Ming-Ho Yee 22.

[17] Anna Bolotina, 20.

[18] Jakub Zitny, MSc, 17. (Czech Technical Uni)

[19] Nadya Ortiz MSc, 12. (Apple)

[20] Fadi Meawad MSc, 13. (Google)

[21] Brandon Hill MSc, 13. (Oracle Labs)

[22] Petr Maj MSc 11, (Sony).

[23] Daniel Tang MSc, 11. (Google)

[24] Johan Östlund MSc, 10. (Uupsala)

[25] Jason Baker MSc, 07, (Google).

[26] Hiroshi Yamauchi MSc, 07, (Google).

[27] Christian Grothoff MSc, 05 (Uni of Denver).

[28] Andrey Madan MSc, 04, (Medtronics).

[29] Gergana Markova MSc, 03 (IBM)

[30] Jason M. Fox MSc, 03 (JPL)

[31] James Liang MSc, 02 (Sandia).

Current Students

[1] Sebastian Krynski (CVUT) (19) [2] Jakob Haim (Purdue) (24)

Post-doctoral Researchers

[1] Aleksander Boruch-Gruszecki 24–

[2] Mickaël Laurent 24–

[3] Pierre Donat-Bouillud 20–

[4] Filip Krikava, 16–

[5] Tomas Kalibera 12–

[6] Alexander Kovalenko 19–23

[7] Ryan Culpepper, 17–22

[8] Konrad Siek, 16–22

[9] Paley Li, 15–18 (Oracle Research)

[10] Gustavo Petri, 12–15 (Université Paris 7)

[11] Rafal Kolanski, 13–14 (NICTA)

[12] Michal Malohlava, 12–13 (0xdata)

[13] Floreal Morandat, 11–12 (Uni. de Bordeaux)

[9] Nicholas Kidd, 09–10. (Google)

[10] Christian Hammer, 09–11 (Uni of Saarland)

[11] Ales Plsek, 09–11 (Oracle)

[12] Sylvain Lebresne, 08–09 (yakaz.com)

[13] Tomas Kalibera, 07–09 (Charles University)

[14] Tobias Wrigstad, 07–09 (Uni. of Uupsala)

[15] Antonio Cunei, 03–08 (TypeSafe)

[16] Jean Privat, 06–07 (Université du Québec)

[17] Marek Prochazka 03–05 (Euro.Space Agency)

[18] Jeremy Manson, 03–05 (Google)

[19] Michael Richmond, 02–03 (IBM Research)
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Undergraduate students

Lionel Zoubritzky 18, Paul Laforgue 17, Ayaz Badouraly 17, Borja Lorente 18 (Twitter), Chakshu Goyal
18, Michal Vácha 18, Filippo Ghibellini 16, Ryan Macnack, 13 (Google). Brian Burg, 10 (University of
Washington). Brett Mravec, Jason Ward, Chris Abernathy, 10. Rob Gevers, 09 (Purdue). Daniel Tang, 08
(Purdue). William Harris, 07 (University of Wisconsin-Madison). Andrew McClure, 06. Zacchary Wiggins,
05. Paul Kuliniewicz, 04. Wenchang Liu, 04 (Purdue). Filip Pizlo, 04 (Purdue). Chris Willmore, 03. Andrey
Madan, 02 (Purdue). Ben Titzer, 03 (UCLA). Adam Lugowski, 02. Josh Moore, 02. Gergana Markova, 01
(Purdue). Theodore Witkamp, 03. Javed Siddique, Alen Montz, 04 (Purdue).

Internships

Ming-Ho Yee (19), Microsoft Research. Alexi Turcotte (19), Oracle Labs. Aviral Goel (19), Oracle
Labs. Artem Pelenitsyn (19), Twig IO. Scott Carr (14), Microsoft Research. Fadi Meawads (13),
Google. Gregor Richards (12), Oracle. Brandon Hill (12), Oracle. Fadi Meawads (12), Google. Gre-
gor Richards (11), Mozilla. Fadi Meawad (10), Microsoft Research. Lei Zhao (10), Oracle. Gregor Richards
(10), Microsoft Research. Daniel Tang (10), Google. Fadi Meawad (09), Google. Gregor Richards (09), IBM
Research. Armand Navabi (09), Microsoft. Johan Östlund (09), Adobe. Jesper Spring, IBM Research. Filip
Pizlo, Microsoft Resarch. Jacques Thomas, Google. Jacques Thomas, Microsoft. Krzystof Palacz, SUN
Labs. Adam Welc, SUN Labs. Hiroshi Yamauchi, SUN Labs. Gergana Markova, IBM Research. Filip
Pizlo, IBM Research. Christian Grothof, IBM Research. Andrew McClure, SUN Labs. Ben Titzer, SUN
Labs. Andrei Madan, Medtronics.

Teaching

I regularly teach introductory courses in programming, data science, distributed programming, senior software
engineering, embedded and programming languages, as well as graduate programming languages, software
engineering, and embedded systems. Many of the classes where new offerings or significant overhauls of
existing classes.

Fundamentals II: Introduction to Class-based Program Design. The course studies the class-
based program design and the design of abstractions that support the design of reusable software and libraries.
It covers the principles of object oriented program design, the basic rules of program evaluation, and examines
the relationship between algorithms and data structures, as well as basic techniques for analyzing algorithm
complexity. (Class designed and led by Ben Lerner)

Parallel Data Processing in MapReduce. Big data is a catchall term for datasets that are resource
intensive. I redesigned this class to introduce student to parallel and distributed processing technologies
for analyzing ‘big data’. The course covers programming paradigms and abstractions for data analysis at
scale. Students gain an understanding of the performance and usability trade-offs of various technologies and
paradigms. Students will become familiar with technologies such as Hadoop, Spark, H20 and TensorFlow
amongst other. Hands-on assignments focus on machine learning and data analysis tasks. The class builds on
known principles such as the design recipe, testing and code reviews.

Introduction to Data Science. I created this course at Northeastern to overview the practical issues and
techniques for data importing, tidying, transforming, and modeling. The course offers a gentle introduction
to techniques for processing big data. Programming is a cross-cutting aspect of the course. The course work
includes a term project based on real-world data. Required topics include: Data management and processing:
definition and background; Data transformation; Data import; Data cleaning; Data modeling; Relational
and analytic databases; Basics of SQL; Programming in R and/or Python; MapReduce fundamentals and
distributed data management; Data processing pipelines, connecting multiple data management and analysis
components; Interaction between the capabilities and requirements of data analysis methods (data structures,
algorithms, memory requirements) and the choice of data storage and management tools; Repeatable and
reproducible data analysis.

Program Design Paradigms. CS 5010 is the mandatory introductory course for students in the MS
program. The course has two distinct objectives. First, it will ensure that all MS students have the same
background in designing programs. This encompasses the entire design cycle, from problem analysis to the
development of test suites. Second, the course will also introduce students to programming as a people
discipline. Students will work in pairs, present code to panels, and learn to cope with an evolving code base.
(class designed and lead by Mitch Wand)
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Embedded systems. Embedded Computer Systems is Purdue’s first embedded course. This course
introduces students to the challenges of real-time programming and introduce Java as a general-purpose
language capable of solving hard real-time problems. Low-level programs are written in C. The course covers
the following topics: concurrent programming, real-time programming, worst case execution time analysis,
schedulability analysis, real-time garbage collection, safety critical system verification and validation, model-
driven architectures. Students performed hand on experiments in a lab configured with the RTEMS real-time
operating system, LEON radiation-hardened processors, Real-time Java virtual machines, and the Rapita
static program analysis tools.

Software engineering. I overhauled Purdue’s SE curriculum for both graduate and undergraduate offer-
ings. The objective of the course is to teach the principles and practical techniques needed to engineer large-
scale, reliable, and secure systems. The course introduces students to a typical industrial setting where the
work is in small and specialized teams, and where the projects involve composing application from off-the-shelf
components rather than developing the applications from scratch. The course is based on the object-oriented
approach which is particularly appropriate for achieving these goals. The material ranges from design and
modeling, programming practices, refactoring, testings, design patterns and program analysis.

Programming languages. I designed this course around the book “Programming languages, an inter-
preter based approach” by Sam Kamin and Norman Ramsey and developed the additional materials and the
projects. The course studies programming languages through their operational semantics and language inter-
preters. It gives both a formal account of the languages, and a practical feeling for implementation concerns.

Introduction to C programming. Redesigning the C programming class was a major endeavor as it
entailed scaling the class from 50 students to over 280 as the department’s enrollment soared. Software for
automated grading had to be developed. I designed new assignments and project sequences, prepared short
videos for offline learning, and used technologies such as clickers for rapid classroom feedback. I gave the class
three times and my changes have been adopted by the following instructors.

Service

I enjoy helping to organize the community. I have served on over 50 conference program committees as a PC
member or a chair, and about as many workshops. I have founded several successful workshop series, starting
with Mobile Object Systems (MOS), the International Workshop on Aliasing, Confinement and Ownership
(IWACO), the Workshop on Languages, Compilers, and Hardware Support for Transactional Computing
(TRANSACT), the Scripts to Program Workshops (STOP), the International Workshop on Libraries, Lan-
guages and Compilers for Array Programming (ARRAY), the Machine Learning for Programming Languages
Workshop (ML4PL), the R Implementation, Optimization and Tooling Workshop (RIOT), the Workshop
on Speculative Side Channel Analysis (WoSSCA), and was the first program chair of Virtual Execution
Environments (VEE) as well as the co-founder of the Curry On conference (CURRYON). Together with his
colleagues Jagannathan and Grama, I founded and ran the first instances of the Summer School on Trends in
Concurrency (TiC) which were held in Bertinoro, Prague and Bengalore and attracted over 50 PhD students
each time. Together with Laurie Tratt we have created the Programming Language Implementation Summer
School (PLISS) which was held in Bertinoro. James Noble and I started the ECOOP Summer School and
the SPLASH-I tutorial series.

International Meetings and Schools Organized

[1] Curry On / REBASE conferences, 2015, 2016, 2017, 2018, 2019, 2020.

[2] Programming Language Mentoring Workshop, OOPSLA, Boston, 2018.

[3] Programming Language Implementation Summer School (PLISS), Bertinoro, 2017, 2019, 2022.

[4] Dagstuhl Seminar on Rethinking Experimental Methods in Computing, March 2016.

[5] ECOOP Summer School, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019.

[6] SPLASH-I Tutorial Series, 2013, 2015, 2018.

[7] The State of the Union JS (SOTU.JS), San Jose, April 2014.

[8] NSF DALI Workshop on Dynamic Languages for Scalable Data Analytics, Indianapolis, 2013.

[9] NSF Workshop on Programming with Big Data, Hawaii, 2013.

[10] Dagstuhl Seminar on Foundations for Scripting Languages, February 2012.
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[11] Virtual Execution Environments for Scientific Computing NSF Workshop, Arlington, September 2010.

[12] IFIP WG 2.4 Working group meeting. Bormio, Italy, 2009

[13] Dagstuhl Seminar on Types for Tools: Applications of Type Theoretic Techniques June 2005.

[14] International Summer School on Trends in Concurrency, July 2006, 2008, 2010.

Comfy Chair

[1] European Joint Conferences on Theory and Practice of Software (ETAPS), Prague, 2019.

[2] European Conference on Object Oriented Programming, Amsterdam, July 2018.

[3] European Conference on Object Oriented Programming, Barcelona, July 2017.

[4] European Conference on Object Oriented Programming, Rome, July 2016.

[5] European Conference on Object Oriented Programming, Prague, July 2015.

[6] SIGPLAN SPLASH Conference, Indianapolis, October 2013.

General Chair

[1] Conference on Systems, Programming, Languages and Applications: Software for Humanity (SPLASH),
November 2018.

[2] Curry On Conference, (CurryOn), July 2015.

[3] Conference on Languages, Programming Language Design and Implementation (PLDI), June 2012.

[4] Conference on Languages, Compilers and Tools for Embedded Systems (LCTES), June 2011.

[5] International Memory Management Symposium (ISMM), 2010.

[6] Workshop on Languages, Compilers, & Hw Support for Transactional Computing (TRANSACT),
2006.

Program Chair

[1] Conference on Object-Oriented Programming Languages, Systems and Applications (OOPSLA), 2022.

[2] European Conference on Object Oriented Programming (ECOOP) 2008, 2022.

[3] Artifact Evaluation Committee, OOSPLA 2018, OOPSLA 2019, POPL 2015, ECOOP 2013, PLDI
2014.

[4] European Symposium on Programming (ESOP) 2015.

[5] Conference on Objects, Models, Components, Patterns (TOOLS Europe) 2010.

[6] Java Technologies for Real-time and Embedded Systems (JTRes) symposium 2010.

[7] European Conference on Object Oriented Programming (ECOOP) 2008.

[8] Conference on Coordination Models and Languages (COORDINATION) 2007.

[9] Conference on Virtual Execution Environments (VEE) 2005.

[10] Formal Techniques for Java-like Programs (FTfJP) workshop 2005.

[11] Java Technologies for Real-time and Embedded Systems (JTRes) workshop, 2005.

Conference Program Committees

* ACSD – International Conference on Application of Concurrency to System Design, 2012.

* AISB – Symposium on Software Mobility and Adaptive Behavior, 2001.

* ASA/MA – Agent Systems and Applications, Mobile Agents, 2001.

* APLAS – Asian Symposium on Programming Languages and Systems, 2012, 2014.

* CATS – Computing: The Australasian Theory Symposium, 2010.

* CC – International Conference on Compiler Construction, 2003, 2008, 2012, 2014, 2021.

* CD – Component Deployment, 2002, 2004.

* COORD – International Conference on Coordination Models and Languages, 2005, 2008, 2009.

* CSF – IEEE Computer Security Foundations Symposium, 2008.
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* DATE – Design, Automation & Test in Europe, Conference, 2010.

* DLS – Dynamic Language Symposium Conference, 2010, 2014, 2015.

* ECOOP – European Conference on Object Oriented Programming, 1998, 2000, 2001, 2002, 2003,
2007, 2008, 2009, 2010, 2013, 2020.

* ESOP – European Symposium on Programming, 2002, 2007, 2009, 2011, 2014.

* EUC – IEEE/IFIP International Conference On Embedded and Ubiquitous Computing, 2008, 2010.

* GPCE – Conference on Generative Programming: Concepts & Experiences, 2013

* HVC – Haifa Verification Conference, 2014.

* HOTPAR – USENIX Hot Topics in Parallelism, 2013.

* ICFP – ACM SIGPLAN International Conference on Functional Programming, 2005.

* ICALP – International Conference on Automata, Languages and Programming, 2000.

* ISMM – International Symposium on Memory Management, 2010.

* ISORC – International Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing, 2012.

* JFLA – Journées Francophones des Langages Applicatifs, 1995, 1998, 2000.

* MASS – Symposium on Multi-Agent Security and Survivability, 2004, 2005.

* PLDI – Conference on Programming Language Design and Implementation, 2001, 2010, 2013.

* PPPJ – International conference on Principles and Practice of Programming in Java,2006.

* PODC – Symposium on Principles of Distributed Computing, 2010.

* POPL – ACM SIGPLAN Conference on Principles of Programming Languages, 2001, 2007, 2011.

* RTSS – IEEE International Real-Time Systems Symposium, 2009, 2010, 2011.

* SACMAT – Symposium on Access Control Models and Technologies, 2001, 2008.

* SNAPL – Summit on Advances in Programming Languages, 2015.

* TOOLS – TOOLS Europe, 2011, 2019.

* OOPS – Object Oriented Programming Languages and Systems 2004, 2005.

* OOPSLA – ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications, 2000, 2004, 2007, 2008, 2023.

* VEE – Virtual Execution Environments, 2011.

Workshop Program Committees

AcadPub – International Workshop on Academic Publishing 2.0, 2014. AIOOL – International Work-
shop on Abstract Interpretation of Object-Oriented Languages, 2005. ACP4IS – Workshop on Aspects,
Components, and Patterns for Infrastructure Software, 2003, 2004. ARRAY – Workshop on Libraries,
Languages, and Compilers for Array Programming, 2014, 2015. Bytecode – Workshop on Bytecode Seman-
tics, Verification Analysis and Transformation, 2007, 2008. CORD – Workshop on Concurrency, Real-Time
and Distribution in Eiffel (CORDIE), 2006. CPS – International Workshop on Cyber-Physical Systems,
2008. CSJP – Workshop on Concurrency and Synchronization in Java Programs, 2004. DDFP – Data
Driven Functional Programming Workshop, 2013. DOSW – Distributed Object Security Workshop. 1999.
Euro-Par – Euro-Par 2014 Workshops, 2014. Express – International Workshop on Expressiveness in
Concurrency, 2011. FOCLASA – International Workshop on the Foundations of Coordination Languages
and Software Architectures, 2004, 2005, 2007. FOOL – Workshop on Foundations of Object-Oriented
Languages, 2013. GCM – Green Computing Middleware, 2010, 2011, 2012. ICOOO – Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs and Systems. (ICOOOLPS), 2006, 2013,
2014, 2015. IWACO – International Workshop on Aliasing, Confinement and Ownership, 2003, 2007, 2014.
IWMSE – Third International Workshop on Multicore Software Engineering, 2010. IWAOOS – Intercon-
tinental Workshop on Aliasing in Object-Oriented Systems. 1999. JTRes – Workshop on Java Technologies
for Real-Time and Embedded Systems, 2003, 2004, 2005, 2006, 2007, 2008, 2009,, 2010, 2011, 2012, 2013,
2014, 2015. ML4PL – Machine Learning for Programming Languages, 2015. MOS – Mobile Object Sys-
tems Workshop, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 2003, 2004, 2005. OBT – Off-the Beaten
Track, 2014 PLACES – Programming Language Approaches to Concurrency and Communication-cEntric
Software, 2009, 2010, 2011, 2012. PLAS – Workshop on Programming Languages Analysis for Security,
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2007 PLASTIC – Workshop on Programming Language And Systems Technologies for Internet Clients,
2011. PSW – Workshop on Programming the Semantic Web, 2012. PWD – Workshop on Program
Analysis for Security and Safety (PASSWORD), 2006 Scala – Annual Scala Symposium, 2015. SALAD
– Workshop on SoftwAre debLoating And Delayering, 2018. SecCo – International Workshop on Security
Issues in Coordination Models, Languages and Systems, 2003, 2004, 2005, 2007. RIOT – R Implementation,
Optimization and Tooling Workshop, 2015, 2019. STOP – Script to Program Evolution, 2009. TRUST
– Workshop on Reproducible Research Methodologies and New Publication Models, 2014. VMIL – Work-
shop on Virtual Machines and Intermediate Languages, 2009. WASD – Workshop on Advanced/Academic
Software Development Tools and Techniques, 2013. WSIC – Workshop on Secure Internet Computations.
Organizer 1999. WoSSCA – Workshop on Speculative Side Channel Analysis, 2018

Department and School service

At Purdue University:

• Graduate admissions Chair: 11 – 14.

• Graduate admissions: 04 – 05, 07 – 11.

• Hiring committee: 09, 14.

• Colloquium chair: 03, 04.

• Graduate committee: 99 – 02.

• Student appeal committee: 04 – 05, 10 – 12.

At Northeastern University

• Graduate committee: 2014.

• Graduate admission: 2015, 2017, 2018, 2019, 2022.

• Hiring committee: 2016.

Grants

[1] PI (100%) SHFL Small: Predictable Performance for Just-in-Time Compilation, NSF, $500,000, 22 –
25.

[2] PI (70%) CCRI: ENS: Collaborative Research: Enhancing R for Scalability and Deployment to Support
Scientific Communities, NSF, $1,791,794, 19 – 22.

[3] PI (100%) SHF: Small: Program Analysis for Data Science, NSF, $499,671, 19 – 22.

[4] Co-PI (50%) SHF: Small: Collaborative Research: A Rational Reconstruction of the Julia Type System,
NSF, $494,444, 19 – 22.

[5] Co-PI (40%) ABI Innovation: Scalable and Agile Analysis of Mass Spectrometry Experiments, NSF,
$791,794, 18 – 21.

[6] PI (30%) VerticA: Towards Integrated, Trustworthy, Scripting Languages, ONR, $1,596,197, 17 – 20.

[7] PI BigCode, Czech Operational Programme Research, Development, and Education, e1,890,000,
18 – 22.

[8] PI Evolving Language Ecosystems (ELE), ERC Advanced, e3,200,000 , 16 – 22.

[9] Co-PI (15%) SHF: Large Gradual Typing Across the Spectrum, NSF, $1,600,000, 15 – 19.

[10] PI SHF: Project Darwin, NSF, $1,099,000, 16 – 20.

[11] PI (50%) SHF: Small: Foundations of Just-in-Time Compilation, NSF, $436,000, 16 – 19.

[12] Co-PI (50%) SHF: Small Havoc: Verified Compiliation of Concurrent Managed Languages, NSF,
$400,000, 15 – 18.

[13] PI JavaScript Analysis, Google, $64,000, 16 –.

[14] PI HyDyS: Hybrid Dynamic/Static Analysis for Managed Languages, Google, $60,000, 14.

[15] PI FastR: Open Source R, Oracle Inc, $150,000, 13.

[16] PI Hybrid Dynamic and Static Techniques for Trustworthy Data Analytics, ONR, $600,000, 13 – 16.

[17] Co-PI (50%) Verified Compilation of Concurrent Managed Languages, AFRL, $300,000, 13 – 16.

[18] PI CSR: Language and Runtime Support for Large-Scale Data Analytics, NSF, $246,635, 12.
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[19] PI FastR: Open Source R, Oracle Inc, $85,000, 12.

[20] PI Automated Generation of JavaScript Workloads, Mozilla Corporation, $75,000, 12.

[21] PI (25%) CPS: Robust Distributed Wind Power Engineering, NSF, $1,600,000, 11 – 15.

[22] PI (50%) SI2-SSE: A Tracing Virtual Machine For Statistical Computing, NSF, $489,084, 10 – 13.

[23] PI EAGER: Foundations of Data-Centric Concurrency Control, NSF, $110,000, 10 – 11.

[24] PI Virtual Execution Environments for Scientific Computing Workshop, NSF, $45,000, 10 – 10.

[25] PI Third International Summer School on Trends in Concurrency, NSF, $12,000, 10 – 10.

[26] Co-PI (50%) An Infrastructure for Scalable Transactional Memory Abstractions, NSF, $536,000, 10.

[27] Co-PI (50%) SHF: Specification and Verification of Safety Critical Java, NSF, $500,000, 09–11.

[28] PI A Computational Model for High-Assurance Dynamic Systems, ONR, $200,000, 09– 09.

[29] PI (50%) Certified Garbage Collection for Highly Responsive Systems, NSF, $498,952, 08–11.

[30] Co-PI (50%) Fault Determination and Recovery in Cycle Sharing Infrastructures, NSF, $23,000, 08.

[31] PI (25%) Unified Open Source Transactional Infrastructure, NSF, $1,000,000, 08 – 11.

[32] Co-PI Language & Runtime Support for Safe and Scalable Programs, Microsoft Research, $50’000
(25%), 08.

[33] PI Second International Summer School: Trends in Concurrency, NSF, $23,000, 08.

[34] PI Second International Summer School: Trends in Concurrency, IBM Research, $1,000, 08.

[35] PI Second International Summer School: Trends in Concurrency, Microsoft Research, $10,000, 08.

[36] PI Second International Summer School: Trends in Concurrency, Intel Research, $5,000, 07.

[37] PI CSR-EHS: High-throughput Real-time Stream Processing in Java, NSF, $210,000, 07 – 10.

[38] Co-PI Controlled Declassification with Software Transactional Memory, NSF, $249,857 (50%), 07 – 09.

[39] PI IBM Faculty Award, IBM, $30,000, 06.

[40] PI High-level Concurrency Control Abstractions , Microsoft Research Award, $50,000, 06.

[41] Co-PI An Infrastructure for Relaxed Concurrency Abstractions, NSF, $99,979 (20%), 06 – 08.

[42] PI International Summer School: Trends in Concurrency, Microsoft Research, $5,000, 06.

[43] PI International Summer School: Trends in Concurrency, IBM Italy, $5,000, 06.

[44] Co-PI Fault Determination and Recovery in Cycle-Sharing Infrastructures, NSF, $300,000, 05 – 08.

[45] PI Aspectual Configuration of Real-time Embedded Middleware, NSF, $250,000, 05 – 08.

[46] Co-PI A logically destructive imaging security & forensics facility, NSF, $800,000 (7%), 04 – 07.

[47] PI Assured Software Composition For Real-Time Systems, NSF/NASA, $500,000, 03 – 07.

[48] PI Language Abstractions for Parallel Computing, DARPA PERCS, $400,000, 03 – 06.

[49] Co-PI Partage: An Open Peer-to-Peer Infrastructure for Cycle-Sharing, NSF, $498,945, 03 – 06.

[50] Co-PI Distributed Access Control for Accountable Systems, NSF Cybertrust, $318,375, 02 – 06.

[51] PI Foundations & Implementation of Mobile Object Systems, NSF CAREER, $325,936, 01 – 06.

[52] PIDynamic Compositional Middleware Frameworks for Networked Embedded Systems, DARPA, $3,274,680
(60%), 01 – 05.

[53] PI Sw. Eng.: Research on Customizable Virtual Machines, Microsoft Research, $100,000, 02.

[54] PI Trusted Software Composition, Eli Lilly, $50,000, 01 – 02.

[55] PI ReAssure–Secure and Resilient Network Computing, Eli Lilly, $90,000, 99 – 01.

[56] PI Resilient Mobile Agent Architecture, Motorola, $62,543, 00 – 05.

[57] PI Type confinement in Java, Eli Lilly, $25,000, 99 – 00.


