
Synthesizing Plant Controllers
Using Real-time Goals*

M. Barbeau, F. Kabanza, and R. St-Denis
Departement de mathematiques et d'informatique

Universite de Sherbrooke
Sherbrooke, Quebec J IK 2R1 Canada

Email: {barbeau, kabanza, stdenis}@dmi.usherb.ca

Abstract

This paper introduces a novel planning method
for reactive agents. Our planning method han­
dles, in a single framework, issues from A I ,
control theory, and concurrency that have so
far been considered apart. These issues are
mostly control labi l i ty, safety, bounded liveness,
and real t ime. Our approach is founded on
the supervisory control theory and on Metric
Temporal Logic (M T L) . The highlights of our
method consist of a new technique for incre­
mentally checking M T L goal formulas over se­
quences of states generated by actions and a
new method for backtracking during search by
taking into account uncontrollable actions.

1 Introduction
A reactive plan is a program that specifies the actions
to be executed by an agent that continuously reacts
to the occurrence of discrete events from its environ­
ment. The automatic synthesis of reactive plans is a key
component in the design of autonomous systems. It is
of interest in AI planning [Georgeff and Lansky, 1987;
Drummond and Bresina, 1990; Dean et al, 1993], con­
trol theory [Ramadge and Wonham, 1989; Makungu et
al, 1994], and concurrency theory [Emerson, 1990]. In
these areas, the terms control rules, supervisor, and re-
active programs are respectively used to denote reactive
plans. However, the paradigms used to generate such
plans vary widely. In AI planning, the focus is on repre­
senting and reasoning about actions in an efficient and
natural way. This has led researchers in this field to con­
centrate on heuristic search techniques. Unfortunately,
l i t t le research in AI planning has taken into account the
concepts of controllable actions and liveness goals.

In the area of control theory, the emphasis has been
on reasoning about the issues of controllabil i ty and ob­
servability of actions [Ramadge and Wonham, 1989]. A

This work was supported by the Canadian Government
through its NSERC programs.

key characteristic of models of actions in this field is that
they distinguish between controllable and uncontrollable
actions. This facilitates reasoning about control labil i ty
issues.

In concurrency, modal temporal logic has been recog­
nized as a useful tool for dealing w i th liveness properties.
For instance, real-time modal temporal logic can express
bounded-time response properties of the form "each oc­
currence of event e leads to satisfaction of condition c
within 5 t ime units" [Alur and Henzinger, 1993]. One
interesting development in this area is model checking
[Emerson, 1990]. In this approach, verifying a program
is viewed as evaluating the t ru th of a temporal formula
on a temporal structure representing the program.

In this paper, we describe a method for generating
reactive plans. Our method borrows concepts and con­
cerns from all the three areas outlined above. From AI
planning, we take the concern of reasoning about actions
and using heuristic search to generate plans. From con­
trol theory, we borrow the concept of controllable action.
As in concurrency theory, we are also concerned wi th the
representation and reasoning about real t ime, safety, and
liveness goals.

To be more specific, our planner takes as input a goal,
a description of the pr imit ive actions of a reactive agent,
which are controllable, and those of its environment,
which are uncontrollable. The planner returns a reac­
tive plan for achieving the goal. Note that both the
agent and its environment are referred to as the process
or plant in control theory. We generate plans essentially
by searching among sequences of states that represent
executions of pr imit ive actions, checking whether they
satisfy the goal or not. Reactive plans are more or less
immediately extracted from satisfactory sequences. We
describe goals using Metric Temporal Logic (MTL) for­
mulas [Alur and Henzinger, 1993].

Recent research has investigated connections between
AI planning, control, and concurrency. This includes
work on representation of AI control programs [Nilsson,
1994], a recent book by Dean and Wellman on plan­
ning and control [Dean and Wel lman, 1991], work on
the integration of planning and concurrency ideas [Gode-

BARBEAU, KABANZA, AND ST-DENIS 791

froid and Kabanza, 1991; Kabanza, 1990], and work
on the synthesis of controllers in temporal logic frame-
works [Thistle and Wonham, 1986; Fusaoka et ai, 1983].
We view our contr ibut ion to this research in three re­
spects. First, our planner integrates concepts and con­
cerns f rom the above three fields deeper than any ex­
isting comparable framework. Hence, besides its more
general capabilities, our planner contributes to a better
understanding of issues in the boundaries of these fields.

Second, we introduce a method for checking M T L
goals over state sequences on the fly (i.e., incremen­
ta l ly) . In contrast to other techniques for checking sim­
ilar real-time formulas (e.g., [Alur and Henzinger, 1993;
A lur et al, 1993]), our technique does not require an
explicit storage of the state-transition graph over which
formulas are checked. Rather, our planner generates and
checks state sequences on the fly. This allows us to gen­
erate plans using a standard forward-chaining search. It
also lets our planner generate plan control rules incre­
mentally. In this way, our planner can be considered
as having anytime capability. According to Dean and
Boddy [Dean and Body, 1988], an anytime a lgor i thm is
one that can be stopped at different stages of its pro-
cessing and yield an approximate, but useful, result.

Th i rd , we introduce a search technique, called control-
directed backtracking. This technique uses selective back­
tracking to states f rom which the planner can expand
controllable paths. We use an example to demon­
strate that this approach can allow the planner to prune
the search space significantly. This search technique
is reminiscent of, but quite different f rom, the mech­
anisms used in dependency-directed backtracking [Stall-
man and Sussman, 1978] and partial-order search using
Mazurkiewicz's traces [Godefroid and Kabanza, 1991].

Al though our planning approach applies to standard
M T L and more general logics, due to space l imi tat ions,
we wi l l describe it only for a restricted class of M T L
formulas called bounded-time MTL formulas (BMTL).
Even wi th this restrict ion, our planner handles prob-
lems that are beyond the scope of comparable Al plan­
ning or control-theoretic frameworks. For example, as
was mentioned above, our planner treats various types
of bounded-time goals.

The remainder of this paper is organized in three
parts, beginning w i th the description of our model of
actions and plans. This is followed by a brief overview
of M T L and a description of our planning method.

2 Actions and Plans
We adopt the fol lowing model of plans f rom Ramadge
and Wonham 1 [Ramadge and Wonham, 1989]. A pro-
cess is modeled as a spontaneous generator of sequences
of actions. The set of actions A of the process are par­
t i t ioned into two disjoint subsets Au and Ac . The ac­

tions in Au are uncontrollable, while those in Ac are
controllable. Hence, the evolution of the process can be
controlled by prohibi t ing the occurrence of some con­
trollable actions at certain points. A control input is a
subset y of A satisfying the condit ion Au 7. If a 6 7,
then a is permit ted to occur. Let L denote the set of
sequences of actions that can be generated by the pro­
cess and r C 2A represent the set of all control inputs.
A plan is a map / : L T yielding, for each sequence
w G L of generated actions, the control input f(w) to be
applied to the process at that point. Language Lj de­
notes the sequences of actions generated by the process
under the supervision of /. Let c be the empty str ing,
a G A, and w £ A*. The language Lj is formal ly defined
as follows:

(1) c G Lj and *
(2) wa G Lj iff w G Lj,a G }{w), and wa G L.

In our framework, the process consists of a reactive agent
and its environment, both performing pr imi t ive actions
(see Figure 1). The actions performed by the agent are
controllable, whereas those performed by the environ­
ment are uncontrollable. We model the interaction be­
tween the agent and its environment by interleaving their
actions.

I—A Supervisor 1

1 As was mentioned in the introduction, we use the term
"plan" as a synonym for supervisor.

Figure 1: A model of control

A c t i o n s There are various models of actions in the
fields of A I , concurrency, and control theory. Repre­
sentations of actions in planning are mostly based on
STRIPS-like models [Fikes and Nilsson, 1972]. Models
of actions in concurrency and control theory are often
based on state-transition machines such as automata or
Petri nets. Nevertheless, all these models are more or less
theoretically equivalent. For example, a state-transition
model can be derived f rom a STRiPS-like formal ism by
generating the states reachable f rom one or several in i­
t ia l states. Hence, wi thout loss of generality, we assume
a STRiPS-like formalism in this paper.

The S T R I P S model of actions includes two basic con­
cepts, namely, world state and pr imi t ive action. A world
state is defined as a set of propositions. Propositions
model facts about states of the agent and its environ­
ment. Every pr imi t ive action is described by a precondi­
tion (a conjunction of propositions enabling the action),
a delete-list (a list of propositions retracted by the execu­
t ion of the action), and an add-list (a l ist of propositions
asserted by the execution of the action). Note that , in

7 9 2 KNOWLEDGE BASE TECHNOLOGY

general, variables are used to describe schemata of in­
stances of actions.

For the sake of clarity, we use the following functions
to manipulate actions. Let S denote a world state and
a an action. The transit ion function (a, S) returns the
successor world state of S after execution of action a.
The function Controllable(a) returns true if a is con­
trollable, otherwise it returns false. The function (a, S)
is defined only when a is enabled in 5. When it is de­
fined, the result of is obtained by removing from
S the propositions in the delete-list of a and then adding
the propositions in the add-list of a.

Opera t iona l representat ion of a plan For conve­
nience, we adopt the following automaton representa­
tion of a plan /. A plan is represented by a pair (R,),
where R = is a finite-state automaton2 and

: Y T is an output map yielding, for each state
of R, the control input to be applied to the process at
that point. A pair (R, <p) represents a plan / if for every

Intuit ively, the value of /
on the sequence of actions w is obtained by the applica­
t ion of w to R, causing R to move from its ini t ial state

to the state and then calculating the
control input

3 Metric Temporal Logic
In this section, we summarize the M T L formulas that we
use to describe goals [Alur and Henzinger, 1993].

S y n t a x M T L formulas are constructed from an enu­
merable collection of propositional symbols, the boolean
connectives (and) and (not), and the temporal
modalities (u n t i l) , (a l w a y s) , where denotes
= , or and x is an integer. The formula forma­
tion rules are (1) every propositional symbol p is a for­
mula, and (2) if f1 and f2 are formulas, then so are

and The following abbrevi­
ations are standard: (eventually /)
and f\->f2 =

Semant i cs M T L formulas are interpreted over mod­
els of the form M — where S is an infinite
sequence of states so, « i , • • ■; ^ is a function that takes a
proposition and a state as input and returns true if the
proposition holds in the state; and T is a function that
associates a t ime stamp wi th each state. As usual, we
write (M , s) |= / if state s in model M satisfies formula
/. In addit ion to the standard rules for the boolean con­
nectives, we have that , for a state s, in a model M, a
propositional symbol p, and formulas f\ and f2:

2 In this paper, all the states of automata are accepting.
3Note that the standard MTL also has a congruence mod­

ulo constraint and a next modality [Alur and Henzinger,
1993].

Finally, we say that the model M (or seauence of states
S M) satisfies a formula / if (Af, so) /•

Bounded- t ime M T L Formulas As was mentioned
in the introduction, we describe our planning algori thm
only for bounded-time MTL formulas. These formulas
are defined in terms of normalized MTL formulas. A
normalized MTL formula is one in which only proposi­
t ional symbols are negated.4 A bounded-time MTL for­
mula is a normalized M T L formula in which every until
modality is of the form

Example 3.1 The formula (i.e., p holds
wi th in 10 t ime units and remains true afterwards) ex­
presses a classical goal requirement in AI planning and
stabil i ty in control theory [Fusaoka et a/., 1983]. In Fig­
ure 7, the formula g1 expresses the safety (mutual ex­
clusion) requirement that c(i) and m(i) , 1 i 4, are
never true simultaneously. The formula g2 expresses the
liveness requirement that c(2) and c(4) become simulta­
neously true infinitely often, at intervals shorter than 5
t ime units. ■

4 Planning Method
4 . 1 G l o b a l v i e w

Given a set of pr imit ive actions, an in i t ia l state, and a
goal, our planner searchs for sequences of world states,
start ing from the in i t ia l state, and checking on the fly
whether or not sequences of states expanded so far sat­
isfy the goal. Reactive plans are extracted from sat­
isfactory sequences. Our search process differs f rom a
classical forward-chaining exploration in three respects.
First, the check of M T L goals requires that we actu­
ally search in a space of pairs where each pair consists
of a world state and an M T L formula, rather than sim­
ply a space of world states. Second, transitions corre­
sponding to uncontrollable actions are subject to special
treatment. Th i rd , when we reach a sink, we backtrack
taking into account the fact that some transitions are
uncontrollable. As wi l l be i l lustrated, our backtracking
mechanism can lead to considerable savings compared to
blind backtracking.

To check formulas over state sequences on the fly, we
associate an M T L formula to each world state. The
formula attached to a state must be satisfied by each
sequence start ing f rom this state. The planner uses
a mechanism of progressing M T L subformulas through

4 For any MTL formula, we can obtain an equivalent nor­
malized formula by using logical equivalences to propagate
the negation symbol inwards.

BARBEAU, KABANZA, AND ST-DENIS 793

world states to compute the formulas to be attached to
states. Intui t ively, progressing an M T L formula through
a world state consists in checking that the present re-
quirement conveyed by the formula is satisfied in this
state. If so, a formula representing the future require­
ment is returned, otherwise faise is returned. Hence,
given a current world state and an action, the formula
representing the future requirement is paired w i th the
successor world state obtained by applying the action to
the current world state.

4 . 2 F o r m u l a P r o g r e s s i o n
The formula progression algor i thm is described in Fig­
ure 2. The function Prog accepts as input an M T L for­
mula /, a world state s, a real number t, and a function
7r(p, S), which returns true only if the proposit ion p holds
in the world state s. It returns an M T L formula repre­
senting the progression of / through s. This algor i thm
is characterized by the fol lowing theorem.

func t i on Prog(f,s,t,)
1. case /
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
end

Figure 2: Progression algorithm for B M T L formulas. Figure 4: Search process of the planning algorithm

Theorem 4.1 Let M — be any MTL model
and let $, be the ith state in the sequence of states S.
Then, we have for any MTL formula f, (M , si) / if
and only if

The t ime difference corresponds to
the durat ion of the action that leads to f rom
For the sake of simplicity, we assume that each action
takes 1 t ime uni t .

4 . 3 T h e P l a n n i n g A l g o r i t h m
We can now detail the algor i thm of our planner. The
input consists of an in i t ia l world state a set of p r im­
it ive actions the transit ion function , an M T L goal
g, and the function (see Figure 3). It outputs a plan
(Ft, For the sake of clarity, the planning algor i thm is
divided into three parts: the prologue (Figure 3), search
process (Figure 4), and epilogue (Figure 5).

7 9 4 KNOWLEDGE BASE TECHNOLOGY

E p i l o g u e The epilogue derives a plan {R, <p) f rom the
intermediate automaton M as follows. First, the plan­
ner removes the states that are not satisfactory f rom M
to obtain the automaton R (lines 34-35). Then <p is ob­
tained by including in <p(s) an action a for each transition
(s, a, sf) of R (lines 37-40). Hence, a crucial step in our
planning process is to determine satisfactory states.

Example 4 .1 Let us consider the maze example pic­
tured in Figure 6 (taken from [Ramadge and Wonham,
1989]). The maze has five rooms. There are a cat and a
mouse moving f rom one room to another through door­
ways. Every doorway is either for the exclusive passage
of the cat (c i , . . . , C7) or the mouse (m 1 , . . . , me). Door­
way C7 is bidirectional and uncontrollable, while oth­
ers are unidirectional and controllable (i.e., they can be
closed). The goal of this process consists of two require­
ments. First, the cat and the mouse must never occupy
the same room simultaneously. Second, after leaving
their in i t ia l rooms (room 2 for the cat and room 4 for
the mouse), they must return wi th in 5 t ime units. These
requirements are specified by formula fo in Figure 7 (this
formula is also commented on in Example 3.1).

Figure 6: Maze for cat and mouse

Figure 7 details the expansion of the search graph
(i.e., automaton M) for this example. Every state of
the graph is composed of a world state, which is a pair
consisting of the cat and mouse positions, and an M T L
formula. For clari ty in the figure, we only indicate for­
mulas for some states of the graph. The ini t ia l state is
[(2 ,4) , / 0] . The formulas fi,1 are defined in

Figure 7. A proposition c(i) (m(i)) means that the cat
(mouse) is in room i. The in i t ia l formula /0 is the result
of progressing the goal g1 g2 through the world state
(2,4) w i th a t ime difference of 0. States are expanded
by applying actions as explained above. For instance,
[(0,4), /1] is produced by applying action C3 to obtain the
world state (0,4) and by progressing f0 through (0,4),
using a t ime difference of 1, to get f1. Note that the
eventually modal i ty in f1 is bounded by 4, which con­
veys the fact that one unit of t ime has elapsed. The
expansion of [(0 ,4) , f 1] into [(l , 4) , f 2] by applying the
action c1 is similar.

The expansion of [(1,4), f2] into [(2 ,4) , f 0] by apply­
ing c2 deserves more comment. Following lines 15-18
of the formula progression algor i thm, the progression of

which is a conjunct of f2, through
(2,4) yields true which is simplified
as true. In this way, the progression of f2 through (2,4)
yields /o , hence closing a cycle. Note that the infinite ex­
ecution represented by this cycle satisfies fo- In general,
as explained below, each cycle generated by cur search
process is necessarily satisfactory.

In Figure 7, solid lines represent transitions of the
plan. Dashed lines represent paths that have been ex­
plored then rejected when the planner has determined
that they lead to sinks. For instance, state [(3 ,3) , f 5]
is a sink because it violates the subgoal g1 of fo. This
violation causes the progression of f3 through (3,3) to
return false, i.e., f5. From such t r iv ia l sinks, the planner
derives less t r iv ia l ones. For example, state [(l , 3) , f 3]
also becomes a sink because action C7 is uncontrollable.

Dotted lines represent parts of the search space that
are not explored by our search process due to the use
of the dependency-directed backtracking technique ex­
plained below. ■

De te rmin ing Satisfactory States and Sinks We
extend the notion of controllable action to a notion of
controllable state. A state is controllable if it is expanded
(i.e., it is in CLOSED) and all its outgoing transitions are
due to controllable actions. Each state is attached wi th a
slot, controllable, indicating whether it is controllable or
not. This slot is set to false for each newly created state.
To each state is also attached a status that indicates
whether the state is sink, satisfactory, or sti l l undefined.
The status of each newly created state is set to undefined.
Then, the search process updates the status of expanded
states based on the following definitions.

Def in i t ion 4.1 A sink is (1) a state of the form [x, false]
or (2) a state from which there is an outgoing uncon­
trollable transit ion to a sink or (3) a state involving an
eventually modal i ty and f rom which there is no enabled
action or all enabled actions lead to sinks.

Condition 1 constitutes a basic case for determining
sinks. It is implemented by the lines 14-16 of the plan-

BARBEAU, KABANZA, AND ST-DENIS 795

ner's algor i thm. Condit ion 2 constitutes one of two re­
cursive cases for determining sinks and is implemented
in part by the function Sink. This function is described
in Figure 8 and is discussed below. Condit ion 2 is also
handled in part concurrently w i th Condit ion 3 by the
procedure Check_Non_Trivial_Satisfactory_States. This
is further explained below.

Def in i t ion 4.2 A state is satisfactory if (1) it is control­
lable and does not involve an eventuality modal i ty or (2)
it is in a cycle not containing a sink or (3) there exists
at least one transit ion to a satisfactory state and every
outgoing uncontrollable transit ion leads to a satisfactory
state.

Condit ion 1 specifies the most t r iv ia l of two basic cases
for determining satisfactory states. It is implemented by
the lines 29-31. Condit ion 2 constitutes the other less
t r iv ia l basic case that needs further explanation. Each
formula progression decreases the t im ing constraints of
bounded-time eventualities by the durat ion of the ap­
plied action. Tha t is, each progression yields a formula
different f rom the current one. Hence, the search process
cannot reach an ancestor state on the current path, i.e.,
it cannot close a cycle, unless all the eventualities have
been achieved. Theorem 4.1 implies that each path ter­
minated by such a cycle satisfies the goal formula. Note
that if we had unbounded-time eventualities, it would be
possible to reach a cycle wi thout achieving all the eventu-

Figure 9: A lgor i thm for determining satisfactory states

alities, since the progression of an unbounded-time even­
tual i ty does not necessarily change i t . Also note that a
bounded-time eventuality cannot be progressed indefi­
nitely wi thout being achieved, since sooner or later its
t im ing constraint wi l l reach 0, resulting in a sink.

Condit ion 2 is implemented in the function
Check_Non_Trivial_Satisfactory_States. The recursive
case is handled by the procedure Satisfactory (Figure 9),
which is called each t ime a basic satisfactory state has
been identif ied. Because of space constraints, we de­
scribe Check_Non_Trivial_Satisfactory_States informally.
Essentially, Condit ion 2 must label all satisfactory states
of the automaton M. When all the satisfactory states
have been identified, the remaining states st i l l labeled
undefined become sinks. In this way, the planner also
takes into account Condit ion 3 for sinks.

Cont ro l D i r e c t e d Backtrack ing Search The idea
of this search technique is to avoid expanding descen­
dants of nontr iv ia l sinks. Indeed, such expansions are
useless. For example, in Figure 7, when the expan­
sion has reached the sink [(3 , 3) , f 5] , through the uncon­
trol lable transit ion C7, state [(l , 3) , f 3] also becomes a
sink. It then becomes useless to expand descendants of
[(1,3), f3] that cannot be reached through at least one
path f rom the in i t ia l state.

To implement this idea, we need to attach backpointers
to states to indicate their immediate parents: s.pre C
2(XxF) contains the set of immediate parents of s for
which the transit ion to s is caused by an uncontrollable

7 9 6 KNOWLEDGE BASE TECHNOLOGY

action; s.pct contains the set of control­
lable transitions incoming to s. Hence, if [a,s'] e s.pct,
then state s can be avoided by disabling a at s', since a
is controllable.

The control-directed backtracking mechanism is then
implemented by the function Sink (see Figure 8). Given
a sink s, this function explores, backwards, all ancestors
of s reachable through a path formed only of uncon­
trollable transitions. Each state met in this traversal is
marked "sink" and all its descendants are marked "use-
less" provided that their predecessors are sink or marked
"useless" (the function Mark-Useless runs over descen­
dants of s, marking them "useless" unt i l we meet a state
already marked "useless" or for which at least one pre­
decessor is not marked "useless"). A state marked "use­
less" is removed from O P E N .

Note, however, that this process might mark states
for which all the incoming transitions have not yet been
generated. Hence, when these currently missing tran­
sitions are generated, the "useless" mark are removed.
The overhead incurred by these removals can be avoided
by deleting states rather than marking them. Deleted
states would then be re-expanded when reached again
by further expansions. In this way, we replace the over­
head due to updat ing the "useless" marks by the over­
head incurred by re-expanding states. The problem here
is comparable to the management of backpointers in the
search algor i thm A* [Rich and Knight, 1991] (pp. 76-
79): one can either keep and update backpointers on
expanded nodes, or re-expand them. Both strategies are
incomparable in terms of performance.

5 Conclusion

In this paper, we have described a new planning method
based on an original control-directed backtracking tech­
nique and a procedure for checking M T L goal formulas
incrementally. Our framework generates plans of reac­
tive systems that take into consideration safety, liveness,
and real-time constraints as well as controllable actions
in a uni form way. Note that the computation of the
feedback function (p does not need to be done after the
construction of the entire automaton R. Instead, we
could detect satisfactory states at different stages of ex­
pansion and immediately update the function <p accord­
ingly. This means that the processing done in the func­
tion Check_Non_Trvial_Satisfactory_States has to be in­
terleaved wi th the expansion process. In this way, <p is
produced incrementally. This gives anytime capability
to our planner [Dean and Body, 1988J.

As a matter of facts, the search process explained in
the previous section can be seen as generating the prod­
uct of two timed automata (or timed transition graphs):
one automaton accepting all the world-state sequences,
and the other accepting the legal sequences (satisfying
the M T L formula). The product automaton is simply a
search graph in which world-states correspond to states

in the world-state automaton and M T L formulas corre­
sponds to states in the M T L automaton. Our search pro­
cess computes this product on the fly. Thus, rather than
specifying the transitions of the world-state automaton
explicit ly, we use a STRIPS-Iike action language to specify
them succintly and then recursively apply actions to gen­
erate them only when they become relevant in the search
process. Similarly, rather than specifying the transitions
of the M T L automaton explicit ly, we progress formu­
las to generate them only when they become relevant
in the search process. Recently, Brandin and Wonham
have proposed an approach in which the transitions of
the two automata are specified explicit ly [Brandin and
Wonham, 1994]. Our approach has at least two advan­
tages wi th respect to their work. First, in our planner
only world-states and M T L formulas that are relevant
in the product are generated. In the Brandin and Won­
ham's approach, sink states and all potential t ime tran­
sitions must be specified explicit ly in the input automata
since their relevance can only be determined when con­
structing the product. Second, M T L specifications are
declarative and are maintained as such during our search
process. We think that this wi l l facil i tate debugging of
controller specifications. For example, sink states rise
when an M T L always modal i ty is made false or the dead­
line of an eventually modal i ty expires. These modalities
provide information in a declarative form about unde-
sired states in the process being controlled.

We are investigating different complementary strate­
gies for coping wi th state explosion. Recent work in
AI planning shows that forward-chaining search can be
made effective using such strategies [Bacchus and Ka-
banza, 1995]. At the same t ime, work in control theory
has demonstrated that a forward-chaining exploration
can become effective wi th real-world problems using ef­
ficient implementation or modular techniques [Balemi et
a/., 1993; Brandin, 1994]. In the same trend, we intend to
investigate the application of AI planning goal-regression
techniques ([Rich and Knight , 1991]) to generate search
control knowledge that specifies the relevance of actions
to a given goal. W i t h this knowledge, forward-chaining
wi l l explore the more relevant parts of the search space
before the less relevant ones. The usual goal-regression
techniques in AI planning deal only w i th goals of achiev­
ing state conditions. Our approach to handle general
M T L goals is being influenced by two observations. On
the one hand, an M T L eventually modal i ty expresses a
condition to be achieved. Thus, we could parse an M T L
formula to extract the sub-formulas expressing condi­
tions to be achieved and then apply goal-regression tech­
niques to determine the relevance of actions to these con­
ditions. On the other hand, an M T L always modal i ty
expresses a condition to be maintained. Each uncontrol­
lable action that could falsify such a condit ion is rele­
vant since it might lead to sinks. Such relevant actions
could also be determined using goal-regression. It thus

BARBEAU, KABANZA, AND ST-DENIS 7 9 7

seems possible to interleave the goal-regression processes
of computing relevant actions and the forward-chaining
one of generating accessible states. The challenge wi l l be
to study the tradeoffs between these processes and the ef­
fectiveness of their combination on real-world problems.
In the same line of inquiry, we are also interested in ab-
straction over large numbers of states dur ing search.

References

[Alur and Henzinger, 1993] R. A lur and T. Henzinger.
Real-time logics: Complexity and expressiveness. In­
formation and Computation, 104(l) :35-77, 1993.

[Alur et al., 1993] R. Alur , C. Courcoubetis, and
D. D i l l . Model-checking in dense real-time. Infor­
mation and Computation, 104(l) :2-34, 1993.

[Bacchus and Kabanza, 1995] F. Bacchus and F. Ka-
banza. Control strategies in planning. AAAI Spring
Symposium Series. Extending Theories of Action:
Formal Theory and Practical Applications, March
1995.

[Balemi et al, 1993] S. Balemi, G.J. Hoffman, P. Gyu-
gyi , H. Wong-Toi, and G.F. Frankl i . Supervisory con­
trol of rapid thermal multiprocessor. IEEE Transac­
tions on Automatic Control, 38(7):1040-1059, 1993.

[Brandin and Wonham, 1994] B. A. Brandin and W. M.
Wonham. Supervisory control of t imed discrete-event
systems. IEEE Transactions on Automatic Control,
39(2):329-42, 1994.

[Brandin, 1994] B. A. Brandin. Supervisory control of
an experimental manufactur ing cell. In Proceedings of
Thirty-second Annual Allerton Conference on Com­
munication, Control, and Computing, pages 699-708,
Urbana-Champaign, 1994.

[Dean and Body, 1988] T. Dean and M. Body. An anal­
ysis of time-dependent planning. In Proc. of Sixth
National Conference on Artificial Intelligence, pages
49-54, 1988.

[Dean and Wel lman, 1991] T. L. Dean and M. P. Well-
man. Planning and Control. Morgan Kaufmann, 1991.

[Dean et al., 1993] T. Dean, L. P. Kaelbl ing, J. Kerman,
and A. Nicholson. Planning wi th deadlines in stochas­
tic domains. In Proc. of Eleventh National Conference
on Artificial Intelligence, pages 574-579, 1993.

[Drummond and Bresina, 1990] M. Drummond and
J. Bresina. Any t ime synthetic projection: Maximaz-
ing probabi l i ty of goal satisfaction. In Proc. of Eighth
National Conference on Artificial Intelligence, pages
138-144, 1990.

[Emerson, 1990] E. A. Emerson. Temporal and modal
logic. In J. van Leeuwen, editor, Handbook of Theo­
retical Computer Science, volume B, pages 995-1072.
M I T Press/Elsevier, 1990.

[Fikes and Nilsson, 1972] R. Fikes and N. J. Nilsson.
Learning and executing generalized robots. Artificial
Intelligence, 3(4):251-288, 1972.

[Fusaoka et al, 1983] A. Fusaoka, H. Seki, and K. Taka-
hashi. A description and reasoning of plant controllers
in temporal logic. In Proceedings of the IJCAI, pages
405-408, 1983.

[Georgeff and Lansky, 1987] M. P. Georgeff and A. L.
Lansky. Reactive reasoning and planning. In Proceed­
ings of Fifth National Conference on Artificial Intel­
ligence, pages 677-682, 1987.

[Godefroid and Kabanza, 1991] P. Godefroid and F. Ka­
banza. An efficient reactive planner for synthesizing
reactive plans. In Proc. of Ninth National Conference
on Artificial Intelligence, pages 640-645, 1991.

[Kabanza, 1990] F. Kabanza. Synthesis of reactive plans
for mul t i -path environments. In Proc. of Eighth
National Conference on Artificial Intelligence, pages
164-169, 1990.

[Makungu et al, 1994] M. Makungu, M. Barbeau, and
R. St-Denis. Synthesis of controllers w i th colored Petri
nets. In Proceedings of Thirty-second Annual Allerton
Conference on Communication, Control, and Com­
puting, pages 709-718, Urbana-Champaign, 1994.

[Nilsson, 1994] N. J. Nilsson. Teleo-reactive programs
for agent control. Journal of Artificial Intelligence Re­
search, 1:139-158,1994.

[Ramadge and Wonham, 1989] P. J. G. Ramadge and
W. M. Wonham. The control of discrete event sys­
tems. Proceedings of the IEEE, 77(l):81-98, 1989.

[Rich and Knight , 1991] E. Rich and K. Knight . Artifi­
cial Intelligence. McGraw H i l l , 1991.

[Stallman and Sussman, 1978] R. M. Stal lman and G . J .
Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit
analysis. Artificial Intelligence, 9, 1978.

[Thistle and Wonham, 1986] J. G. Thist le and W. M.
Wonham. Control problems in a temporal logic frame-
work. International Journal on Control, 44(4) :943-
976, 1986.

7 9 8 KNOWLEDGE BASE TECHNOLOGY

