
Jan Vitek
Curriculum Vitae

June 10, 2024

j.vitek@neu.edu Northeastern University
Phone: (617) 749 8148 360 Huntington Ave.
Nationality: USA + Swiss + Czech Boston, MA 02115
Date of Birth: 6.9.66

Research Interests

Programming languages, Compilers, Software engineering, Data Science.

Employment

Professor 7/14 –
Northeastern University.

Professor 7/22 –
Charles University.

Software Architect 9/21 – 3/23
Lacework

Professor 10/20 – 9/23
Czech Technical University,

Professor 8/10 – 7/14
Purdue University.

Chief Scientist 6/09 – 6/17
Fiji Systems LLC, Indianapolis.

Visiting Professor 6/12 – 6/13
Stanford University.

Visiting Researcher 9/12 – 7/13
Oracle Labs, Redwood shores.

Scientific Advisor 1/12 – 6/13
0xData, Mountainview.

Academic Visitor 9/06 – 5/11
IBM T.J Watson.

Associate Professor 8/05 – 8/10
Purdue University.

Visiting Professor 7/08 – 9/08
INRIA, Rocquencourt.

Visiting Professor 1/06 – 7/06
EPFL.

Assistant Professor 8/99 – 7/05
Purdue University.

Research Assistant 9/94 – 7/99
University of Geneva, 9/89 – 8/90

Software Consultant 8/92 – 8/93
International Labor Organization.

Research Assistant 9/90 – 7/92
University of Victoria, CA

Education

University of Geneva 99
PhD in Information Systems
“The Seal Calculus – A calculus of mobile
computations” Advisor: D. Tsichritzis

University of Victoria 95
MSc in Computer Science
“Compact Dispatch Tables for Dynamically
Typed Languages” Advisor: R. N. Horspool

Awards and Honors
20 Dahl-Nygaard Senior Prize

19 SIGPLAN Distinguished Service Award

18 ECOOP Test of Time Award

18 ISSTA Distinguished Artifact Award

17 OOPSLA Distinguished Artifact Award

11 Purdue University Faculty Scholar

11 Microsoft SEIF Research Award

06 IBM Faculty Award

01 NSF CAREER Award

Positions in Scholarly Associations

Editor in Chief of the ACM Transactiob On Programming Languages, 2021–

Vice President of the Association Internationale pour les Technologies Objets, elected 2010–2018.

Past-Chair of ACM Special Interest Group on Programming Languages (SIGPLAN), 2015–2018.

Jan Vitek 2

Chair of the ACM Special Interest Group on Programming Languages (SIGPLAN), elected, 2012–2015.

Vice President of IFIP Working Group 2.4, elected, 2011–2013.

Editor in Chief of the Journal of Object Technology, 2013–2014.

Member of JSR 302 expert group Safety Critical Java, 2007–2012.

Member Scientific Committee of Ecole des Mines de Nantes, 2012–2016.

Member CominLabs International Advisory Committee, 2011–2016.

Steering Committees

SC Chair of SPLASH, 2022 – .

SC Member of SPLASH, 2012 – .

SC Chair of ISMM, 2010 – 2011.

SC Member of PLDI, 2011 – 2017.

SC Member of POPL, 2012 – 2017.

SC Member VEE 2005 – 2010.

SC Chair of PLDI, 2013 – 2015.

SC Member of ICFP, 2012 – 2016.

SC Member of COORDINATION 2007 – 2010.

SC Member of TOOLS Europe, 2010 – 2011.

Founding SC Member TRANSACT workshop, 2005.

Founding SC Member of International Summer School on Trends in Concurrency, 2006.

SC Member of the Java Technologies for Real-time and Embedded Systems workshop, 2005.

Research highlights

My research focuses on increasing the level of abstraction of our interface to the machines that carry out
computation on our behalf. I am interested in programming languages in all their forms.

Confinement and Ownership. Back in 1998, James Noble, John Potter and myself were convinced
that the spaghetti structure of the heap was a serious challenge to reasoning about object-oriented programs.
The combination of aliasing, mutability and subtyping were particularly tricky to deal with. We proposed a
mechanism for alias protection [130] which was later renamed to Ownership Types.1 One challenge of the early
work was the rather copious amount of annotations that had to be provided by programmers. To alleviate
this and codify software engineering practices familiar to programmers, we proposed Confined Types [46].
With confined types, the number of annotations required was drastically reduced. Furthermore, confinement
is sound [37] and can be inferred [34]. It also informed the development of the region types used for Real-time
Java programs in [30]. In that work, implicit type annotations were used to determine where object would be
allocated and their lifetime. The StreamFlex stream programming system [28] relied on a very similar notion
for memory managment. We also used similar ideas for enforcing thread locality [90]. Another variant of
ownership types was part of a version of the Safety Critical Java standard [149].

Dynamic languages. In collaboration with IBM research, I designed Thorn [88], a programming language
that allows programmers to evolve scripts into robust programs [155]. One of Thorn’s innovations is a type
system based on Like Types [85]. Like types are type annotations that can be added gradually; they are the first
gradual type system free of pathological performance degradation while still able to provide some guarantees.
Empirical evaluation demonstrated that like types can be used by an optmizing compiler to speedup annotated
programs (and can be adapted to a language such as TypeScript) [66]. Thorn motivated me to study the use,
in the wild, of dynamic languages. For this JavaScript was a perfect playground [156]. We analyzed thousands
of JavaScript web pages [82] yielding unique insights into programmers’ use of features such as reflection [80].
This led to the development of JSBench [79], a tool for transforming web sites into benchmark. JSBench
resulted from an unusual collaboration between Mozilla and Microsoft and was eventually adopted by Apple
as a browser performance benchmark. We also looked at techniques for automatically inferring the behavior
of calls to eval and replacing those calls by safer code [75].

Scalable Data Analytics. One of my long term interests is to help scientist with the analysis of complex
data sets. This can be done with domain specific languages that support runtime code generation, as show
with Terra [70], or with established languages like R. The R programming language is a widely used vehicle
for statistical computating which has serious limitations in its ability to handle larger data sets. We started
by trying to understand R, for this we formalized a small subset of the language and, in parallel, analyzed

1The term “ownership types” appears in over 4,000 papers according to Google Scholar attesting to the enduring
popularity of the idea; a language like Rust is an example of practical adoption of the ideas.

Jan Vitek 3

statically and dynamically a body of 4 million lines of code [73]. The results of that effort motivated the
development of FastR [67], an optimizing virtual machine for the R language which was adopted by Oracle
research as the basis of their effort to integrate R with the Oracle database.

Language Implementation. I started my career with algorithms for speeding up some of the most
frequent operations performed by object oriented programs, namely, method dispatch and type tests. I
proposed a compact solution to the dispatching problem in dynamically typed languages in [136] and later
reduced space requirements in [134] and looked architectural impacts of these solutions [135]. Later, I revisited
dispatching with proposals for multiple dispatch policies [106], [31]. For type tests, the challenge was to find
data structures optimized for space and time. We tried compact bitset encodings based on graph coloring [132],
and then proposed an alternative that allowed constant time test [131] and finally devised an encoding that
could be easily recomputed on loading of new clases [119]. These techniques were used in the Fiji Java virtual
machine [154], [84]. I also led the Ovm project which delivered an open source framework for building language
runtimes. By design, Ovm can be specialized and assembled into a configuration customized for a particular
problem domain. Ovm was used in the first Real-Time Java virtual machine to be deployed and flight tested
on a Boeing-built UAV [33].

Real-Time and Embedded Computing. Part of the Ovm project involved trying to demonstate
that the Java language could be used for real-time computing. One obvious challenge was the memory
management (or garbage collection) subsystem. My group produced Schism [81], the most efficient real-time
garbage collection algortihm [87] in use in a commercial product [84]. We investigated real-time memory
management techniques in a number of contexts [100], [96], [93], [29]. For real-time stream processing we
achieved [28] periods of 50 µs without losing the portability or the memory safety of Java. StreamFlex offers
a dataflow programming model with zero copy [95] and it makes an interesting use of software transactional
memory [105] for communication with non-real-time tasks. The technology was transfered to IBM [92]. An
ongoing project aims to formalize the guarantees needed for safety critical applications in Java [157]. Part of
this work is being done in the context of the JSR-302 Safety Critical Java expert group. An early result is the
development of new memory model for Java suitable for proving the correctness of compiler optimizations [71].

Concurrency control. Our empirical study of the DACAPO benchmark suite [74] demonstrated the
limits of parallel execution in Java. New abstractions are needed to assist programmers. Our work on atomic
sets allows concurrency control to be synthesized from high-level specificaitions that are part of the data
declarations [83]. Atomic set leverage ideas from ownership types and confinement to decrease annotation
burden, most use-cases require only a handful of annotations [25] and deadlocks can be prevented by program
analysis [69]. I also investigated transactional memory abstractions: giving semantics to software transactional
memory in [39], tuning the garbage collector to be transaction-aware in [147], and providing the first non-trivial
benchmark suite [99] for transactional memory. Looking at the problem of ensuring predictable performance
in hard real-time environments, I came up with preemptible atomic regions [105] which were later adopted in
StreamFlex [91]. In another project, we looked at architectural support for real-time transactions [24].

Software Security. Ideas from the software transactional memory work came together with dynamic own-
ership tracking in our work on security for JavaScript based on delimited histories [68]. I investigated security
off and on, with forays into intrusion detection techniques for C programs based on inlining automata [108],
non-interference for a concurrent language, the box-π calculus, a minimal extension of the π-calculus with
encapsulation [44], distributed access control [116] and fine-grained access control to a key-value store in [45].

Mobile Computations. In my doctoral thesis, I tried to devise abstractions for programming wide area
networks, with the Seal calculus, a core model of mobile computations [47], [128]. The Seal calculus was among
the first to explore the design space of mobile languages from both theoretical and practical angles [41].

Towards Rigor in Experimental Computer Science. I have always been interested in improving
the state of empirical evaluation in our field. This is one of the motivation for developping benchmarks for
domains as different as software transaction [99], real-time computing [27], [152], web applications [79] and
concurrent programming [74]. More recently, I started advocating for rigor and repeatability of experimental
computer science [76], [194]. Science advance faster when one can build on existing results, and when new
ideas can easily be measured against the state of the art. This is exceedingly difficult in an environment
that does not reward the production of reusable software artifacts. Repeatability can be summed up as a
validation of the claims made in a paper by re-running a bundled software artifact prepared by the paper
authors. Repeatability is a cheap and easy test which clarifies the scientific contribution of a paper. It should
become a standard feature of the dissemination of research results. Together with Shriram Krishnamurthi, I
have led the effort on including artifact evaluation as a standard part of major conferences [22].

Jan Vitek 4

Publications

Journals

[1] J. Belyakova, B.Chung, R.Tate, J. Vitek. De-
cidable Subtyping of Existential Types for Julia.
In Proc. ACM PL (PACMPL(PLDI)), 2024.

[2] M.Kalpesh Mehta, S.Krynski, H.Musso Gua-
landi, M.Thakur, J. Vitek. Reusing Just-in-
Time Compiled Code. In Proc. ACM PL
(PACMPL(OOSPLA)), 2023.
doi:10.1145/3622839

[3] A.Goel, P.Donat-Bouillud, F.Krikava, C,̇M.Kirsch,
J.Vitek: What we eval in the shadows: a large-
scale study of eval in R programs. In Proc. of
the ACM PL (PACMPL(OOPSLA)), 2021.
doi:10.1145/3485502

[4] A.Goel, J. Jecmen, S.Krynski, O. Flückiger, J. Vitek:
Promises are made to be broken: migrating R
to strict semantics. In Proc. of the ACM PL
(PACMPL(OOPSLA)), 2021.
doi:10.1145/3485478

[5] A. Pelenitsyn, J. Belyakova, B.Chung, R.Tate,
J. Vitek: Type stability in Julia: avoiding per-
formance pathologies in JIT compilation. In
Proc. of the ACM PL (PACMPL(OOPSLA))
2021.
doi:10.1145/3485527

[6] A.Barriere, O. Flückiger, S. Blazy, D. Pichardie,
J. Vitek. Formally Verified Speculation and De-
optimization in a JIT Compiler. In Proc. of the
ACM PL (PACMPL(POPL)), 2021.
doi:10.1145/3434327

[7] J. Belyakova, B.Chung, J.Gelinas, J. Nash, R.Tate,
J. Vitek. World Age in Julia: Optimizing Method
Dispatch in the Presence of Eval. In Proc. of
the ACM PL (PACMPL(OOPSLA)), 2020.

[8] A.Turcotte, A.Goel, F.Krikava, J. Vitek. De-
signing Types for R, Empirically. In Proc. of
the ACM PL (PACMPL(OOPSLA)), 2020.

[9] O. Flückiger, G.Chari, M.Yee, J. Jecmen, J.Hain,
J.Vitek. Contextual Dispatch for Function Spe-
cialization In Proc. of the ACM PL (PACMPL-
(OOPSLA)), 2020.

[10] F.Krikava, H.Muller, J. Vitek. Scala Implicits
are Everywhere: A large-scale study of the use
of Implicits in the wild. In Proc. of the ACM
PL (PACMPL(OOPSLA)), 2019.
doi:10.1145/3360589

[11] A.Goel, J. Vitek. On the Design, Implementa-
tion and Use of Laziness in R. In Proc. of the
ACM PL (PACMPL(OOPSLA)), 2019.
doi:10.1145/3360579

[12] E.Berger, C.Hollenbeck, P.Maj, O.Vitek, J.Vitek.
On the Impact of Programming Languages on
Code Quality. In ACM Trans. on Prog. Lang.,
(TOPLAS), 2019.
doi:10.1145/3340571

[13] Y.Ġokul, K.Dantu, S.Ko, L. Ziarek, J. Vitek.
Can Android Run on Time? Extending and
Measuring the Android Platform’s Timeliness.
InACM Trans. Embedded Comput. Syst., (TECS),
2019. doi:10.1145/3289257

[14] L.Andersen, V. St-Amour, J. Vitek, M.Felleisen.
Feature-Specific Profiling. In ACM Trans. on
Prog. Lang. (TOPLAS), 2019.
doi:10.1145/3275519

[15] B.Greenman, A.Takikawa, M.New, D. Felty, R.
Findler, J. Vitek, M.Felleisen. How to Evalu-
ate the Performance of Gradual Type Systems.
In Journal of Functional Programming, (JFP),
2019.
doi:10.1017/S0956796818000217

[16] Y. Zakowski, D.Cachera, D.Demange, G. Petri,
D. Pichardie, S. Jagannathan, J. Vitek. Veri-
fying a Concurrent Garbage Collector with a
Rely-Guarantee Methodology. In Journal of Au-
tomated Reasoning, (JAR), 2018.
doi:10.1007/978-3-319-66107-0 31

[17] F. Zappa Nardelli, J. Belyakova, A. Pelenitsyn,
B.Chung, J. Bezanson, J. Vitek. Julia subtyp-
ing: a rational reconstruction. In Proc. ACM
Prog. Lang., (OOPSLA), 2018.
doi:10.1145/3276483

[18] J. Bezanson, J. Chen, B.Chung, S.Karpinski, V.
Shah, J. Vitek, L. Zoubritzky./ Julia: dynamism
and performance reconciled by design. In Proc.
ACM Prog. Lang., (OOPSLA), 2018.
doi:10.1145/3276490

[19] O. Flückiger, G. Scherer, M.Yee, A.Goel, A.
Ahmed, J. Vitek. Correctness of speculative op-
timizations with dynamic deoptimization. In
Proc. ACM Prog. Lang., (POPL), 2018.
doi:10.1145/3158137

[20] S. Clebsch, J. Franco, S. Drossopoulou, A. Mingkun
Yang, T. Wrigstad, J. Vitek. Orca: GC and
type system co-design for actor languages. In
Proc. ACM Program. Lang., (OOPSLA), 2017.
doi:10.1145/3133896

[21] C. Lopes, P. Maj, P. Martins, D. Yang, J. Zitny,
H. Sajnani. J. Vitek. Déjà Vu: A Map of Code
Duplicates on GitHub. In Proc. ACM Program.
Lang., (OOPSLA), 2017, doi:10.1145/3133908.

[22] S.Krishnamurthi, J. Vitek. The real software
crisis: repeatability as a core value. In Com-
mun. ACM, (CACM), 58(3), 2015.
doi:10.1145/2658987

[23] S. Jagannathan, V. Laporte, G. Petri, D. Pichardie,
J. Vitek. Atomicity Refinement for Verified Com-
pilation. In ACM Transaction on Programming
Languages and Systems, (TOPLAS), 2014.
doi:10.1145/2601339

[24] F. Meawad, K. Iyer, M. Schoeberl and J. Vitek.
Micro-transactions for concurrent data struc-
tures. In Concurrency and Computation: Prac-
tice and Experience (CCPE), 25(16): 2252-–2268,
2013. doi:10.1002/cpe.2985

https://doi.org/10.1145/3622839
https://doi.org/10.1145/3485502
https://doi.org/10.1145/3485478
https://doi.org/10.1145/3485527
https://doi.org/10.1145/3434327
https://doi.org/10.1145/3360589
https://doi.org/10.1145/3360579
https://doi.org/10.1145/3340571
https://doi.org/10.1145/3289257
https://doi.org/10.1145/3275519
https://doi.org/10.1017/S0956796818000217
https://doi.org/10.1007/978-3-319-66107-0_31
https://doi.org/10.1145/3276483
https://doi.org/10.1145/3276490
https://doi.org/10.1145/3158137
doi:10.1145/3133896
https://doi.org/10.1145/3133908
https://doi.org/10.1145/2658987
https://doi.org/10.1145/2601339
https://doi.org/10.1002/cpe.2985

Jan Vitek 5

[25] J. Dolby, C. Hammer, D. Marino, F. Tip, M.
Vaziri, J. Vitek. A Data-Centric Approach to
Synchronization. ACM Transaction on Program-
ming Languages and Systems, (TOPLAS) 48
pages, 34(1):4, 2012. doi:10.1145/2160910.2160913

[26] T. Kalibera, F. Pizlo, T. Hosking, J. Vitek.
Scheduling real-time garbage collection on unipro-
cessors. In ACM Transaction on Computer Sys-
tems, (TOCS), 29:3, pp. 8:1–8:29, 2011.

[27] T. Kalibera, J. Hagelberg, P. Maj, F. Pizlo,
B. Titzer, and J. Vitek. A family of real-time
Java benchmarks. In Concurrency and Com-
putation: Practice and Experience, (CS:PE),
23(14), pp. 1679–1700, 2011.
doi:10.1002/cpe.1677

[28] J. Spring, F. Pizlo, J. Privat, R. Guerraoui,
J. Vitek. Reflexes: Abstractions for Integrat-
ing Highly Responsive Tasks into Java Applica-
tions. In ACM Transactions in Embedded Com-
puting Systems (TECS), 2010. 28 pages.

[29] J. Baker, A. Cunei, T. Kalibera, F. Pizlo, J.
Vitek. Accurate Garbage Collection in Unco-
operative Environments. In Concurrency and
Computation: Practice and Experience, (CC:PE),
21(12), pp. 1572–1606, 2009.

[30] T. Zhao, J. Baker, J. Hunt, J. Noble and J.
Vitek. Implicit Ownership Types for Memory
Management, In Science of Computer Program-
ming, (SCP), 71, pp. 213–241, 2008.

[31] A. Cunei, J. Vitek. An Efficient ad Flexible
Toolkit for Composing Customized Method Dis-
patchers. In Software Practice and Experience,
(SPE), 38(1), pp. 33–73, 2008.

[32] C. Andrea, Y. Coady, C. Gibbs, J. Noble, T.
Zhao, J. Vitek. Scoped Types and Aspects for
Real-time Java Memory Management. In Real-
time Systems Journal, (RSJ) pp. 1–44, Octo-
ber, 2007.

[33] A. Armbuster, J. Baker, A. Cunei, C. Flack,
D. Holmes, F. Pizlo, E. Pla, M. Prochazka, J.
Vitek. A Real-time Java Virtual Machine with
Applications in Avionics. In ACM Transac-
tions in Embedded Computing Systems (TECS),
(TECS) 7(1), pp. 1–49 pages, 2007.

[34] C. Grothoff, J. Palsberg, J. Vitek. Encapsu-
lating Objects with Confined Types. In ACM
Transactions on Programming Languages and
Systems, 29(6), (TOPLAS), 41 pages, 2007.

[35] O. Vitek, B. Craig, C. Bailey-Kellog, J. Vitek.
Inferential backbone assignment for sparse data.
In Journal of Biomolecular NMR, (JBNMR),
35(3), pp. 187–208, Springer, 2006.

[36] B. Cărbunar, A. Grama, J. Vitek, O. Cărbunar.
Redundancy and Coverage Detection in Sensor
Networks. In ACM Transaction on Sensor Net-
works, (TSN), pp. 94–128, 2(1), 2006.

[37] T. Zhao, J. Palsberg, J. Vitek. Type-based
Confinement. In The Journal of Functional Pro-
gramming, (JFP), pp 83–128, 16(1), January
2006.

[38] O. Vitek, C. Bailey-Kellogg, B. Craig, P. Kulin-
iewicz, J. Vitek. Reconsidering Complete Search
Algorithms for Protein Backbone NMR Assign-
ment. In Bioinformatics, 21, pp. 230–236,
September 2005.

[39] S. Jagannathan, J. Vitek, A. Welc, T. Hosking,
A Transactional Object Calculus. In Science of
Computer Programming, (SCP) Elsevier, pp.
164–186, 57(2), August 2005.

[40] K. Palacz, J. Baker, C. Flack, C. Grothoff, H.
Yamauchi and J. Vitek. The Ovm customiz-
able intermediate representation. In Science of
Computer Programming, (SCP), pp. 357–378,
57(3) Elsevier, September 2005.

[41] G. Castagna, J. Vitek and F. Zappa Nardeli.
The Seal calculus. In Information and Compu-
tation, (I&C) Elsevier, 201(1), pp. 1–54, Au-
gust 2005.

[42] O. Vitek, J. Vitek, B. Craig and C. Bailey-
Kellogg. Model-based assignment and inference
of protein backbone nuclear magnetic resonances.
In Statistical Applications in Genetics and Molec-
ular Biology, (SAGMB), Berkeley Electronic
Press, Volume 1, Issue 1, 2004.

[43] B. Carbunar, M. T. Valente and J. Vitek. Lime
revisited. In Mathematical Structures in Com-
puter Science, (MSCS) Cambridge University
Press, 14(3), pp. 397–419, 2004.

[44] P. Sewell and J. Vitek. Secure composition of
untrusted code: box-π, wrappers and causality
types. In Journal of Computer Security, (JCS),
IOS Press, 11, pp. 135–188, 2003.

[45] J. Vitek, C. Bryce and M. Oriol. Coordinating
agents with secure spaces. In Science of Com-
puter Programming, (SCP), Elsevier, 46, pp.
163–193, 2002.

[46] J. Vitek and B. Bokowski. Confined types for
Java. In Software Practice and Experience, (SPE),
Wiley, 31, pp. 507–532, 2001.

[47] C. Bryce and J. Vitek. The JavaSeal mobile
agent kernel. In Autonomous Agents and Multi-
Agent Systems, (AAMAS), Kluwer, 4, pp. 359–
384, 2001.

[48] R. N. Horspool and J. Vitek. Static analysis of
PostScript code. In Journal of Computer Lan-
guages, (JCL), Pergamon Press, 19, pp. 65-78,
1993.

[49] G. Kappel, J. Vitek, O. Nierstrasz, B. Junod
and M. Stadelmann. Scripting applications in
the public administration domain. In SIGOIS
Bulletin, 10, pp. 21-32, 1992.

https://doi.org/10.1145/2160910.2160913
https://doi.org/10.1002/cpe.1677

Jan Vitek 6

Refereed Conference Proceedings

[50] P.Maj, S.Muroya, K. Siek, L.Di Grazia, J. Vitek.
The Fault in Our Stars: Designing Reproducible
Large-scale Code Analysis Experiments. In Eu-
ropean Conference on Object Oriented Program-
ming (ECOOP), 2024.

[51] A.Turcotte, P.Donat-Bouillud, F.Krikava, J.
Vitek. signatr: A Data-Driven Fuzzing Tool
for R. In International Conference on Software
Language Engineering (SLE), 2022.
doi:10.1145/3567512.3567530

[52] O. Flückiger, J. Jecmen, S.Krynski, J. Vitek. De-
optless: Speculation with Dispatched On-Stack
Replacement and Specialized Continuations. In
Programming Language Design and Implemen-
tation Conference (PLDI), 2022.
doi:10.1145/3519939.3523729

[53] A.Goel, J. Vitek. First-Class Environments in
R. In Symposium on Dynamic Languages (DLS),
2021.
doi:10.1145/3486602.3486768

[54] O. Flückiger, S.Krynski, A.Wälchli, J. Vitek. Sam-
pling Optimized Code for Type Feedback. In
Dynamic Language Symposium (DLS), 2020.

[55] O. Fluckiger, M.Yee, G.Chari, J. Hain, J. Jecmen,
J.Vitek. R Melts Brains: An IR for First-Class
Environments and Lazy Effectful Arguments.
InDynamic Language Symposium (DLS), 2019.
doi:10.1145/3276945.3276946

[56] B. Chung, F. Zappa Nardelli, J. Vitek. Julia’s
efficient algorithm for subtyping unions and co-
variant tuples. In European Conference on Ob-
ject Oriented Programming (ECOOP), 2019.
doi: 10.4230/LIPIcs.ECOOP.2019.2.

[57] G.Chari, J. Pimas, O. Flückiger, J. Vitek. Self-
Contained Development Environments. In Dy-
namic Language Symposium, (DLS), 2018.
doi:10.1145/3276945.3276948

[58] B. Chung, P. Li, F. Zappa Nardelli, J. Vitek.
KafKa: Gradual Typing for Objects. In Euro-
pean Conference on Object Oriented Program-
ming (ECOOP), Amsterdam, July 2018.
doi:10.4230/LIPIcs.ECOOP.2018.12.

[59] J. Franco, S. Clebsch, S. Drossopoulou, J. Vitek,
T. Wrigstad. Correctness of a Concurrent Ob-
ject Collector for Actor Languages. In European
Symposium on Programming, (ESOP), 2018.
doi:10.1007/978-3-319-89884-1 31.

[60] F. Krikava, J. Vitek. Tests from traces: au-
tomated unit test extraction for R. In Inter-
national Symposium on Software Testing and
Analysis, (ISSTA), Amsterdam, 2018.
doi:10.1145/3213846.3213863

[61] T. Anderson, H. Liu, L. Kuper, E. Totoni, J.
Vitek, T. Shpeisman. Parallelizing Julia with
a Non-Invasive DSL. In European Conference
on Object Oriented Programming (ECOOP),
2017. doi:10.4230/LIPIcs.ECOOP.2017.4

[62] Y. Zakowski, D. Cachera, D. Demange, G. Petri,
D. Pichardie, S. Jagannathan, J. Vitek. Ver-
ifying a Concurrent Garbage Collector Using
a Rely-Guarantee Methodology. In Interactive
Theorem Proving, (ITP), 2017.
doi:10.1007/978-3-319-66107-0 31

[63] Y. Yan, K. Dantu, S. Ko, J. Vitek, L. Ziarek.
Making Android Run on Time. In Real-Time
and Embedded Technology and Applications Sym-
posium (RTAS), 2017.
doi:10.1109/RTAS.2017.38

[64] A. Takikawa, D. Feltey, B. Greenman, M. New,
J. Vitek, M. Felleisen. Is sound gradual typ-
ing dead? In ACM Symposium on Principles of
Programming Languages (POPL), 2016.
doi:10.1145/2837614.2837630

[65] G. Petri, J. Vitek, S. Jagannathan, Cooking
the Books: Formalizing JMM Implementation
Recipes. In European Conference on Object Ori-
ented Programming (ECOOP), Prague, July
2015.

[66] G. Richards, F. Zappa Nardelli, J. Vitek. Con-
crete Types for TypeScript. In European Con-
ference on Object Oriented Programming
(ECOOP), Prague, July 2015.

[67] T. Kalibera, P. Maj, F. Morandat, J. Vitek. A
Fast Abstract Syntax Tree Interpreter for R. In
Conference on Virtual Execution Environments
(VEE), Salt Lake City, March 2014.

[68] G. Richards, C. Hammer, S. Jagannathan, F.
Zappa Nardelli and J. Vitek. Flexible Access
Control Policies with Delimited Histories and
Revocation In Conference on Object-Oriented
Programming Systems, Languages and Applica-
tions (OOPSLA), Indianapolis, October 2013.

[69] D. Marino, C. Hammer, J. Dolby, M. Vaziri, F.
Tip, and J. Vitek, Detecting deadlock in pro-
grams with data-centric synchronization. In In-
ternational Conference on Software Engineering
(ICSE), pp. 322-331, San Francisco, May 2013.

[70] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan,
and J. Vitek. Terra: a multi-stage language for
high-performance computing. In Programming
Language Design and Implementation Confer-
ence (PLDI) pp. 105-116, Seattle, June 2013.

[71] D. Demange, V. Laporte, L. Zhao, S. Jagan-
nathan, D. Pichardie, and J. Vitek. Plan B:
a buffered memory model for Java. In ACM
Symposium on Principles of Programming Lan-
guages (POPL), pp. 329-342, Rome, January
2013.

[72] A. Bouakaz, J.-P. Talpin and J. Vitek. Affine
Data-Flow Graphs for the Synthesis of Hard
Real-Time Applications. In Conference on Ap-
plication of Concurrency to System Design (AC-
SD) pp 183-192, Hamburg, July 2012.

[73] F. Morandat, B. Hill, L. Osvald and J. Vitek,
Evaluating the Design of the R Language. In

https://doi.org/10.1145/3567512.3567530
https://doi.org/10.1145/3519939.3523729
https://doi.org/10.1145/3486602.3486768
https://doi.org/10.1145/3276945.3276946
https://doi.org/ 10.4230/LIPIcs.ECOOP.2019.2
https://doi.org/10.1145/3276945.3276948
https://doi.org/10.4230/LIPIcs.ECOOP.2018.12
https://doi.org/10.1007/978-3-319-89884-1_31
https://doi.org/10.1145/3213846.3213863
https://doi.org/10.4230/LIPIcs.ECOOP.2017.4
https://doi.org/10.1007/978-3-319-66107-0_31
https://doi.org/10.1109/RTAS.2017.38
https://doi.org/10.1145/2837614.2837630

Jan Vitek 7

European Conference on Object-Oriented Pro-
gramming (ECOOP) Beijing, June 2012.

[74] T. Kalibera, M. Mole, R. E. Jones and J. Vitek.
A black-box approach to understanding concur-
rency in DaCapo. In Conference on Object-
Oriented Programming Systems, Languages and
Applications (OOPSLA), pp. 335-354, Tuc-
son, October 2012.

[75] F. Meawad, G. Richards, F. Morandat and J.
Vitek. Eval begone!: semi-automated removal
of eval from JavaScript programs. In Confer-
ence on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pp.
607-620, Tucson, October 2012.

[76] J. Vitek, T. Kalibera. Repeatability, reproducibil-
ity, and rigor in systems research. In Interna-
tional Conference on Embedded Software (EM-
SOFT), Taipei, October, 2011.

[77] J. Vitek. Virtualizing real-time embedded sys-
tems with Java. In Design Automation Confer-
ence (DAC), San Diego, June, 2011.

[78] A. Milanova, J. Vitek. Static Dominance Infer-
ence. In Conference on Objects, Models, Com-
ponents, Patterns (TOOLS), Zurich, June, 2011.

[79] G. Richards, A. Gal, B. Eich, J. Vitek. Auto-
mated Construction of JavaScript Benchmarks.
In Conference on Object-Oriented Programming
Systems, Languages and Applications (OOP-
SLA), pages 677–694, 2011.

[80] G. Richards, C. Hammer, B. Burg, J. Vitek.
The Eval that Men Do: A Large-scale Study of
the Use of Eval in JavaScript Applications. In
European Conference on Object-Oriented Pro-
gramming (ECOOP), pages 52–78, Lancaster
July 2011.

[81] F. Pizlo, E. Blanton, P. Maj, J. Vitek, L. Ziareck.
Schism: Fragmentation-Tolerant Real-Time Gar-
bage Collection. In Programming Language De-
sign and Implementation Conference (PLDI),
Toronto, June 2010.

[82] G. Richards, S. Lesbrene, B. Burg, J. Vitek. An
Analysis of the Dynamic Behavior of JavaScript
Programs. In Programming Language Design
and Implementation Conference (PLDI), Toronto,
June 2010.

[83] M. Vaziri, F. Tip, J. Dolby, C. Hammer, J.
Vitek. A Type System for Data-Centric Syn-
chronization. In In European Conference on
Object-Oriented Programming (ECOOP), pages
304–328, Maribor, Slovenia, June, 2010.

[84] F. Pizlo, L. Ziareck, E. Blanton, P. Maj, J.
Vitek. High-level Programming of Embedded
Hard Real-Time Devices. In European Con-
ference on Computer Systems (EUROSYS),
Paris, April 2010.

[85] T. Wrigstad F. Zappa Nardelli, S. Lebresne, J.
Ostlund, J. Vitek. Integrating of Typed and
Untyped Code in a Scripting Language. InACM

Symposium on Principles of Programming Lan-
guages (POPL), Madrid, January 2010.

[86] M. Schoeberl, F. Brandner, J. Vitek. RTTM:
Real-Time Transactional Memory. In Sympo-
sium on Applied Computing, Real-Time Systems
Track (SAC), Sierre, March 2010.

[87] T. Kalibera, F. Pizlo, A. Hosking, J. Vitek.
Scheduling Hard Real-time Garbage Collection.
In Real-Time Systems Symposium (RTSS), Wash-
ington D.C., December 2009.

[88] B. Bloom, J. Field, N. Nystrom, J. Ostlund, G.
Richards, R. Strnisa, J. Vitekand T. Wrigstad.
Thorn—Robust, Concurrent, Extensible Script-
ing on the JVM. In Conference on Object-Oriented
Programming Systems, Languages and Applica-
tions (OOPSLA), 20 p., Orlando, October 2009.

[89] T. Kalibera, M. Prochazka, F. Pizlo, J. Vitek,
M. Zulianello, M. Decky. Real-time Java in
Space: Potential Benefits and Open Challenges.
In DAta Systems In Aerospace (DASIA), 10
pp., Istanbul, June 2009.

[90] T. Wrigstad, F. Pizlo, F. Meawad, L. Zhao, J.
Vitek. Loci: Simple Thread-Locality for Java.
In European Conference on Object Oriented Pro-
gramming (ECOOP), Genova, June 2009.

[91] A. Cunei, R. Guerraoui, J. Spring, J. Privat, J.
Vitek. High-Performance Transactional Event
Processing. In the International Conference on
Coordination Models and Languages (COOR-
DINATION), pp. 27–46, Madrid, June 2009.

[92] J. Auerbach, J. H. Spring, D. Bacon, R. Guer-
raoui, J. Vitek. A Unified Restricted Thread
Programming Model for Java. In Conference
on Languages, Compilers, and Tools for Em-
bedded Systems (LCTES), Tucson, pp. 1–11,
June 2008.

[93] F. Pizlo, J. Vitek. Memory Management for
Real-time Java: State of the Art. In Interna-
tional Symposium on Object-oriented Real-Time
Distributed Computing (ISORC), pp. 248–254,
Orlando, May 2008.

[94] M. Hirtzel, B. Bloom, N. Nystrom, J. Vitek.
Matchete: Paths through the Pattern Matching
Jungle. In Symposium on Practical Aspects of
Declarative Languages (PADL), San Francisco,
pp. 150–166, January 2008.

[95] J. H. Spring, J. Privat, R. Guerraoui, J. Vitek.
StreamFlex – High performance stream program-
ming in Java. Conference on Object-Oriented
Programming Systems, Languages and Applica-
tions (OOPSLA), pp. 211–228, Montreal, Oc-
tober 2007.

[96] F. Pizlo, A. Hosking, J. Vitek. Hierarchical
Real-time Garbage Collection. In Conference
on Languages, Compilers, and Tools for Em-
bedded Systems (LCTES), pp. 123–133, San
Diego, June 2007.

Jan Vitek 8

[97] J.H. Spring, F. Pizlo, R. Guerraoui, J. Vitek.
Reflexes: Abstractions for Highly Responsive
Systems. In Conference on Virtual Execution
Environments (VEE), pp. 191–201, San Diego,
June 2007.

[98] J. Baker, A. Cunei, F. Pizlo, J. Vitek. Accurate
Garbage Collection in Uncooperative Environ-
ments with Lazy Pointer Stacks. In Conference
on Compiler Construction (CC), pp. 64–79,
Braga,q March 2007.

[99] M. Kalpka, R. Guerraoui, J. Vitek. STMBench7:
A Benchmark for Software Transactional Mem-
ory. In European Conference on Computer Sys-
tems (EUROSYS), Lisbon, pp. 315–324, March
2007.

[100] F. Pizlo, J. Vitek. An Empirical Evalutation
of Memory Management Alternatives for Real-
time Java. In 27th Real-Time Systems Sympo-
sium (RTSS), pp. 35–46, Rio de Janeiro, De-
cember 2006.

[101] H. Yamauchi, J. Vitek. Combining Offline and
Online Optimizations: Register Allocation and
Method Inlining. InASIAN Symposium on Pro-
gramming Languages and Systems (APLAS),
pp. 307–322, Sydney, November 2006.

[102] C. Andrea, Y. Coady, C. Gibbs, J. Noble, J.
Vitek, T. Zhao. Scoped Types and Aspects for
Real-Time Systems. In European Conference on
Object Oriented Programming (ECOOP), pp.
124–147, Nantes, July 2006.

[103] A. Cunei, J. Vitek. A New Approach to Real-
time Checkpointing. In Conference on Virtual
Execution Environments (VEE), pp. 68–77,
Ottawa, June 2006.

[104] J. Baker, A. Cunei, C. Flack, F. Pizlo, M. Proc-
hazka, J. Vitek, A. Armbuster, E. Pla, D. Holmes.
Real-time Java in Avionics Applications. In
Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), pp. 384–396,
San Jose, April 2006.

[105] J. Manson, J. Baker, A. Cunei, S. Jagannathan,
M. Prochazka, B. Xin, J. Vitek. Preemptible
Atomic Regions for Real-time Java. In Real-
Time Systems Symposium (RTSS), pp. 62–71,
Miami, December 2005.

[106] A. Cunei, J Vitek, PolyD: A Flexible Dispatch-
ing Framework, In Conference on Object-Oriented
Programming Systems, Languages and Applica-
tions (OOPSLA), pp. 487–504, San Diego,
October 2005.

[107] O. Vitek, C. Bailey-Kellogg, B. Craig, P. Kulin-
iewicz, J. Vitek, Reconsidering Complete Search
Algorithms for Protein Backbone NMR Assign-
ment. In European Conference on Computa-
tional Biology (ECCB), pp. 236–245, Vienna,
September 2005.

[108] R. Gopalakrishna, E. Spafford, J. Vitek. Effi-
cient Intrusion Detection using Automaton In-
lining. In Symposium on Security and Privacy
(S&P), pp. 18–31, Oakland, May 2005.

[109] T. Zhao, J. Noble, J. Vitek, Scoped Types for
Real-time Java, In Real-Time Systems Sympo-
sium (RTSS), pp. 241–251, Lisbon, December
2004.

[110] B. Carbunar, I. Ioannidis, A. Grama, J. Vitek.
A Secure Crediting Protocol for Hybrid Cellular
and Ad-Hoc Networks. In Conference on E-
Business and Telecommunication Networks
(ICETE). pp. 142–149, Setubal, August 2004.

[111] B. Carbunar, A. Grama, J. Vitek. Coverage
Preserving Redundancy Elimination in Sensor
Networks. In Conference on Sensor and Ad-Hoc
Communications and Networks (SECON). 2004.

[112] B. Carbunar, A. Grama and J. Vitek. Dis-
tributed and Dynamic Voronoi Overlays for Cov-
erage Detection and Distributed Hash Tables
in Ad-Hoc Networks. In International Confer-
ence on Parallel and Distributed Systems (IC-
PADS), pp. 549–559, Newport Beach, July
2004.

[113] F. Pizlo, J. Fox, D. Holmes and J. Vitek. Real-
Time Java scoped memory: design patterns and
semantics. In International Symposium on Object-
oriented Real-Time Distributed Computing (IS-
ORC), pp. 101–112, Vienna, May 2004.

[114] J. Vitek, S. Jagannathan, A. Welc and A.L.
Hosking. A semantic framework for designer
transactions. In European Symposium on Pro-
gramming (ESOP), pp. 249–263, Barcelona,
April 2004.

[115] S. Jagannathan and J. Vitek. Optimistic con-
currency semantics for transactions in coordina-
tion languages. In Conference on Coordination
Models and Languages (COORDINATION),
pp. 183–198, Pisa, March 2004.

[116] T. Chothia, D. Dugganand J. Vitek, Princi-
pals, Policies and Keys in a Secure Distributed
Programming Language. In Computer Security
Foundations (CSF), pp. 170–180 Turku, July,
2003.

[117] T. Zhao, J. Palsberg and J. Vitek. Lightweight
confinement for featherweight Java. In Confer-
ence on Object-Oriented Programming Systems
and Languages (OOPSLA), pp. 135–148, San
Diego, October 2003.

[118] T. Chothia, D. Duggan and J. Vitek. Type-
based distributed access control. In Computer
Security Foundations Workshop (CSFW), pp.
170 – 187, Pacific Grove, July 2003.

[119] K. Palacz and J. Vitek. Subtype tests in real
time. In European Conference on Object Ori-
ented Programming (ECOOP), pp. 378–404,
Darmstadt, July 2003.

Jan Vitek 9

[120] K. Palacz, J. Baker, C. Flack, C. Grothoff, H.
Yamauchi and J. Vitek. Engineering a customiz-
able intermediate representation. In Workshop
on Interpreters, Virtual Machines and Emula-
tors (IVME), pp. 1–12, San Diego, June 2003.

[121] K. Palacz, G. Czaikowski, L. Daynes and J.
Vitek. Incommunicado: a communication sub-
strate for Isolates. In Conference on Object-
Oriented Programming Systems and Languages
(OOPSLA), pp. 262–274, Seattle, November
2002.

[122] B. Carbunar, M. T. Valente and J. Vitek. Lime
revisited. In International Conference on Mo-
bile Agents (MA), pp. 54–69, Atlanta, Decem-
ber 2001.

[123] C. Grothoff, J. Palsberg and J. Vitek. Encap-
sulating objects with confined types. In Con-
ference on Object-Oriented Programming Sys-
tems and Languages (OOPSLA), pp. 241–255,
Florida, October 2001.

[124] P. Sewell and J. Vitek. Secure composition of
untrusted code: wrappers and causality types.
In Computer Security Foundations Workshop
(CSFW), pp. 269–284, Cambridge, July 2000.

[125] P. Sewell and J. Vitek. Secure composition of
insecure components. In Computer Security Foun-
dations Workshop (CSFW), pp. 136–150, Mor-
dano, June 1999.

[126] C. Bryce, M. Oriol and J. Vitek. Secure object
spaces: a coordination model for agents. In In-
ternational Conference on Coordination Models
and Languages (COORDINATION), pp. 4–
20, Amsterdam, April 1999.

[127] B. Bokowski and J. Vitek. Confined types. In
ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applica-
tions (OOPSLA), pp. 82–97, Denver, October
1999.

[128] J. Vitek and C. Bryce. Security for mobile code:
the JavaSeal experiment. In Agent Systems and
Applications Mobile Agents (ASA/MA), pp.
103–118, Palm Springs, October 1999.

[129] Q. Bradley, R. N. Horspool and J. Vitek. JAZZ:
An efficient compressed format for Java archive
files. In IBM CASCON Conference (CAS-
CON), pp. 294–302, Toronto, December 1998.

[130] J. Noble, J. Vitek and J. Potter. Flexible alias
protection. In European Conference on Object-
Oriented Programming (ECOOP), pp. 158–
185, Brussels, July 1998.

[131] J. Vitek, R.N. Horspool and A. Krall. Efficient
type inclusion tests. In Conference on Object-
Oriented Programming Systems, Languages and
Applications (OOPSLA), pp. 142–157, San
Jose, October 1997.

[132] A. Krall, J. Vitek and R.N. Horspool. Near
optimal hierarchical encoding of types. In In

European Conference on Object-Oriented Pro-
gramming (ECOOP), pp. 128–146, Jyvaskyla,
June 1997.

[133] A. Krall and J. Vitek. On extending Java. In
Joint Modular Languages Conference (JMLC),
pp. 321–325, Linz, March 1997.

[134] J. Vitek and R. N. Horspool. Compact dis-
patch tables for dynamically typed object ori-
ented languages. In Conference on Compiler
Construction (CC), pp. 309–326, Linkoping,
April 1996.

[135] K. Driesen, U. Hölzle and J. Vitek. Message
dispatch on pipelined processors. In European
Conference on Object-Oriented Programming
(ECOOP), pp. 253–283, Åarhus, August 1995.

[136] J. Vitek and R. N. Horspool. Taming message
passing: efficient method look-up for dynami-
cally typed languages. In European Conference
on Object-Oriented Programming (ECOOP),
pp. 432–449, Bologna, July 1994.

[137] J. Vitek, R.N. Horspool and J. Uhl. Compile-
time analysis of object-oriented programs. In
Conference on Compiler Construction (CC), pp.
236–250, Paderborn, October 1992.

[138] R. N. Horspool and J. Vitek. Static analysis of
PostScript code. In International Conference
on Computer Languages (ICCL), pp. 14–23,
Oakland, April 1992.

Refereed Workshop Publications

[139] A.Goel, J. Vitek. RDT: A Dynamic Tracing
Framework for R. In Workshop on R Imple-
mentation, Optimization and Tooling (RIOT),
Toulouse, 2019.

[140] A.Turcotte, J. Vitek. In Workshop on Imple-
mentation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems (ICO-
OOLPS), London, 2019.

[141] B. Chung, J. Vitek. Monotonic Gradual Typing
in a Common Calculus. In Workshop on For-
mal Techniques for Java-like Programs, (FT-
fJP), Amsterdam, 2018.

[142] J. Vitek. What can R learn from Julia. In
userR!, Stanford, 2016.

[143] B. Chung, P. Li, J. Vitek. Static Typing With-
out Static Types - Typing Inheritance from the
Bottom Up. InWorkshop on New Object-Oriented
Languages, (NOOL), Amsterdam, 2016.

[144] A. Takikawa, D. Feltey, B. Greenman, M. New,
J. Vitek, M. Felleisen. Position Paper: Per-
formance Evaluation for Gradual Typing. In
Scripts to Programs (STOP), Prague, July 2015.

[145] R. Macnak, F. Morandat, B. Hill, L. Osvald and
J. Vitek. TraceR: A framework for understand-
ing R performance. In International R Users
Meeting (UseR!), Nashville, June, 2012.

Jan Vitek 10

[146] F. Meawad, K. Iyer, M. Schoeberl, J. Vitek.
Real-TimeWait-free Queues using Micro-Trans-
actions. In International Workshop on Java
Technologies for Real-time and Embedded Sys-
tems (JTRES), York, September 2011.

[147] F. Meawad, B. Macnak, J. Vitek. Collecting
Transactional Garbage. In TRANSACT, June,
2011.

[148] N. Kidd, S. Jagannathan, J. Vitek. One Stack
to Run Them All: Reducing Concurrent Analy-
sis to Sequential Analysis Under Priority Schedul-
ing. In SPIN Workshop on Model Checking of
Software (SPIN), Enschede, September 2010.

[149] D. Tang, A. Plsek, J. Vitek. Static Checking
of Safety Critical Java Annotations. In Work-
shop on Java Technologies for Real-time and
Embedded Systems (JTRES), Prague, Septem-
ber 2010.

[150] A. Plsek, L. Zhao, V. Sahin, D. Tang, T. Kalib-
era, J. Vitek. Developing Safety Critical Java
applications with oSCJ/L0. In Workshop on
Java Technologies for Real-time and Embedded
Systems (JTRES), Prague, September 2010.

[151] T. Kalibera, P. Parizek, G. Haddad, G. Leavens,
J. Vitek. Challenge Benchmarks for Verification
of Real-time Programs. In Workshop on Pro-
gramming Languages meets Program Verifica-
tion (PLPV), 6 pages, Madrid, January 2010.

[152] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek,
B. Titzer, J. Vitek. CDx: A Family of Real-
time Java Benchmarks. In Workshop on Java
Technologies for Real-time and Embedded Sys-
tems (JTRES), Madrid, September 2009.

[153] L. Zhao, D. Tang, J. Vitek. A Technology Com-
patibility Kit for Safety Critical Java In Work-
shop on Java Technologies for Real-time and
Embedded Systems (JTRES), Madrid, Septem-
ber 2009.

[154] F. Pizlo, L. Ziarek, J. Vitek. Towards Java on
Bare Metal with the Fiji VM. In Workshop on
Java Technologies for Real-time and Embedded
Systems (JTRES), Madrid, September 2009.

[155] T. Wrigstad, P. Eugster, J. Field, N. Nystrom,
J. Vitek. Software Hardening: A Research Agenda.
In Workshop on Script to Program Evolution
(STOP), Genoa, July 2009.

[156] S. Lebresne, G. Richards, J. Östlund, T. Wrigstad,
J. Vitek. Understanding the Dynamics of Java-
Script. In Workshop on Script to Program Evo-
lution (STOP), Genoa, July 2009.

[157] J. Hunt, D. Locke, K. Nilsen, M. Schoeberl,
J. Vitek. Java for Safety-Critical Applications.
In Certification of Safety-Critical Software Con-
trolled Systems (SafeCert), York, March 2009.

[158] M. Schoeberl, J. Vitek. Garbage Collection for
Safety Critical Java. InWorkshop on Java Tech-
nologies for Real-time and Embedded Systems
(JTRES), Vienna, September 2007.

[159] I. Dragos, A. Cunei, J. Vitek. Continuation
in the Java Virtual Machine. In Workshop on
Implementation, Compilation, Optimization of
Object-Oriented Languages, Programs and Sys-
tems (ICOOOLPS), Berlin, July 2007.

[160] Y. Coady, C. Gibbs, M. Haupt, J. Vitek, H.
Yamauchi. Towards a domain specific language
for virtual machines. In Domain-Specific Aspect
Languages Workshop (DSAL), Portland Octo-
ber 2006.

[161] J. Manson, S. Jagannathan, and J. Vitek. Dy-
namic Aspects for Runtime Fault Determina-
tion and Recovery. In Dynamic Aspects Work-
shop (DAW), Chicago, March 2005.

[162] F. Pizlo, M. Prochazka, S. Jaggannathan and
J. Vitek. Transactional lock-free data structure
for Real Time Java. In Workshop on Concur-
rency and Synchronization in Java Programs,
St John’s, Newfoundland, July 2004.

[163] B. Carbunar, M.T. Valente and J. Vitek. Core-
Lime: a coordination model for mobile agents.
InWorkshop on Concurrency and Coordination,
Lipary, July 2001.

[164] J. Vitek and G. Castagna. Mobile computations
and hostile hosts. In Journées Francophones
des Langages Applicatifs (JFLA), pp. 113–132,
Avoriaz, February 1999.

[165] J. Vitek. New Paradigms in distributed com-
puting. In European Research Seminar in Ad-
vanced Distributed Systems (ERSADS), pp. 117–
122, Zinal March 1997.

[166] J. Vitek. Secure object spaces. In Workshop
on Mobile Object Systems (MOS), pp. 41-48,
Linz, July 1996.

Book Chapters

[192] J. Vitek. The Case for the Three R’s of Systems
Research: Repeatability, Reproducibility and
Rigor (Keynote). In Conference on Virtual Ex-
ecution Environments, (VEE), Salt Lake City,
March 2014.

[193] R. Hirschfeld, S. Krishnamurthi, J. Vitek. Foun-
dations for Scripting Languages, pp 1–18, Dagstuhl
Reports, 2192-5283, 2012.

[194] J. Vitek and T. Kalibera. R3: Repeatability,
reproducibility and rigor. In ACM SIGPLAN
Notices, 47(4a), pp. 30-36, April 2012.

[195] J. Vitek. Introduction to: The Myths of Object-
Orientation. European Conference on Object
Oriented Programming (ECOOP), July 2009.

[196] J. Vitek, C. Bryce and W. Binder. Designing
JavaSeal, or how to make Java safe for agents.
In Electronic Commerce Objects, pp. 105-126,
U. of Geneva, 1998.

Jan Vitek 11

[197] J. Vitek. Compact dispatch tables for dynami-
cally typed programming languages. In Object
Applications, pp. 81-138, U. of Geneva, 1996.

[198] D. Konstantas, J.H. Morin and J. Vitek. ME-
DIA: A platform for the commercialization of
electronic documents. In Object Applications,
pp. 7-18, U. of Geneva, 1996.

[199] O. Nierstrasz, L. Dami, V. de Mey, M. Stadel-
mann, D. Tsichritzis and J. Vitek. Visual script-
ing – towards interactive construction of object-
oriented applications. In Object Management,
pp. 315-331, U. of Geneva, 1990.

[200] M. Stadelmann, G. Kappel and J. Vitek. VST:
a scripting tool based on the UNIX shell. In
Object Management, pp. 333-344, U. of Geneva,
1990.

[201] J. Vitek, B. Junod, O. Nierstrasz, S. Renfer and
C. Werner. Events and sensors: enhancing the
reusability of objects. In Object Management,
pp. 345-356, U. of Geneva, 1990.

[202] G. Kappel, J. Vitek, O. Nierstrasz, S. Gibbs, B.
Junod, M. Stadelmann and D. Tsichritzis. An
object-based visual scripting environment. In
Object Oriented Development, pp. 123-142, U.
of Geneva, 1989.

Invited Lectures

* Prof. Strangelove. Or: How I learned to stop
worrying and love dynamic languages. Invited talk
at the DLS Conference, Cascais, 2023.

* On the design and foundations of dynamic lan-
guages for scientific computing. Invited talk at
JuliCon, online 2021.

* On the design and foundations of dynamic lan-
guages for scientific computing. Keynote at the
JuliCon Conference, online 2021.

* Fitzcarraldo as a Metaphor for Research. Keynote
talk at the SPLASH 2020 Conference, online,
2020.

* R Melts Brains, or: How I Learned to Love Fail-
ing at Compiling R. Keynote talk at Why R?
2020 Conference, online, 2020.

• Getting everything wrong without doing any-
thing right! (On the perils of large-scale anal-
ysis of Github data). Invited talk at the Curry
On Conference, London, 2019.

* Adversarial Compilation. Keynote talk at Man-
aged Programming Languages and Runtimes (MPLR),
Athens, 2019.

* Meta-programming in Data Science. Keynote talk
at the META Workshop, Athens, 2019.

* Reasoning about programs: Soundness revis-
ited. Invited talk at the Prague computer sci-
ence seminar, Prague, 2019.

• On the perils of large-scale analysis of Github
data. Invited talk at PaperWeLove, London,
2019.

* The Beauty and the Beast – from Fortress to
Julia. Keynote talk at the International Con-
ference on Managed Languages and Runtimes
(ManLang), Linz, 2018.

* Engineering your software engineering resarch
career. Keynote talk at the ICSE Doctoral Sym-
posium, Gothenburg, 2018.

* Data analysis for the masses. Keynote talk at
the Federated Conference on Computer Science
and Information Systems, Prague, 2017.

* This is not a Type: Gradual typing in practice.
Keynote talk at the Scala Symposium, Amster-
dam, 2016.

* Benchmarks killed the beast: Understanding JS
performance for fun and profit. Keynote talk at
the International Large Scale JavaScript Con-
ference (MLOC.JS), Budapest, Hungary, 2015.

* Repeatability, reproducibility and rigor in CS
research. Invited talk at the SIGPLAN Pro-
gramming Language MentoringWorkshop, Mum-
bai, India, 2015.

* The Case for the Three R’s of Systems Research:
Repeatability, Reproducibility and Rigor.
Keynote talk at the Conference on Virtual Ex-
ecution Environments, Salt Lake City, March
2014.

* JavaScript Programmers Hate You: An ode to
dynamic languages. Invited talk at the Work-
shop on Software Correctness and Reliability,
Zurich, October 2013.

* Planet Dynamic or: How I Learned to Stop
Worrying and Love Reflection. Invited talk at
the SIGPLAN Programming Languages Men-
toring Workshop, Rome, 2013.

* JavaScript Programmers Hate You. Keynote talk
at at Formal Techniques for Java-like Programs,
Montpellier, 2013.

* Planet Dynamic or: How I Learned to Stop
Worrying and Love Reflection. Keynote talk
at the 10th Asian Symposium on Programming
Languages and Systems, Kyoto, 2012.

* Repeatability, Reproducibility and Rigor. In-
vited talk at the Conference on Languages Com-
pilers and Tools for Embedded Systems, Beijing,
2012.

* Thorn: Objects, Scripts and more... Invited
talk at the Concurrent Objects and Beyond Sym-
posium in Honor of Professor Akinori Yonezawa’s
65th Birthday, Kobe, 2012.

* The Rise of Dynamic Language for Scientific
Computing, Invited talk at the Microsoft Fac-
ulty Summit, Redmond, 2011.

* The Rise of Dynamic Language, Lecture at the
ECOOP Summer School, Lancaster, 2011.

Jan Vitek 12

* Of Scripts and Programs: Tall tales, Urban Leg-
ends, and Future Prospects. Keynote talk at
the Analysis and Programming Languages for
Web Applications and Cloud Applications, Tor-
onto, 2010.

* Is Java Ready for Real-time?, Invited talk at
theMidwest Verification Day (MVD), U of Iowa,
September, 10.

* Of Scripts and Programs: Tall tales, Urban Leg-
ends and Future Prospects, Keynote talk at the
Dynamic Languages Symposium, Orlando, 2009.

* Programming Models for Concurrency and Real-
time. Keynote talk at the 47th International
Conference on Objects, Models, Components, Pat-
terns (TOOLS), Zurich, 2009.

* Memory Management for Hard Real-time Sys-
tems. Invited talk at the Workshop on Vir-
tual Machines and Intermediate Languages for
emerging modularization mechanisms, Nashville,
2008.

* Programming models for Concurrency and Real-
time. Invited talk at XII Brazilian Symposium
on Programming Languages, Fortaleza, 2008.

* Programming models for Concurrency and Real-
time. Invited talk at Programming Language
Approaches to Concurrency and Communication-
cEntric Software, Oslo, 2008.

* Semantics-based Intrusion Detection, Invited Talk
at the Foundations of Computer Security, Chicago,
2005.

* Java for Hard Real-Time, Invited Talk at the
Workshop on Implementation, Compilation, Op-
timization of Object-Oriented Languages, Pro-
grams and Systems, Nantes, 2006.

* Advances in Intrusion Detection, Keynote talk
at the Program Analysis for Security and Safety
Workshop (PASSWORD), Nantes, 2006.

Talks at International Meetings

* On the Impact of Programming Languages on
Code Quality. OOPSLA, Athens, 2019.

* Do programming languages matter for correct-
ness of code?, ETAPSMentoringWorkshop, Prague,
2019.

* Integrated Trustworthy Scripting Languages. ONR
TCP, Seattle, 2018.

* The Beauty and the Beast — from Fortress to
Julia. IFIP Working Group on Language De-
sign, Antwerp, 2018.

* What You Need to Know about Performance
Evaluation. ECOOP Summer School, Barcelona,
2017.

* Removing Abstraction Layers Dynamically. Work-
shop on Forming an Ecosystem Around Soft-
ware Transformation, (FEAST), Vienna, 2016.

* 25 years of OO. ECOOP Summer School, Rome,
2016.

* Making R Run Fast. Boston R Meet Up, Boston,
2016.

* A fast abstract syntax tree interpreter for R.
Virtual Exectuion Envinronments, Salt Lake City,
UT, March, 2014.

* Planet Dynamic or: How I Learned to Stop
Worrying and Love Reflection, NSA HCSS Con-
ference, May 13

* R in Java. UseR!, Albacete, July 13.

* Understanding R. Foundations of Scripting Lan-
guages, Dagstuhl, January, 12.

* Repeatability, Reproducibility and Rigor. IFIP
Working Group 2.4 , Vadvestena, Sweden, 12.

* Taming the Tiger: How to scale R to bigger
data. Purdue Symposium on Statistics, West
Lafayette, June 12.

* Evaluating the Design of the R Language. Eu-
ropean Conference on Object Oriented Program-
ming, Beijing, June 12.

* CDx: A Family of Real-time Java Benchmarks.
Workshop on Java Technologies for Real-time
and Embedded Systems , Madrid, September 09.

* A Technology Compatibility Kit for Safety Crit-
ical Java. Workshop on Java Technologies for
Real-time and Embedded Systems, Madrid, Septem-
ber 09.

* Software Hardening: A Research Agenda. Work-
shop on Script to Program Evolution, Genoa,
July 09.

* Programming Real-time Embedded Systems in
Java. Summer school part of the Wroclaw In-
formation Technology Initiative, Wroclaw, May
09.

* Java for Safety-Critical Applications, Certifica-
tion of Safety-Critical Software Controlled Sys-
tems, York, March 09.

* Large-Scale Embedded Programming, Software
Quality Symposium, ETHZ, Zurich, 07.

* Programming Highly Responsive Systems, IFIP
Working Group 2.4, Lake Arrowhead, CA, 07.

* Transactions and Composability: Transactions
Considered Harmful? IBM Workshop on Trans-
actional Memory and Programming Technolo-
gies, Armonk, March 07.

* Data-centric Synchronization, IBM Workshop
on Transactional Memory and Programming Tech-
nologies, Armonk, March 07.

* How not to get a job in research, Summer School
on Trends in Concurrency, Bertinoro, July 06.

Jan Vitek 13

* Scoped Types and Aspects for Real-Time Sys-
tems, European Conference on Object Oriented
Programming, Nantes, July 06.

* Real-time Java in Avionics Applications. Real-
Time and Embedded Technology and Applica-
tions Symposium, 06.

* Preemptible Atomics, IFIP Working Group 2.4,
Jackson’s Mill, West Virginia, October, 05.

* Preemptible Atomics, IFIP Working Group 2.4
, Jackson’s

* Memory Safe RTSJ Programming, Safety & Mis-
sion Critical Workshop, Palo Alto, September
05.

* Preemptible Atomic Regions, SUN Microsys-
tems, August 05.

* Adopting Ownership Types, Dagstuhl Tool for
Types Workshop, Dagstuhl, June, 05.

* Stealth Types, Foundations of Object-Oriented
Languages panel on Extreme Typing, Long Beach,
CA, January 11, 05.

* The Real-time Specification for Java: issues and
opportunities, IFIP Working Group 2.4, Baden,
January 05.

* Scoped Types for Real-time Java, International
Real-Time Systems Symposium Lisbon, Decem-
ber 04.

* A semantic framework for designer transactions,
European Symposium on Programming, Barcelona,
April 04.

* Transactional Facilities for Java. Conference
on Object Oriented Programming Systems, Lan-
guages and Applications, Vancouver, 04.

* Security and Coordination. School on Foun-
dations of Security Analysis and Design, Italy,
September 04.

* Real-time Java with the Ovm virtual machine.
Real-time Java Symposium, DARPA, Arlington,
July 04.

* Engineering Intermediate Representations, IFIP
Working Group 2.4, Santa Cruz, July 03.

* Lightweight confinement for featherweight Java,
Conference on Object-Oriented Programming Sys-
tems and Languages, San Diego, October 03.

* Subtype tests in real time. In European Confer-
ence on Object Oriented Programming, Darm-
stadt, July 03.

* Engineering a customizable intermediate rep-
resentation, Workshop on Interpreters, Virtual
Machines and Emulators, San Diego, June 03.

* Encapsulating objects with confined types, Con-
ference on Object-Oriented Programming Sys-
tems and Languages, Tempa, October 01.

* Confined Types, IFIP Working Group 2.4, Italy,
July 01.

* Confined types, Conference on Object-Oriented
Programming Systems, Languages and Applica-
tions, Denver, October 1999.

* Efficient type inclusion tests, Conference on Object-
Oriented Programming Systems, Languages and
Applications, San Jose, October 1997.

* Near optimal hierarchical encoding of types, Eu-
ropean Conference on Object-Oriented Program-
ming, Jyvaskyla, June 1997.

* Compact dispatch tables for dynamically typed
object oriented languages, Conference on Com-
piler Construction, Linkoping, Sweden, April
1996.

* Taming message passing: efficient method look-
up for dynamically typed languages, European
Conference on Object-Oriented Programming,
Bologna, July 1994.

* Compile-time analysis of object-oriented pro-
grams, Conference on Compiler Construction,
Paderborn, October 1992.

Jan Vitek 14

Talks at Universities and Labs
National University of Singapore (24), Huawei
Research (23), INRIA (22), Charles Univer-
sisy (22), Oxford University (22), Imperial Col-
lege (21), King’s College (21), MIT (21), Czech
Technical University (20), University of Mas-
sachusetts, Amherst (19), University of Lugano
(19), University of Massachusetts, Amherst (18),
Brown (17), EPFL (16), Czech Technical Univer-
sity (15), University of California, Irvine (14),
The University of Massachusetts, Amherst (14),
Technion Institute of Technology (14), Tel Aviv
University (14), The Open University (14), In-
diana University (14), National Science Foun-
dation (14), Northeastern University (14), In-
stitute of Science and Technology Austria (14).
Northeastern University (13), Boston (13), Sam-
sung (13), Facebook (13), Charles University
(13), Czech Technical University, Prague (13).
Google (12), Stanford (12), UIUC (12), Ts-
inghua, (12). INRIA Rocquencourt (11), Ini-
tiative de Recherche et Innovation sur le Logi-
ciel Libre (11), Laboratoire d’Informatique de
Paris 6 (11), Microsoft Research, Redmond (11),
ETHZ (11). INRIA-Rennes (10). Imperial Col-
lege (09), Microsoft Research (09), Brown Uni-
versity (09), EPFL (09), University of Central
Florida (09). University of Lugano (08), INRIA
Rocquencourt (08), INRIA Rennes (08), Ecole
Polytechnique Fédérale Lausanne (08), Imperial
College (08), University of California, Los An-
geles (08), Edinburgh University (07), IBM T.J.
Watson (07), Charles University (07), Microsoft
Research (07), IBM T.J. Watson (06), Swiss Fed-
eral Institute of Technology Zurich (06), Univer-
sity of Bern (06), Ecole Polytechnique Fédérale,
Lausanne (06), Portland State University (06),
Microsoft Research (06), University of Utah (06),
University of Washington (05), Carnegie Mellon
University (05), University of Victoria (05), Uni-
versity of Alberta (05), University of Nice (03),
Tokyo University (01), University of Waterloo
(1999), University of Syracuse (1999), University
of Pennsylvania (1999), University of Toronto
(1999), University of Victoria (1999), University
of Rennes (1999).

Jan Vitek 15

Software artifacts

I have been instrumental in the development of some open source software systems.

[1] FastR: A partial implementation of the R language as a runtime-specializing abstract syntax tree
interpreter running on top of the JVM. Collaboration with Oracle Labs. Publications: [67], [73], [145].
Development: 2011–2014.
github.com/allr/fastr

[2] JSBench: A tool for extracting deterministic benchmark from JavaScript web pages using code in-
strumentation and record-replay. Collaboration with Microsoft, Mozilla and Apple. Publications: [79].
Development: 2011–2014. Press: https://www.facebook.com/PurdueCS/posts/10151644300119116
http://plg.uwaterloo.ca/~dynjs/jsbench/

[3] Thorn: A concurrent and distributed programming language which supports rapid software develop-
ment in the style of dynamic scripting languages as well as hardening of scripts into robust programs
with a gradual type system. Collaboration with IBM Research. Publications: [155], [156], [94], [88]].
Development: 2008–2012.
http://www.thorn-lang.org

[4] PJAz: The Purdue JavaScript Analyzer package is a trace-based analysis engine for JavaScript. PJAz
has been used to show that common benchmarks used in the industry to measure JS performance are
not representative of real-world programs and has invalidated widely held misconceptions about how
the language is being used. Publications: [82], [80], [156]. Development: 2009–2011.
http://plg.uwaterloo.ca/~dynjs/

[5] CDx: A benchmark suite consisting of plain Java, real-time Java and C programs that emulate a
collision detection application. CDx has been used to evaluate the performance of real-time Java virtual
machines. Publications: [87], [89], [152], [151]. Development: 2004–2012.
https://www.cs.purdue.edu/sss/projects/cdx/

[6] Flexotasks: A programming model and runtime system that lets developers mix highly responsive tasks
and timing-oblivious Java applications. Collaboration with IBM Research and EPFL. Publications: [97],
[95], [92], [91], [28]]. Development: 2007–2009.
http://flexotask.sourceforge.net

[7] StmBench7: A benchmark for evaluating TM implementations. It aims at providing a workload that
is both realistic and non-trivial to implement in a scalable way. The implementation (in Java and C++)
contains a lock-based synchronization strategy that can serve as a baseline for comparison with various
TMs. Collaboration with EPFL. Publications: [99]. Development: 2007–2010.
http://lpdserver.epfl.ch/transactions/wiki/doku.php?id=stmbench7

[8] Ovm: An open source framework for building virtual machines for Java-like languages. Ovm was used
in the first real-time JVM deployed on a UAV. Publications: [33], [40], [96], [98], [100], [101], [103],
[104], [105], [113], [120], [32], [31], [97], [102], [106]. Development: 2000–2008.
http://janvitek.org/soft/ovm/

[9] MBA: A tool for Model-Based protein backbone nuclear magnetic resonance Assignments. Publica-
tions: [35], [38], [107], [42]. Development: 2003–2005.
http://janvitek.org/soft/mba/

[10] Kacheck: A tool for analyzing Java programs for detecting confinement violations. Kacheck has been
used to analyze over 100MB of Java code. Publications: [34],[46], [47], [123], [127]. Development: 2000–
2002.
http://grothoff.org/christian/xtc/kacheck/

[11] JavaSeal: A mobile agent middleware system based on Java implementing the Seal Calculus. Publi-
cations: [41], [45], [128], [??], [164], [196], [165], [198]. Development: 1996–1999.

[12] Jazz: A compression tool for Java class files. Publication: [129]. Development: 1998.

github.com/allr/fastr
https://www.facebook.com/PurdueCS/posts/10151644300119116
http://plg.uwaterloo.ca/~dynjs/jsbench/
http://www.thorn-lang.org
http://plg.uwaterloo.ca/~dynjs/
https://www.cs.purdue.edu/sss/projects/cdx/
http://flexotask.sourceforge.net
http://lpdserver.epfl.ch/transactions/wiki/doku.php?id=stmbench7
http://janvitek.org/soft/ovm/
http://janvitek.org/soft/mba/
http://grothoff.org/christian/xtc/kacheck/

Jan Vitek 16

Graduated Students

[1] Julia Belyakova PhD NEU, “Decidable Subtyp-
ing of Existential Types for the Julia Language”,
23.

[2] Artem Pelenitsyn PhD NEU, “Type Stability in
Julia: A simple and efficeint optimization tech-
nique”, 23.

[3] Benjamin Chung PhD NEU, “A Type System for
Julia”, 23.

[4] Petr Maj (CVUT) PhD CVUT, “Analyzing
Large Code Repositories”, 22.

[5] Alexi Turcotte PhD NEU (with Prof. F. Tip),
“Optimizing Asynchronous JavaScript Applica-
tions”, 23.

[6] Aviral Goel PhD NEU, “Data-driven ecosystem
migration: Non-intrusive migration of Re ecosys-
tem from Lazy to Strict semantics”, 23.

[7] Oliver Flückiger PhD NEU, “Just-in-timeL As-
sumptions and Speculations”, 22.

[8] Gregor Richards PhD, “Refinement of Web Soft-
ware Motivated by Real-World Patterns”, 14.
(University of Waterloo)

[9] Filip Pizlo PhD, “Fragmentation tolerant real-
time garbage collection”, 12. (Apple)

[10] Jacques Thomas PhD, “Accommodative Manda-
tory Access Control” 11. (Amazon)

[11] Jesper H. Spring PhD (with Prof. Guerraoui).
“Reflexes: Programming Abstractions for Highly
Responsive Computing in Java”, 08.

[12] Rajeev Gopalakrishna PhD (with Prof. Spaf-
ford). PhD. “Metric-driven feedback mechanism
for secure software development”, 06. (Intel).

[13] Bogdan Carbunar PhD. “Coverage Problems in
Wireless Sensor Networks”, 05 (U of Florida)

[14] Krzyzstof Palacz PhD. “Crusoe–Towards a Mul-
ticomputer Execution Environment for Java”, 04.
(Sun Labs).

[15] Jan Ječmen MSc. 24.

[16] Ming-Ho Yee 22.

[17] Anna Bolotina, 20.

[18] Jakub Zitny, MSc, 17. (Czech Technical Uni)

[19] Nadya Ortiz MSc, 12. (Apple)

[20] Fadi Meawad MSc, 13. (Google)

[21] Brandon Hill MSc, 13. (Oracle Labs)

[22] Petr Maj MSc 11, (Sony).

[23] Daniel Tang MSc, 11. (Google)

[24] Johan Östlund MSc, 10. (Uupsala)

[25] Jason Baker MSc, 07, (Google).

[26] Hiroshi Yamauchi MSc, 07, (Google).

[27] Christian Grothoff MSc, 05 (Uni of Denver).

[28] Andrey Madan MSc, 04, (Medtronics).

[29] Gergana Markova MSc, 03 (IBM)

[30] Jason M. Fox MSc, 03 (JPL)

[31] James Liang MSc, 02 (Sandia).

Current Students

[1] Sebastian Krynski (CVUT) (19) [2] Jakob Haim (Purdue) (24)

Post-doctoral Researchers

[1] Aleksander Boruch-Gruszecki 24–

[2] Mickaël Laurent 24–

[3] Pierre Donat-Bouillud 20–

[4] Filip Krikava, 16–

[5] Tomas Kalibera 12–

[6] Alexander Kovalenko 19–23

[7] Ryan Culpepper, 17–22

[8] Konrad Siek, 16–22

[9] Paley Li, 15–18 (Oracle Research)

[10] Gustavo Petri, 12–15 (Université Paris 7)

[11] Rafal Kolanski, 13–14 (NICTA)

[12] Michal Malohlava, 12–13 (0xdata)

[13] Floreal Morandat, 11–12 (Uni. de Bordeaux)

[9] Nicholas Kidd, 09–10. (Google)

[10] Christian Hammer, 09–11 (Uni of Saarland)

[11] Ales Plsek, 09–11 (Oracle)

[12] Sylvain Lebresne, 08–09 (yakaz.com)

[13] Tomas Kalibera, 07–09 (Charles University)

[14] Tobias Wrigstad, 07–09 (Uni. of Uupsala)

[15] Antonio Cunei, 03–08 (TypeSafe)

[16] Jean Privat, 06–07 (Université du Québec)

[17] Marek Prochazka 03–05 (Euro.Space Agency)

[18] Jeremy Manson, 03–05 (Google)

[19] Michael Richmond, 02–03 (IBM Research)

Jan Vitek 17

Undergraduate students

Lionel Zoubritzky 18, Paul Laforgue 17, Ayaz Badouraly 17, Borja Lorente 18 (Twitter), Chakshu Goyal
18, Michal Vácha 18, Filippo Ghibellini 16, Ryan Macnack, 13 (Google). Brian Burg, 10 (University of
Washington). Brett Mravec, Jason Ward, Chris Abernathy, 10. Rob Gevers, 09 (Purdue). Daniel Tang, 08
(Purdue). William Harris, 07 (University of Wisconsin-Madison). Andrew McClure, 06. Zacchary Wiggins,
05. Paul Kuliniewicz, 04. Wenchang Liu, 04 (Purdue). Filip Pizlo, 04 (Purdue). Chris Willmore, 03. Andrey
Madan, 02 (Purdue). Ben Titzer, 03 (UCLA). Adam Lugowski, 02. Josh Moore, 02. Gergana Markova, 01
(Purdue). Theodore Witkamp, 03. Javed Siddique, Alen Montz, 04 (Purdue).

Internships

Ming-Ho Yee (19), Microsoft Research. Alexi Turcotte (19), Oracle Labs. Aviral Goel (19), Oracle
Labs. Artem Pelenitsyn (19), Twig IO. Scott Carr (14), Microsoft Research. Fadi Meawads (13),
Google. Gregor Richards (12), Oracle. Brandon Hill (12), Oracle. Fadi Meawads (12), Google. Gre-
gor Richards (11), Mozilla. Fadi Meawad (10), Microsoft Research. Lei Zhao (10), Oracle. Gregor Richards
(10), Microsoft Research. Daniel Tang (10), Google. Fadi Meawad (09), Google. Gregor Richards (09), IBM
Research. Armand Navabi (09), Microsoft. Johan Östlund (09), Adobe. Jesper Spring, IBM Research. Filip
Pizlo, Microsoft Resarch. Jacques Thomas, Google. Jacques Thomas, Microsoft. Krzystof Palacz, SUN
Labs. Adam Welc, SUN Labs. Hiroshi Yamauchi, SUN Labs. Gergana Markova, IBM Research. Filip
Pizlo, IBM Research. Christian Grothof, IBM Research. Andrew McClure, SUN Labs. Ben Titzer, SUN
Labs. Andrei Madan, Medtronics.

Teaching

I regularly teach introductory courses in programming, data science, distributed programming, senior software
engineering, embedded and programming languages, as well as graduate programming languages, software
engineering, and embedded systems. Many of the classes where new offerings or significant overhauls of
existing classes.

Fundamentals II: Introduction to Class-based Program Design. The course studies the class-
based program design and the design of abstractions that support the design of reusable software and libraries.
It covers the principles of object oriented program design, the basic rules of program evaluation, and examines
the relationship between algorithms and data structures, as well as basic techniques for analyzing algorithm
complexity. (Class designed and led by Ben Lerner)

Parallel Data Processing in MapReduce. Big data is a catchall term for datasets that are resource
intensive. I redesigned this class to introduce student to parallel and distributed processing technologies
for analyzing ‘big data’. The course covers programming paradigms and abstractions for data analysis at
scale. Students gain an understanding of the performance and usability trade-offs of various technologies and
paradigms. Students will become familiar with technologies such as Hadoop, Spark, H20 and TensorFlow
amongst other. Hands-on assignments focus on machine learning and data analysis tasks. The class builds on
known principles such as the design recipe, testing and code reviews.

Introduction to Data Science. I created this course at Northeastern to overview the practical issues and
techniques for data importing, tidying, transforming, and modeling. The course offers a gentle introduction
to techniques for processing big data. Programming is a cross-cutting aspect of the course. The course work
includes a term project based on real-world data. Required topics include: Data management and processing:
definition and background; Data transformation; Data import; Data cleaning; Data modeling; Relational
and analytic databases; Basics of SQL; Programming in R and/or Python; MapReduce fundamentals and
distributed data management; Data processing pipelines, connecting multiple data management and analysis
components; Interaction between the capabilities and requirements of data analysis methods (data structures,
algorithms, memory requirements) and the choice of data storage and management tools; Repeatable and
reproducible data analysis.

Program Design Paradigms. CS 5010 is the mandatory introductory course for students in the MS
program. The course has two distinct objectives. First, it will ensure that all MS students have the same
background in designing programs. This encompasses the entire design cycle, from problem analysis to the
development of test suites. Second, the course will also introduce students to programming as a people
discipline. Students will work in pairs, present code to panels, and learn to cope with an evolving code base.
(class designed and lead by Mitch Wand)

Jan Vitek 18

Embedded systems. Embedded Computer Systems is Purdue’s first embedded course. This course
introduces students to the challenges of real-time programming and introduce Java as a general-purpose
language capable of solving hard real-time problems. Low-level programs are written in C. The course covers
the following topics: concurrent programming, real-time programming, worst case execution time analysis,
schedulability analysis, real-time garbage collection, safety critical system verification and validation, model-
driven architectures. Students performed hand on experiments in a lab configured with the RTEMS real-time
operating system, LEON radiation-hardened processors, Real-time Java virtual machines, and the Rapita
static program analysis tools.

Software engineering. I overhauled Purdue’s SE curriculum for both graduate and undergraduate offer-
ings. The objective of the course is to teach the principles and practical techniques needed to engineer large-
scale, reliable, and secure systems. The course introduces students to a typical industrial setting where the
work is in small and specialized teams, and where the projects involve composing application from off-the-shelf
components rather than developing the applications from scratch. The course is based on the object-oriented
approach which is particularly appropriate for achieving these goals. The material ranges from design and
modeling, programming practices, refactoring, testings, design patterns and program analysis.

Programming languages. I designed this course around the book “Programming languages, an inter-
preter based approach” by Sam Kamin and Norman Ramsey and developed the additional materials and the
projects. The course studies programming languages through their operational semantics and language inter-
preters. It gives both a formal account of the languages, and a practical feeling for implementation concerns.

Introduction to C programming. Redesigning the C programming class was a major endeavor as it
entailed scaling the class from 50 students to over 280 as the department’s enrollment soared. Software for
automated grading had to be developed. I designed new assignments and project sequences, prepared short
videos for offline learning, and used technologies such as clickers for rapid classroom feedback. I gave the class
three times and my changes have been adopted by the following instructors.

Service

I enjoy helping to organize the community. I have served on over 50 conference program committees as a PC
member or a chair, and about as many workshops. I have founded several successful workshop series, starting
with Mobile Object Systems (MOS), the International Workshop on Aliasing, Confinement and Ownership
(IWACO), the Workshop on Languages, Compilers, and Hardware Support for Transactional Computing
(TRANSACT), the Scripts to Program Workshops (STOP), the International Workshop on Libraries, Lan-
guages and Compilers for Array Programming (ARRAY), the Machine Learning for Programming Languages
Workshop (ML4PL), the R Implementation, Optimization and Tooling Workshop (RIOT), the Workshop
on Speculative Side Channel Analysis (WoSSCA), and was the first program chair of Virtual Execution
Environments (VEE) as well as the co-founder of the Curry On conference (CURRYON). Together with his
colleagues Jagannathan and Grama, I founded and ran the first instances of the Summer School on Trends in
Concurrency (TiC) which were held in Bertinoro, Prague and Bengalore and attracted over 50 PhD students
each time. Together with Laurie Tratt we have created the Programming Language Implementation Summer
School (PLISS) which was held in Bertinoro. James Noble and I started the ECOOP Summer School and
the SPLASH-I tutorial series.

International Meetings and Schools Organized

[1] Curry On / REBASE conferences, 2015, 2016, 2017, 2018, 2019, 2020.

[2] Programming Language Mentoring Workshop, OOPSLA, Boston, 2018.

[3] Programming Language Implementation Summer School (PLISS), Bertinoro, 2017, 2019, 2022.

[4] Dagstuhl Seminar on Rethinking Experimental Methods in Computing, March 2016.

[5] ECOOP Summer School, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019.

[6] SPLASH-I Tutorial Series, 2013, 2015, 2018.

[7] The State of the Union JS (SOTU.JS), San Jose, April 2014.

[8] NSF DALI Workshop on Dynamic Languages for Scalable Data Analytics, Indianapolis, 2013.

[9] NSF Workshop on Programming with Big Data, Hawaii, 2013.

[10] Dagstuhl Seminar on Foundations for Scripting Languages, February 2012.

Jan Vitek 19

[11] Virtual Execution Environments for Scientific Computing NSF Workshop, Arlington, September 2010.

[12] IFIP WG 2.4 Working group meeting. Bormio, Italy, 2009

[13] Dagstuhl Seminar on Types for Tools: Applications of Type Theoretic Techniques June 2005.

[14] International Summer School on Trends in Concurrency, July 2006, 2008, 2010.

Comfy Chair

[1] European Joint Conferences on Theory and Practice of Software (ETAPS), Prague, 2019.

[2] European Conference on Object Oriented Programming, Amsterdam, July 2018.

[3] European Conference on Object Oriented Programming, Barcelona, July 2017.

[4] European Conference on Object Oriented Programming, Rome, July 2016.

[5] European Conference on Object Oriented Programming, Prague, July 2015.

[6] SIGPLAN SPLASH Conference, Indianapolis, October 2013.

General Chair

[1] Conference on Systems, Programming, Languages and Applications: Software for Humanity (SPLASH),
November 2018.

[2] Curry On Conference, (CurryOn), July 2015.

[3] Conference on Languages, Programming Language Design and Implementation (PLDI), June 2012.

[4] Conference on Languages, Compilers and Tools for Embedded Systems (LCTES), June 2011.

[5] International Memory Management Symposium (ISMM), 2010.

[6] Workshop on Languages, Compilers, & Hw Support for Transactional Computing (TRANSACT),
2006.

Program Chair

[1] Conference on Object-Oriented Programming Languages, Systems and Applications (OOPSLA), 2022.

[2] European Conference on Object Oriented Programming (ECOOP) 2008, 2022.

[3] Artifact Evaluation Committee, OOSPLA 2018, OOPSLA 2019, POPL 2015, ECOOP 2013, PLDI
2014.

[4] European Symposium on Programming (ESOP) 2015.

[5] Conference on Objects, Models, Components, Patterns (TOOLS Europe) 2010.

[6] Java Technologies for Real-time and Embedded Systems (JTRes) symposium 2010.

[7] European Conference on Object Oriented Programming (ECOOP) 2008.

[8] Conference on Coordination Models and Languages (COORDINATION) 2007.

[9] Conference on Virtual Execution Environments (VEE) 2005.

[10] Formal Techniques for Java-like Programs (FTfJP) workshop 2005.

[11] Java Technologies for Real-time and Embedded Systems (JTRes) workshop, 2005.

Conference Program Committees

* ACSD – International Conference on Application of Concurrency to System Design, 2012.

* AISB – Symposium on Software Mobility and Adaptive Behavior, 2001.

* ASA/MA – Agent Systems and Applications, Mobile Agents, 2001.

* APLAS – Asian Symposium on Programming Languages and Systems, 2012, 2014.

* CATS – Computing: The Australasian Theory Symposium, 2010.

* CC – International Conference on Compiler Construction, 2003, 2008, 2012, 2014, 2021.

* CD – Component Deployment, 2002, 2004.

* COORD – International Conference on Coordination Models and Languages, 2005, 2008, 2009.

* CSF – IEEE Computer Security Foundations Symposium, 2008.

Jan Vitek 20

* DATE – Design, Automation & Test in Europe, Conference, 2010.

* DLS – Dynamic Language Symposium Conference, 2010, 2014, 2015.

* ECOOP – European Conference on Object Oriented Programming, 1998, 2000, 2001, 2002, 2003,
2007, 2008, 2009, 2010, 2013, 2020.

* ESOP – European Symposium on Programming, 2002, 2007, 2009, 2011, 2014.

* EUC – IEEE/IFIP International Conference On Embedded and Ubiquitous Computing, 2008, 2010.

* GPCE – Conference on Generative Programming: Concepts & Experiences, 2013

* HVC – Haifa Verification Conference, 2014.

* HOTPAR – USENIX Hot Topics in Parallelism, 2013.

* ICFP – ACM SIGPLAN International Conference on Functional Programming, 2005.

* ICALP – International Conference on Automata, Languages and Programming, 2000.

* ISMM – International Symposium on Memory Management, 2010.

* ISORC – International Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing, 2012.

* JFLA – Journées Francophones des Langages Applicatifs, 1995, 1998, 2000.

* MASS – Symposium on Multi-Agent Security and Survivability, 2004, 2005.

* PLDI – Conference on Programming Language Design and Implementation, 2001, 2010, 2013.

* PPPJ – International conference on Principles and Practice of Programming in Java,2006.

* PODC – Symposium on Principles of Distributed Computing, 2010.

* POPL – ACM SIGPLAN Conference on Principles of Programming Languages, 2001, 2007, 2011.

* RTSS – IEEE International Real-Time Systems Symposium, 2009, 2010, 2011.

* SACMAT – Symposium on Access Control Models and Technologies, 2001, 2008.

* SNAPL – Summit on Advances in Programming Languages, 2015.

* TOOLS – TOOLS Europe, 2011, 2019.

* OOPS – Object Oriented Programming Languages and Systems 2004, 2005.

* OOPSLA – ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications, 2000, 2004, 2007, 2008, 2023.

* VEE – Virtual Execution Environments, 2011.

Workshop Program Committees

AcadPub – International Workshop on Academic Publishing 2.0, 2014. AIOOL – International Work-
shop on Abstract Interpretation of Object-Oriented Languages, 2005. ACP4IS – Workshop on Aspects,
Components, and Patterns for Infrastructure Software, 2003, 2004. ARRAY – Workshop on Libraries,
Languages, and Compilers for Array Programming, 2014, 2015. Bytecode – Workshop on Bytecode Seman-
tics, Verification Analysis and Transformation, 2007, 2008. CORD – Workshop on Concurrency, Real-Time
and Distribution in Eiffel (CORDIE), 2006. CPS – International Workshop on Cyber-Physical Systems,
2008. CSJP – Workshop on Concurrency and Synchronization in Java Programs, 2004. DDFP – Data
Driven Functional Programming Workshop, 2013. DOSW – Distributed Object Security Workshop. 1999.
Euro-Par – Euro-Par 2014 Workshops, 2014. Express – International Workshop on Expressiveness in
Concurrency, 2011. FOCLASA – International Workshop on the Foundations of Coordination Languages
and Software Architectures, 2004, 2005, 2007. FOOL – Workshop on Foundations of Object-Oriented
Languages, 2013. GCM – Green Computing Middleware, 2010, 2011, 2012. ICOOO – Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs and Systems. (ICOOOLPS), 2006, 2013,
2014, 2015. IWACO – International Workshop on Aliasing, Confinement and Ownership, 2003, 2007, 2014.
IWMSE – Third International Workshop on Multicore Software Engineering, 2010. IWAOOS – Intercon-
tinental Workshop on Aliasing in Object-Oriented Systems. 1999. JTRes – Workshop on Java Technologies
for Real-Time and Embedded Systems, 2003, 2004, 2005, 2006, 2007, 2008, 2009,, 2010, 2011, 2012, 2013,
2014, 2015. ML4PL – Machine Learning for Programming Languages, 2015. MOS – Mobile Object Sys-
tems Workshop, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 2003, 2004, 2005. OBT – Off-the Beaten
Track, 2014 PLACES – Programming Language Approaches to Concurrency and Communication-cEntric
Software, 2009, 2010, 2011, 2012. PLAS – Workshop on Programming Languages Analysis for Security,

Jan Vitek 21

2007 PLASTIC – Workshop on Programming Language And Systems Technologies for Internet Clients,
2011. PSW – Workshop on Programming the Semantic Web, 2012. PWD – Workshop on Program
Analysis for Security and Safety (PASSWORD), 2006 Scala – Annual Scala Symposium, 2015. SALAD
– Workshop on SoftwAre debLoating And Delayering, 2018. SecCo – International Workshop on Security
Issues in Coordination Models, Languages and Systems, 2003, 2004, 2005, 2007. RIOT – R Implementation,
Optimization and Tooling Workshop, 2015, 2019. STOP – Script to Program Evolution, 2009. TRUST
– Workshop on Reproducible Research Methodologies and New Publication Models, 2014. VMIL – Work-
shop on Virtual Machines and Intermediate Languages, 2009. WASD – Workshop on Advanced/Academic
Software Development Tools and Techniques, 2013. WSIC – Workshop on Secure Internet Computations.
Organizer 1999. WoSSCA – Workshop on Speculative Side Channel Analysis, 2018

Department and School service

At Purdue University:

• Graduate admissions Chair: 11 – 14.

• Graduate admissions: 04 – 05, 07 – 11.

• Hiring committee: 09, 14.

• Colloquium chair: 03, 04.

• Graduate committee: 99 – 02.

• Student appeal committee: 04 – 05, 10 – 12.

At Northeastern University

• Graduate committee: 2014.

• Graduate admission: 2015, 2017, 2018, 2019, 2022.

• Hiring committee: 2016.

Grants

[1] PI (100%) SHFL Small: Predictable Performance for Just-in-Time Compilation, NSF, $500,000, 22 –
25.

[2] PI (70%) CCRI: ENS: Collaborative Research: Enhancing R for Scalability and Deployment to Support
Scientific Communities, NSF, $1,791,794, 19 – 22.

[3] PI (100%) SHF: Small: Program Analysis for Data Science, NSF, $499,671, 19 – 22.

[4] Co-PI (50%) SHF: Small: Collaborative Research: A Rational Reconstruction of the Julia Type System,
NSF, $494,444, 19 – 22.

[5] Co-PI (40%) ABI Innovation: Scalable and Agile Analysis of Mass Spectrometry Experiments, NSF,
$791,794, 18 – 21.

[6] PI (30%) VerticA: Towards Integrated, Trustworthy, Scripting Languages, ONR, $1,596,197, 17 – 20.

[7] PI BigCode, Czech Operational Programme Research, Development, and Education, e1,890,000,
18 – 22.

[8] PI Evolving Language Ecosystems (ELE), ERC Advanced, e3,200,000 , 16 – 22.

[9] Co-PI (15%) SHF: Large Gradual Typing Across the Spectrum, NSF, $1,600,000, 15 – 19.

[10] PI SHF: Project Darwin, NSF, $1,099,000, 16 – 20.

[11] PI (50%) SHF: Small: Foundations of Just-in-Time Compilation, NSF, $436,000, 16 – 19.

[12] Co-PI (50%) SHF: Small Havoc: Verified Compiliation of Concurrent Managed Languages, NSF,
$400,000, 15 – 18.

[13] PI JavaScript Analysis, Google, $64,000, 16 –.

[14] PI HyDyS: Hybrid Dynamic/Static Analysis for Managed Languages, Google, $60,000, 14.

[15] PI FastR: Open Source R, Oracle Inc, $150,000, 13.

[16] PI Hybrid Dynamic and Static Techniques for Trustworthy Data Analytics, ONR, $600,000, 13 – 16.

[17] Co-PI (50%) Verified Compilation of Concurrent Managed Languages, AFRL, $300,000, 13 – 16.

[18] PI CSR: Language and Runtime Support for Large-Scale Data Analytics, NSF, $246,635, 12.

Jan Vitek 22

[19] PI FastR: Open Source R, Oracle Inc, $85,000, 12.

[20] PI Automated Generation of JavaScript Workloads, Mozilla Corporation, $75,000, 12.

[21] PI (25%) CPS: Robust Distributed Wind Power Engineering, NSF, $1,600,000, 11 – 15.

[22] PI (50%) SI2-SSE: A Tracing Virtual Machine For Statistical Computing, NSF, $489,084, 10 – 13.

[23] PI EAGER: Foundations of Data-Centric Concurrency Control, NSF, $110,000, 10 – 11.

[24] PI Virtual Execution Environments for Scientific Computing Workshop, NSF, $45,000, 10 – 10.

[25] PI Third International Summer School on Trends in Concurrency, NSF, $12,000, 10 – 10.

[26] Co-PI (50%) An Infrastructure for Scalable Transactional Memory Abstractions, NSF, $536,000, 10.

[27] Co-PI (50%) SHF: Specification and Verification of Safety Critical Java, NSF, $500,000, 09–11.

[28] PI A Computational Model for High-Assurance Dynamic Systems, ONR, $200,000, 09– 09.

[29] PI (50%) Certified Garbage Collection for Highly Responsive Systems, NSF, $498,952, 08–11.

[30] Co-PI (50%) Fault Determination and Recovery in Cycle Sharing Infrastructures, NSF, $23,000, 08.

[31] PI (25%) Unified Open Source Transactional Infrastructure, NSF, $1,000,000, 08 – 11.

[32] Co-PI Language & Runtime Support for Safe and Scalable Programs, Microsoft Research, $50’000
(25%), 08.

[33] PI Second International Summer School: Trends in Concurrency, NSF, $23,000, 08.

[34] PI Second International Summer School: Trends in Concurrency, IBM Research, $1,000, 08.

[35] PI Second International Summer School: Trends in Concurrency, Microsoft Research, $10,000, 08.

[36] PI Second International Summer School: Trends in Concurrency, Intel Research, $5,000, 07.

[37] PI CSR-EHS: High-throughput Real-time Stream Processing in Java, NSF, $210,000, 07 – 10.

[38] Co-PI Controlled Declassification with Software Transactional Memory, NSF, $249,857 (50%), 07 – 09.

[39] PI IBM Faculty Award, IBM, $30,000, 06.

[40] PI High-level Concurrency Control Abstractions , Microsoft Research Award, $50,000, 06.

[41] Co-PI An Infrastructure for Relaxed Concurrency Abstractions, NSF, $99,979 (20%), 06 – 08.

[42] PI International Summer School: Trends in Concurrency, Microsoft Research, $5,000, 06.

[43] PI International Summer School: Trends in Concurrency, IBM Italy, $5,000, 06.

[44] Co-PI Fault Determination and Recovery in Cycle-Sharing Infrastructures, NSF, $300,000, 05 – 08.

[45] PI Aspectual Configuration of Real-time Embedded Middleware, NSF, $250,000, 05 – 08.

[46] Co-PI A logically destructive imaging security & forensics facility, NSF, $800,000 (7%), 04 – 07.

[47] PI Assured Software Composition For Real-Time Systems, NSF/NASA, $500,000, 03 – 07.

[48] PI Language Abstractions for Parallel Computing, DARPA PERCS, $400,000, 03 – 06.

[49] Co-PI Partage: An Open Peer-to-Peer Infrastructure for Cycle-Sharing, NSF, $498,945, 03 – 06.

[50] Co-PI Distributed Access Control for Accountable Systems, NSF Cybertrust, $318,375, 02 – 06.

[51] PI Foundations & Implementation of Mobile Object Systems, NSF CAREER, $325,936, 01 – 06.

[52] PIDynamic Compositional Middleware Frameworks for Networked Embedded Systems, DARPA, $3,274,680
(60%), 01 – 05.

[53] PI Sw. Eng.: Research on Customizable Virtual Machines, Microsoft Research, $100,000, 02.

[54] PI Trusted Software Composition, Eli Lilly, $50,000, 01 – 02.

[55] PI ReAssure–Secure and Resilient Network Computing, Eli Lilly, $90,000, 99 – 01.

[56] PI Resilient Mobile Agent Architecture, Motorola, $62,543, 00 – 05.

[57] PI Type confinement in Java, Eli Lilly, $25,000, 99 – 00.

