
UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 1

Nesting Transactions:

Why and What do we need?

 J. Eliot B. Moss
University of Massachusetts

moss@cs.umass.edu
Reporting joint work with Tony Hosking (Purdue)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 2

Transactions are Good
 Dealing with concurrency

 Atomic txns avoid problems with locks
 Deadlock, wrong lock, priority inversion, etc.

 Handle recovery
 Retry in case of conflict
 Cleanup in face of exceptions/errors

Much more practical for ordinary programmers
to code robust concurrent systems

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 3

About Transaction Semantics
 They offer ACI of database ACID properties:

 Atomicity: all or nothing
 Consistency: each txn preserves invariant
 Isolation: intermediate states invisible

 In sum, serializability, in face of concurrent
execution and transaction failures

 Can be provided by Transactional Memory
 Hardware, software, or hybrid

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 4

Simple Transactions for Java
Following Harris and Fraser, we might offer:

atomic { S }
 Atomic: Execute S entirely or not at all
 Isolated: No other atomic action can see

state in the middle, only before S or after
 Consistent: All other atomic actions happen

logically before S or after S
Implement with r/w locking/logging, on words

or whole objects; optimistic, pessimistic, etc.

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 5

Why is this better than locking?
 Abstract: Expresses intent without over- or

under-specifying how to achieve it: correct
 Allows unwind and retry: More flexible

response to conflict: prevents deadlock
 Allows priority without deadlock: Avoids

priority inversion (still need to avoid livelock)
 Allows more concurrency: synchronizes on

exact data accessed rather than an object lock

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 6

Limitations of simple transactions
 Isolation ⇒ no communication
 Long/large transactions either reduce

concurrency or are unlikely to commit
 Data structures often have false conflicts

 Reorganizing B-tree nodes
 Can’t do Conditional Critical Regions (CCRs):

 Insert in buffer if/when there is room, etc.
 Do not themselves provide concurrency

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 7

Closed Nesting
Model proposed in 1981 (Moss PhD):

 Each subtxn builds its own read/write set
 On commit, merge with its parent’s sets
 On abort, discard its set
 Subtxn never conflicts with ancestors

 Conflicts with non-ancestors
 Can see ancestors’ intermediate state, etc.

 Requires keeping values at each nesting
level that writes a data item

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 8

Closed Nesting Helps: Partial Rollback
 When actions conflict, one will be rolled back
 With closed nesting, roll back only up through

the youngest conflicting ancestor
 This reduces the amount of work that must be

redone when retrying

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 9

Closed Nesting Helps: CCRs
Partial rollback helps Conditional Critical

Regions:
Harris and Fraser’s construct:

atomic (P) { S }
 Evaluate P, and if true, do S – all atomically
 If P is false, retry
 Can “busy wait”, or be smarter: wait until

something P depends on changes
 Detect via conflict (give self lowest priority)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 10

Closed Nesting Helps: Alternatives
One can try alternatives:
 When an action fails in a non-retriable way
 After some number of retries
Sample syntax:

atomic { S1 } else { S2 }

atomic (retries<5) { S1 } else { S2 }

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 11

Closed Nesting Helps: Concurrency
Subtransactions provide safe concurrency within

an enclosing transaction
 Subtxns apply suitable concurrency control
 Subtxns fail and retry independently
 Great for mostly non-conflicting subactions

 Tiles of a large array
 Irregular concurrency computations
 Replication in distributed systems

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 12

Limitations of Closed Nesting
Limitations of closed nesting derive from the

non-nested semantics:
 Aggregates larger and larger conflict sets

 Still hard to complete long/large txns
 Synchronizes at physical level

 Gives false conflicts
 Isolation still strict

 No communication, so fails to address a
whole class of concurrent systems

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 13

Open nesting to the rescue!
A concept and theory developed in the 1980s

 Comes from the database community

 Partly an explanation/justification of certain
real strategies

 Partly an approach to generalizing those
strategies

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 14

Conceptual Backdrop of Open Nesting
 Closed nesting has just one level of abstraction:

Memory contents
 Basis for concurrency control
 Basis for rollback

 Open nesting has more levels of abstraction
 Each level may have a distinct:

 Concurrency control model (style of locks)
 Recovery model (operations for undoing)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 15

Open Nested Actions
 While running, a leaf open nested action

Operates at the memory word level
 When it commits:

 Its memory changes are permanent
Concurrency control and recovery switch

levels
Give up memory level “locks”:

acquire abstract locks
Give up memory level unwind

unwind with inverse operation (undo)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 16

Non-Leaf Open Nested Actions
 A non-leaf open nested action

 Operates at the memory word level, and
 May accumulate abstract locks and undos from

committed children
 When it commits:

 Its memory changes are permanent
 Concurrency control and recovery switch levels

 Give up memory level “locks” and child locks:
acquire abstract locks for new level

 Give up memory level unwind and child undos
unwind with inverse (undo) for new level

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 17

Open Nesting and Data Abstraction
Open nested naturally fits types, not code chunks
 For safety, memory state accessed by an open

action generally must not be accessed by
closed actions

 Abstract data types neatly encapsulate state
 Data types also tend to provide inverses
 Abstract locks match abstract state/operations

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 18

Simple application: Phone directory
 Employee phone directory

 Name-to-number lookup
 All names in a range
 All entries in a department

 Structure
 B-tree to map names to records
 B-tree to map depts to sets of records

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 19

Layers of abstraction
 Phone directory: top (most abstract) layer

 Insert must create record, add to 2 B-trees
 Delete must remove from 2 B-trees
 Desire high concurrency

 (Indexed) set of records: middle layer
 Central notion: presence/absence of

records in sets
 B-tree: lowest layer:

 B-tree nodes and pointers to records

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 20

A scenario: Concurrent insertions
 Two transactions, inserting different names
 Close in alphabet, so same B-tree node
 Conflict at level of read/write sets (words)
 “Early commit” of the two B-tree inserts ok

 Each insert is atomic: if not, break B-tree!
 Different names, so no abstract conflict

That is, at the level of a set of (key,value) pairs
 But … entails some obligations

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 21

123

Open actions need abstract undo

B-tree node

Sloan Smith Smythe

Start: “Sloan” in node
Open action 1 adds “Smith”, commits
Open action 2 adds “Smythe”, commits
Parent of 1 aborts, smashes node!

1

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 22

1223

Same example with abstract undo

B-tree node

Sloan Smith Smythe

Start: “Sloan” in node
Open action 1 adds “Smith”, commits
Open action 2 adds “Smythe”, commits
Parent of 1 aborts, deletes “Smith”

Smythe

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 23

What is a correct undo?
 Consider abstract state

 Here: set of (name,phone) pairs
 Ordered by name in B-tree node
 Etc.

 Insert: goes from “without name” to “with”
 Undo must restore pre-insert (abstract)

state when presented with the post-insert
(abstract) state

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 24

What is a good correct undo?
 One that minimizes concurrency conflicts
 So, in this case, concerned only with

presence/absence of the inserted name
 Thus: delete(…) is a good undo here

But wait! There’s more ….. !

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 25

12

A different scenario

B-tree node

Sloan Smith

Start: “Sloan” in node
Open action 1 adds “Smith”, commits
Open action 2 sees “Smith”, commits
Parent of 1 aborts, removes “Smith”

1

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 26

The concurrency control obligation
Problem: Allowed uncommitted data to be seen:

too much concurrency!

Why is this a problem?
Txn 2 saw a “phantom” value

This is not serializable!

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 27

How to regain (abstract) serializability
 Tx holds an abstract lock to indicate that the

entry is in doubt until Tx commits
 Ty (child) says what this lock should be;

the level shifts as Ty commits
 Might add a “pending” flag to records

 Check it when accessing/deleting a record
 Similar technique needed for deletes

This almost works, but ….

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 28

12

Another concurrency scenario

B-tree node

Sloan Smith

Start: “Sloan” in node
Open action 1 sees “Smith” is absent
Top action (2) adds “Smith”, commits
Open action 1 sees “Smith” is present

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 29

Concurrency control is subtle!
No transaction isolation!
Action 1 should have “locked” absence of “Smith”

In general, need an abstract lock data structure

Here, remember locked keys in a side table
S (share) and X (exclusive) modes

Failing lookup locks “Smith”, so insert conflicts

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 30

1

11

Another concurrency scenario

B-tree node

Sloan

Start: “Sloan” in node
Open action 1 sees “Smith” is absent
Open action 2 desires to add “Smith”
Tries to lock “Smith” X mode — fails

Smith S

Abstract locks

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 31

Putting it together
To insert “Smith”:

1. Acquire X mode lock on key “Smith”
2. Insert in by-name B-tree
3. Insert in department B-tree

 To commit:
 Release abstract lock

 To abort:
 Delete from dept B-tree, then by-name
 Release abstract lock

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 32

Looking up a name
To look up “Smith”:

1. Acquire S mode lock on key “Smith”
2. Look up in by-name B-tree

Returns null if absent, record if present
 To commit:

 Release abstract lock
 To abort:

 Release abstract lock

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 33

End result
 Insertions, etc., can be “pipelined”

 Good concurrency, yet B-tree is safe
 Can also pipeline through layers of B-tree

(lock coupling, not shown)
 Inherent, i.e., abstract, conflicts respected

 Concurrency control now at abstract level
 Undos also at abstract level

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 34

Primer on abstract state
 Some (not all) concrete states s are valid

 Example: B-tree ordered, no duplicates
 Every valid concrete s maps to an abstract S

 Example: B-tree maps to {(key,value)}
 Abstraction map defines equivalence classes

 Concrete states that map to same S
 Helpful to design in terms of abstraction map,

if only informally, and to document it

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 35

Abstract Serializability
 Lock parts of abstract state
 Undo in the abstract

Result is abstract serializability

 Undo restores changed part of abstract state
 Lock must prevent conflicting forward ops
 Lock must insure undo remains applicable

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 36

Pieces fit with each other
Data type works correctly as a whole:

 Protected concrete state
 Clearly understood abstract state
 Abstract locks, in terms of abstract state
 Abstract undos, in terms of abstract ops

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 37

How to implement open nesting?
 Parent maintains abort, commit, and done

action lists
 Commit of an open nested action adds:

 Undo to the abort list
 Unlock to the done list
 Cleanups (if any) to the commit list

Sometimes better to change state lazily;
e.g., delete late to hold space until sure

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 38

Commit and abort semantics
 When parent commits:

 Run commit actions, then
 Run done actions (and do r/w sets)

 When parent aborts:
 Run abort actions, then
 Run done actions (and do r/w sets)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 39

“The log is the truth”
Aborting is a little more subtle …
 An undo should be applied in the state that

held when its forward action committed
 Consider:

memory A, open B, memory C, open D
 State for D-1 should see A and C
 State for B-1 should see A but not C
 Abort = D-1, undo C, B-1, undo A

Can do this using levels of closed nesting

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 40

Thinking at the memory level
 Open nested action builds up r/w sets just

like a closed nested action
 If open nested action aborts, discard sets,

just like closed nested action
 If open nested action commits:

 Install its writes, immediately, into the
“global committed value”

 If any ancestor holds that word, update its
value, too (ancestor keeps r/w set entry)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 41

Properties of this rule
 Immediacy of update:

 Ancestors (and others) see new value
 No concurrency surprises

 Ancestors retain r/w sets (with new value)
 Note: Parent does not normally share global

data with open nested child (encapsulation)
 Example: B-tree nodes visible only to B-

tree operations

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 42

What might the programmer write?
Something like:

atomic { S }
 onabort { A } oncommit { C }
 ondone { D }

 Open semantics implied by onabort, etc.
 Glossing over details: not a complete design

Need to deal with binding of variables, etc.

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 43

Bending the Rules
 Can use “improper” abstract locking to offer

controlled communication
 Can probably simulate Java wait/notify, e.g.

 Can use “improper” undo to cause truly
permanent effect
 Logging attempt to use a stolen credit card
 Rolling back the rest of the transaction

 A general loophole: handy, but admittedly a
dangerous “power tool”: use sparingly!

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 44

Can ordinary programmers use this?
 Single-level and closed nesting usually enough
 Open nesting good for library classes

 High concurrency, or special semantics
 Our experience is:

 Undos are usually trivial to provide
 Other clauses not often necessary

 Assuming lock release is implied
 Abstract locking takes getting used to

 Fertile ground for library work

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 45

Recap: Why nest?
 To allow nesting of program constructs

 Can just merge inner into outer …
 But may induce more retry work

 To support multiple rollback/retry points
 To implement alternate strategies
 To increase concurrency (open)
 To offer selective permanence (open)
 To provide a general “escape hatch” (open)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST MHERST •• Department of Computer Science Department of Computer Science 46

Parting Shots
 Nesting is desirable, open nesting needed
 Need to integrate:

 Desired semantics
 Language design (with exceptions, etc.)
 Run-time support
 Memory level semantics
 Hardware implementation

