
Coordination to Avoid Starvation of Bottleneck Agents in a Large Network System

Rajesh Gautam

University of Tsukuba, JAPAN

r.gautam@aist.go.jp

Kazuo Miyashita

AIST, JAPAN

k.miyashita@aist.go.jp

Abstract

In this paper, we present a multi-agent control
method for a large-scale network system. We pro-
pose an extension of a token-based coordination
technique to improve the tradeoff between two con-
flicting objectives of the network system: reducing
the lead time and increasing throughput. In our
system, CABS, information about an agent’s ur-
gency of jobs to fulfill demanded throughput and to
maintain its utilization is passed from downstream
agents in the network so that upstream agents can
provide necessary and sufficient jobs to bottleneck
agents whose loss of capacity degrades the to-
tal system performance. We empirically evaluate
CABS performance using a benchmark problem of
the semiconductor fabrication process, which is a
good example of a large-scale network system.

1 Introduction

Network systems have multiple resources that collectively
perform a desired task that is not atomic but rather com-
prises a set of steps to be accomplished in a specific sequence.
Queueing theory [Allen, 1990] has addressed analysis and
control of network queueing in its steady state. Neverthe-
less, to understand and control its dynamic behavior is con-
sidered critically important for realizing smooth operations of
today’s complicated network system. Transportation, com-
munication and manufacturing are typical examples of such
large networks, for which uninterrupted and stable operations
are required. In this paper, we use a manufacturing problem
as a benchmark for controlling a large-scale network system.

In queueing theory, Little’s Law [Little, 1961] states that
the expected inventory of work in process (WIP) equals
the average lead time multiplied by the average throughput.
Therefore, with a fixed throughput, reducing the lead time re-
quires WIP to be reduced. However, with a variable and un-
predictable manufacturing environment, reducing WIP tends
to decrease throughput by cutting back job stocks of machines
so that machine downtimes have a high probability of forc-
ing idle time of other machines because of a lack of jobs to
process. In this paper, we are concerned with improving the
tradeoff between the lead time and the throughput in a manu-
facturing system with unpredictable machine failure.

In a network system, because of connectivity of the steps to
be processed, even if a system might have many overcapacity
resources, the final throughput of the system is limited by the
resource that has the smallest capacity (called a bottleneck).
Maximizing throughput of the system therefore means keep-
ing the maximum utilization of the bottleneck resource. High
utilization of the bottleneck resource is ensured by maintain-
ing a sufficient amount of jobs before it as a safety buffer
against random events that might cause its starvation. Hence,
to improve the tradeoff between lead time and throughput of a
manufacturing system, several methods have been developed
to regulate WIP at the lowest safe level that prevents starva-
tion of bottleneck machines [Fowler et al., 2002]. However,
those methods subsume that the bottleneck machines in the
system are identifiable by preliminary static analyses of the
problem and do not evolve over time. However, in the course
of manufacturing, the bottleneck machines might shift tem-
porarily because of unexpected random events such as ma-
chine failures that disturb the smooth flow of jobs. This phe-
nomenon is called wandering bottlenecks. Most existing so-
lutions to the problem are rather philosophical and manage-
rial (such as Kaizen [Imai, 1997] and Theory of Constraint
(TOC) [Goldratt and Cox, 1992]) with a few exceptions of
identifying wandering bottlenecks [Roser et al., 2002].

To prevent starvation of bottleneck machines, lot release
control to regulate workload in front of the bottleneck ma-
chines by controlling the entry of jobs in the system [Glassey
and Resende, 1988] has been widely used in practice. Never-
theless, it has achieved limited success because its centralized
decision-making mechanism at the job entry point cannot re-
spond to dynamics of the manufacturing system (such as wan-
dering bottlenecks). Rather than controlling the job entry, it is
desired that jobs are processed and requested dynamically by
every machine in the system as to maintain a steady flow of
jobs leading to the bottleneck machines. The desired control
(lot flow control) is possible only through coordinated opera-
tions of the machines. Centralized control of all the machines
shares the same weak point with the lot release control. A de-
centralized coordination method is required so that every ma-
chine decides its job request and job processing in harmony
with other machines as an intelligent agent.

In a time-critical manufacturing environment, no machine
(i.e. agent) can afford to search and gather all necessary in-
formation of other machines for deciding its actions. Con-

IJCAI-07
1281

sequently, many coordination techniques proposed in multi-
agent systems [Jennings et al., 2001; Sandholm, 1999; Falt-
ings and Nguyen, 2005; Durfee, 1996] are inappropriate for
our purpose. Just-In-Time (JIT) [Ohno, 1988] is a method
of the distributed manufacturing control by exchanging to-
kens (Kanban cards) among the machines to control flows and
amounts of work (WIP) in the system. In fact, JIT and its ex-
tensions are instances of token-based coordination [Wagner
et al., 2003; Xu et al., 2005; Moyaux et al., 2003] and have
been widely used in manufacturing and other related fields.
However, because of its simplicity, JIT succeeds only in sta-
ble and leveled environments.

In this paper, we propose an extension of the token-based
coordination method: Coordination for Avoiding Bottleneck
Starvation (CABS) for improving a tradeoff between a lead
time and a throughput in a large-scale and uncertain network
system. In CABS, agents coordinate with other agents to
maintain the adequate flow of jobs to satisfy the various de-
mands by preventing starvation of bottleneck agents. That
coordination is achieved by efficient passing of messages in
the system. The message includes information that enables
agents to identify the bottleneck agents and hence coordi-
nate with other agents by maintaining the desired flow of
jobs to the bottleneck agents. In Section 2, we explain a
generic manufacturing problem and the semiconductor fab-
rication process used for experiments. The details of algo-
rithms in CABS are explained in Section 3. Section 4 illus-
trates basic behaviors of CABS using an example manufac-
turing scenario. Section 5 shows results of simulation exper-
iments and validates the higher effectiveness of CABS than
other conventional manufacturing control methods. Finally,
Section 6 concludes the paper.

2 Problem

In this section, we first describe a general model of a manu-
facturing problem and then introduce a semiconductor fabri-
cation process as an example of the most complicated systems
in the current manufacturing industry.

2.1 Definition

The manufacturing problem requires processing a set of jobs
J = {J1, ..., Jn} by a set of workstations, which are mod-
eled as agents A = {A1, ..., Am} in this paper. Each job Jl

consists of a set of steps Sl = {Sl
1, ..., S

l
sl
} to be processed

according to its process routing that specifies precedence con-
straints among these steps. Every lot of the jobs flows through
agents according to its process route. Each agent Aj has iden-

tical pj machines to process its tj tasks T j = {T j
1 , ..., T j

tj
}.

Each job Jl has a demand rate drl, which is the number of
lots of Jl to be completed in one hour. Furthermore, when an

agent Aj processes its task T j
i , it takes a process time ptji . A

task of the agents corresponds to a step in the jobs. Hence,
precedence constraints among steps create a complicated di-
rectional network of agents. Presume an agent Aj’s task T j

q

is a step Sl
i . A preceding agent of the agent Aj in terms of the

task T j
q , Apre(j,q), is in charge of a step Sl

i−1 and a succeed-

ing agent, Asuc(j,q), processes a step Sl
i+1.

In addition to the agents that model the workstations, two
types of synthetic agents exist. One is a sink-agent for each
kind of job, which receives the completed lots from the last
agent of the job’s process route. Another synthetic agent, a
source-agent, releases every job in the system by transferring
it to the agent processing the first step of the job.

2.2 Semiconductor Fabrication Process

Semiconductor fabrication is among the most complex man-
ufacturing processes. For example, the production steps for
semiconductor manufacturing usually number a few hundred,
with numerous repetitive reentrant loops. Its lead time ex-
tends over a couple of months [Atherton and Atherton, 1995].

SOURCE

FSI

SINK (Product 1)SINK (Product 2)

DFA2

C1_ 9

QLESS1

DFB1_ 2

DFE1_ 2

LPS1

DFB3

DFA4

DFB4

PE1_ 5

D1_ 9

QLESS2

ION1_ 3

DRY1_ 2 TEG2

SCRUBWET3DFE3_ 4 DFA1

WET1

DFC2_ 3

OSICD2

ASM2BLU1 WET5

DFC4

DFC1

AME135AME46

MEG1_ 2

ANC1

Figure 1: Network of agents in a semiconductor fab

For empirical validation of CABS, we used the Measure-
ment and Improvement of Manufacturing Capacity (MIMAC)
testbed datasets of the wafer fabrication processes [Fowler
and Robinson, 1995], available from Arizona State univer-
sity (http://www.was.asu.edu/˜masmlab/home.htm). The data
set specifies the production steps of semiconductor manufac-
ture. The factory model that we have chosen for our ex-
periments represents a factory with 38 workstations. Two
products, Product1 and Product2, are produced in the sys-
tem. Product1 has 92 processing steps and Product2 has
19 steps. Many cycles exist in the process routes involving
both products. The total process time for Product1 is 4, 423
min (73.7 h); for Product2, it is 1, 097 min (18.3 h). Fig-
ure 1, which depicts the process flows of products through
the workstations in the experiment problem, can be viewed
as a complex network of agents.

3 Coordination through Requirements

In CABS, actions of the agents are coordinated using the
messages transmitted among agents. An agent uses require-
ment information in the incoming messages from succeeding
agents for making lot processing decisions and for generating
messages to send to its preceding agents.

IJCAI-07
1282

3.1 Action Selection

The CABS system utilizes token-based coordination so that
an agent selects its lot-processing actions based on require-
ments from its succeeding agents in the process flow. CABS
realizes a pull mechanism like a JIT system that does not pro-
cess jobs until they are “pulled” by downstream agents.

Each agent Aj periodically receives a requirement for pro-

cessing a task T j
q from a corresponding succeeding agent

Asuc(j,q). The requirement consists of the following three
types of information (detailed definitions will be given later
in Section 3.2):

time limit: time by which agent Asuc(j,q) needs another

lot for the next step of the task T j
q .

request rate: rate at which agent Asuc(j,q) needs the

lots for the next step of the task T j
q , starting at time

limit.

criticality: criticality of the agent Asuc(j,q).

In addition to the requirement information from the suc-
ceeding agents, for each task T j

q ∈ T j , an agent Aj is as-
sumed to have local information such as the demand rate,
current WIP and a total number of lots already produced.

Algorithm 1 selectTask(message im[]) of agent Aj

1: ∀i ∈ {1, · · · , tj} set t wj
i as current WIP of task T j

i

2: ET j ← {T j
i

∣
∣ (T j

i ∈ T j) ∧ (t wj
i > 0)}

3: sort ET j according to time limit (i.e., im[].tl) of tasks
4: set FET j as the first task in ET j

5: loop
6: set start time of FET j at current time

7: OFT j ← {ET j
i

∣
∣ (ET j

i ∈ ET j) ∧

(ET j
i overlaps FET j) ∧ (criticality(ET j

i) >
criticality(FETj))}
// im[].cr decides criticality of a task

8: if OFT j �= ∅ then
9: remove FETj from ET j

10: set FETj as the first task in ET j

11: else
12: return FETj

13: end if
14: end loop

Agent Aj uses the requirement information from its suc-
ceeding agents for choosing the next lot to process (i.e.
dispatching) when any machine of the agent Aj becomes
free. Algorithm 1 describes the dispatching algorithm for
the agent Aj . It returns a task with the earliest time
limit whose dispatching will not delay a task of any higher
criticality beyond its time limit. In algorithms of
the paper, im[].tl, im[].rr and im[].cr respectively de-
note requirement information of time limit, request
rate and criticality for the corresponding tasks in the
incoming messages of the agent. In addition, tasks mutually
overlap when an intersection exists in their processing periods
(i.e., (time limit - process time) of one overlaps
with (current time + process time) of other).

3.2 Message Passing

Dispatching of agents in CABS is decided solely on require-
ments from succeeding agents. Hence, information in the re-
quirement is a key to coordination among agents.

An agent tries to meet the requirements of succeeding
agents for all of its tasks. Aside from meeting the require-
ments of succeeding agents, the agent must also minimize its
workload deficit at all times for satisfying the demand rates of
jobs. For example, Aj ’s workload of a task T j

q is the time re-

quired to process one lot of the task (i.e. ptjq). Each agent has
aggregated workloads of all of its tasks based on the demand
rates of jobs. The difference between the workloads and the
total processing time of the tasks that have been processed is
a current workload deficit of an agent.

Algorithm 2 calcCriticality() of agent Aj

1: ∀i ∈ {1, · · · , tj} set t wj
i as current WIP of task T j

i

2: t ftj ← current time +
∑

∀i∈{1,···,tj}
(t wj

i ptji/pj)

// earliest time to finish current WIP
3: ∀i ∈ {1, · · · , tj} set t dej

i

as total demand of task T j
i until t ftj

4: ∀i ∈ {1, · · · , tj} set t prj
i

as total production of task T j
i until current time

5: t wldj ←
∑

∀i∈{1,···,tj}
(t dej

i − (t prj
i + t wj

i))ptji
// current estimated workload deficit of Aj

6: scj ← pj(1.0−
∑

∀i∈{1,···,tj}
dr

job(T j

i
)ptji/pj)

// surplus capacity of Aj

7: return t wldj/scj

An agent can recover its workload deficit by processing
more lots than demand rates of jobs. The time needed to re-
cover the deficit depends on the amount of deficit and surplus
capacity available to the agent. Algorithm 2 calculates an
agent’s criticality as a ratio of its workload deficit and sur-
plus capacity. In CABS, an agent with a large criticality is
considered a bottleneck agent. Dynamic change of an agent’s
criticality represents wandering of bottlenecks.

To maintain a continuous lot flow of a task T j
i to Asuc(j,i)

at the requested rate im[i].rr, the agent requires an incoming
lot flow at the same rate from the corresponding preceding
agent Apre(j,i). However, the agent itself might need the jobs
earlier and at a higher rate in order to recover its workload
deficit. The agent requires jobs immediately and at the max-
imum rate at which it can process materials to recover the
deficit rapidly. Based on the requirement from the succeed-
ing agent and its current workload deficit, the agent generates
a consolidated outgoing requirement for its preceding agent.
Algorithm 3 describes calculation of outgoing requirement

messages by the agent Aj . For each T j
i ∈ T j , a requirement

tuple (om[i].tl, om[i].rr, om[i].cr) is generated and sent to
the preceding agent Apre(j,i).

The agent acts to satisfy the requirement of its succeeding
agent when agent Aj is not critical (i.e., its workload deficit is
less than that of Asuc(j,i)) or has enough WIP of other tasks
to process. In this case, the agent can postpone the time

IJCAI-07
1283

Algorithm 3 makeRequest(message im[]) of agent Aj

1: ∀i ∈ {1, · · · , tj} set t wj
i as current WIP of task T j

i

2: t ftj ← current time +
∑

∀i∈{1,···,tj}
(t wj

i ptji/pj)

// earliest time to get starved
3: t crj ← calcCriticality()

// current criticality of Aj

4: for all i ∈ {1, · · · , tj} do

5: t ftji ← current time + t wj
i ∗ ptji/pj

// earliest time to get starved of T j
i

6: t tlji ← im[i].tl − ptji + t wj
i /im[i].rr

// time to replenish T j
i based on request from Asuc(j,i)

7: if (t crj < im[i].cr) ∨ (t tlji < t ftj) then

8: om[i].tl ← max(t ftji , t tlji)
9: om[i].cr ← max(im[i].cr, t crj)

10: om[i].rr ← min(im[i].rr, pj/ptji)
11: else // Aj is lagging and starving
12: om[i].tl ← t ftj
13: om[i].cr ← t crj

14: om[i].rr ← pj/ptji
15: end if
16: end for
17: return om[]

limit of requesting many tasks T j
i beyond the earliest pos-

sible timing when the current WIP is emptied (i.e., t ftji) un-
til the last timing when the succeeding agent’s request ex-

hausts the current WIP (i.e. t tlji). This situation realizes
lean manufacturing, which is intended to reduce the amount
of WIP and shorten lead times. As for criticality, agent
Aj intends to pass the highest criticality along the pro-
cess route by choosing a higher value of itself or its suc-
ceeding agent. The request rate is truncated only when
the requested value is greater than the maximum capacity of
agent Aj .

The agent prioritizes recovering its workload deficit over
satisfying the succeeding agent’s requirement when agent Aj

is critical and has no sufficient WIP to process. Hence, as a
requirement to its preceding agent, the agent sends the values
of its own time limit, criticality and request

rate for the purpose.

4 Simplified Example Scenario

Figure 2: Example production system

The behavior of the algorithms mentioned above is illus-
trated using a simple scenario of a production system, which
produces three job types (A, B, C) according to the process
routes shown in Fig. 2. Five workstation agents (labeled one
to five) and their utilization according to the demand rate of
jobs is shown with the attached percentage. Two failures
occur in the system around the same time. Agent4 fails at
time 21,000 and recovers at time 60,000. Agent5 fails at time
13,000 and recovers at time 90,000.

-6000

-5000

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

JobA
JobB
JobC

Demand Level

1 2 3 4 5 6

Time
Fi

ni
sh

ed
 J

ob
 I

nv
en

to
ry

Figure 3: Finished job inventory

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Agent3

Agent4

Agent5

1 2 3 4 5 6

Time

C
ri

tic
al

ity

Figure 4: Criticality of agents

The achieved production of the products w.r.t. to the de-
mand is shown in Fig. 3. The criticality of three agents along
time is shown in Fig. 4 (the criticality of the other two agents
is unimportant this scenario). The time line is divided into six
sections, as shown in the figures.

In the second time section, when Agent3 stops receiving
JobC because of a failure on Agent5, its criticality rises and
it requests the other job, JobA, at a higher rate from Agent2
to meet its workload requirement. Agent2 propagates this
request to Agent1.

Then, in the third time section, when Agent4 stops request-
ing JobB because of its failure, this information is also prop-

IJCAI-07
1284

agated by Agent2 to Agent1. On receiving these updated re-
quirements, Agent1 stops processing JobB and uses its full
capacity to meet the requirement of Agent3 by processing
JobA at a higher rate. Because Agent3’s requirement of JobA
at a high rate is consistently met, its criticality remains low
until the recovery of Agent4 (at time 60,000). Although the
utilization of Agent3 is higher than Agent4 according to the
demand rate, Agent4’s criticality rises during the failure and
it becomes more critical (i.e. bottleneck) than Agent3.

In the fourth time section, after recovery (at time 60,000)
Agent4 requests JobB at a higher rate to recover its work-
load deficit. At time 60,000, Agent1 stops dispatching JobA,
which has a lower criticality (of Agent3) in its requirement,
and uses its full capacity to dispatch JobB, which has a higher
criticality (of Agent4). As Agent4 starts receiving jobs in-
stead of Agent3, Agent4’s workload deficit and criticality de-
crease and those of Agent3 increase.

In the fifth time section, when criticality of Agent3 and
Agent4 become equal at time 75,000, Agent1 uses its capac-
ity to produce both JobA and JobB for balancing the respec-
tive criticalities of Agent3 and Agent4. Then, criticalities of
Agent3 and Agent4 rise at the same rate until Agent5 restarts
processing JobC after its recovery at time 90,000.

In the sixth time section, because Agent3 has a large deficit
of JobC, Agent3 dispatches JobC exclusively to recover this
deficit and reduce its own criticality at the same time. As
Agent1 stops getting requests for additional JobA, it stops
processing JobA and starts processing JobB. Consequently,
Agent1 recovers the inventory deficit of JobB and also re-
duces the criticality of Agent4. The system therefore recov-
ers the deficit of all the jobs and returns to normal by time
200,000. Although Agent1 has the highest utilization in this
example, it is not relevant because it is unaffected by any fail-
ure and its criticality remains low at all times.

5 Experiment

We evaluated performance of CABS using data of the semi-
conductor manufacturing process described in Section 2.2.

A simulation system is developed to model a manufactur-
ing process with agents to test the proposed algorithms in
CABS. The system is built using SPADES [Riley and Riley,
2003] middleware (http://spades-sim.sourceforge.net), which
is an agent-based discrete event simulation environment. It
provides libraries and APIs to build agents that interact with
the world by sending and receiving time-based events.

5.1 Experimental Results

In the experiments, we induced random failures of all the
workstations. The failures occur based on the exponential dis-
tribution with the MTBF value as 5,000 min and the MTTR
value as 400 min. Because of dynamic changes of worksta-
tions’ capacity, bottleneck workstations shifted temporarily
(i.e. criticality of agents changed dynamically).

We compared the performances of CABS to those of a con-
ventional manufacturing control method: constant releasing
with earliest due date first (EDD) dispatching. We were un-
able to make a comparison with more sophisticated methods
such as those in [Fowler et al., 2002] because they are inap-
plicable to problems with wandering bottlenecks.

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 104 106 108 110 112 114 116 118 120 122 124 126

Throughput

L
ea

dt
im

e

Conventional system

CABS

132.0

129.4

126.7

118.8
105.6

Demand Rate

Figure 5: Throughput and lead time of Product1

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 120 125 130 135 140 145

Conventional system

CABS

151.2

148.2

145.2

136.1
121.0

Demand Rate

Throughput

L
ea

di
m

e

Figure 6: Throughput and lead time of Product2

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 580000 600000 620000 640000 660000 680000 700000 720000

Conventional system

CABS751,142

736,327

721,046

676,046
600,949

Aggregated Processing Time

A
gg

re
ga

te
d

L
ea

dt
im

e

Aggregated Demand

Figure 7: Aggregated result of two products

Figure 5 shows the result of throughputs and lead times
for Product1 with different demand rates. When demand
rates are high, some agents become bottlenecks and regulate a
throughput of the system when they become starved. In such
cases, CABS achieved approximately equivalent throughputs
with the conventional method, but required much less lead

IJCAI-07
1285

time (therefore, much less WIP).
Figure 6 depicts the results of throughput and lead times

for Product2. This result shows that the performance of
CABS is slightly worse than that of the conventional method.
But because both products have similar demand rates and
Product1 has much longer processing time than Product2,
the result of Product1 must have a greater impact on the per-
formance of the entire manufacturing system. Furthermore,
the result shows that CABS produced Product2 more than
demanded because CABS tried to prevent a loss of agents’
capacity caused by failures; the failures did not stop during
the experiments. Over-production of Product2 should be de-
creased thereafter if the failures cease at some time point.

In Fig. 7, the aggregated processing time is calculated as∑
i Process T imeiThroughputi and the aggregated lead

time is calculated as
∑

i LeadtimeiThroughputi. Because
Leadtime = Process T ime + Wait T ime, this result
shows that as an aggregate performance of the manufacturing
system, CABS required less wait time than the conventional
system, which means that CABS has less WIP than the con-
ventional method to produce comparable outputs. In other
words, CABS prevented starvation of bottleneck agents (i.e.,
achieving a high throughput) without increasing WIP in the
system (i.e., achieving a short lead time).

6 Conclusion

In this paper, we investigated coordination techniques for
a large-scale agent network system. The proposed system,
CABS, coordinates the action of agents through a message-
passing mechanism that is similar to other token-based coor-
dination methods. By passing and utilizing the information
of criticalities and job requirements of downstream agents,
CABS can produce high throughput by preventing starvation
of wandering bottleneck agents and, simultaneously, achieve
short lead times by reducing the amount of inventories in the
system. In experiments using data of a semiconductor fabri-
cation process, we have validated that CABS can better im-
prove the tradeoff between throughput and lead time than a
conventional manufacturing control method can. We believe
that the mechanism of CABS is suitable not only for manu-
facturing, but also for other network systems.

In the current implementation of CABS, agents might
change their requests to the preceding agents drastically
based on the small fluctuations of information they possess.
Therefore, performance of CABS tends to be unstable during
its execution. We plan to make agents decide their requests
using a probabilistic threshold so that the behavior of CABS
becomes more moderate and controllable.

References

[Allen, 1990] A. O. Allen. Probability, Statistics, and
Queueing Theory. Academic Press, 1990.

[Atherton and Atherton, 1995] L. Atherton and R. Atherton.
Wafer Fabrication: Factory Performance and Analysis.
Kluwer Academic Publishers, 1995.

[Durfee, 1996] E. H. Durfee. Planning in distributed artifi-
cial intelligence. In G. O’Hare and N. R. Jennings, editors,

Foundations of Distributed Artificial Intelligence, chap-
ter 8, pages 231–245. John Wiley & Sons, 1996.

[Faltings and Nguyen, 2005] B. Faltings and Q. Nguyen.
Multi-agent coordination using local search. In Proceed-
ings of IJCAI-05, pages 953–958, 2005.

[Fowler and Robinson, 1995] J. Fowler and J. Robinson.
Measurement and improvement of manufacturing capac-
ities (MIMAC): Final report. Technical Report Technical
Report 95062861A-TR, SEMATECH, 1995.

[Fowler et al., 2002] J. Fowler, G. Hogg, and S. Mason.
Workload control in the semiconductor industry. Produc-
tion Planning & Control, 13(7):568–578, 2002.

[Glassey and Resende, 1988] C. Glassey and M. Resende.
Closed-loop job release control for vlsi circuit manufactur-
ing. IEEE Transactions on Semiconductor Manufacturing,
1(1):36–46, 1988.

[Goldratt and Cox, 1992] E. Goldratt and J. Cox. The Goal:
A process of Ongoing Improvement (2nd rev edition).
North River Press, 1992.

[Imai, 1997] M. Imai. Gemba Kaizen: A Commonsense,
Low-cost Approach to Management. McGraw-Hill, 1997.

[Jennings et al., 2001] N. R. Jennings, A. R. Lomuscio
P. Faratin, S. Parsons, C. Sierra, and M. Wooldridge. Au-
tomated negotiation: Prospects, methods, and challenges.
International Journal of Group Decision and Negotiation,
10(2):199–215, 2001.

[Little, 1961] J. D. C. Little. A Proof of the Queueing For-
mula L = λW . Operations Research, 9:383–387, 1961.

[Moyaux et al., 2003] T. Moyaux, B. Chaib-draa, and
S. D’Amours. Multi-agent coordination based on tokens:
Reduction of the bullwhip effect in a forest supply chain.
In Proceedings of AAMAS-03, pages 670–677, 2003.

[Ohno, 1988] T. Ohno. Toyota Production System: Beyond
Large-Scale Production. Productivity Press, 1988.

[Riley and Riley, 2003] P. Riley and G. Riley. SPADES —
a distributed agent simulation environment with software-
in-the-loop execution. In Proceedings of the 2003 Winter
Simulation Conference, pages 817–825, 2003.

[Roser et al., 2002] C. Roser, M. Nakano, and M. Tanaka.
Shifting bottleneck detection. In Proceedings of the 2002
Winter Simulation Conference, pages 1079–1086, 2002.

[Sandholm, 1999] T. W. Sandholm. Distributed rational de-
cision making. In G. Weiß, editor, Multiagent Systems:
A Modern Approach to Distributed Artificial Intelligence,
pages 201–258. MIT Press, Cambridge, MA, 1999.

[Wagner et al., 2003] T. Wagner, V. Guralnik, and J. Phelps.
A key-based coordination algorithm for dynamic readi-
ness and repair service coordination. In Proceedings of
AAMAS-03, pages 757–764, 2003.

[Xu et al., 2005] Y. Xu, P. Scerri, B. Yu, S. Okamoto,
M. Lewis, and K. Sycara. An integrated token-based
algorithm for scalable coordination. In Proceedings of
AAMAS-05, pages 407–414, 2005.

IJCAI-07
1286

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

