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Abst rac t 

Two new theorem-proving procedures for equa-
t ional Horn clauses are presented. The largest 
l i teral is selected for paramodulat ion in both 
strategies, except that one method treats pos-
it ive literals as larger than negative ones and 
results in a unit strategy. Both use term 
orderings to restrict paramodulat ion to po­
tential ly max imal sides of equations and to 
increase the amount of allowable simplif ication 
(demodulat ion). Completeness is shown using 
proof orderings. 

1 I n t r o d u c t i o n 
The completeness of posit ive-unit resolution for sets of 
Horn clauses p\ A • • • A pn => p n + i is well-known. An 
advantage of a uni t strategy is that the number of literals 
in clauses never grows; it suffers f rom the disadvantage of 
being a bot tom-up method. Ordered resolution, in which 
the literals of each clause are arranged in a linear order 
> and only the largest l i teral may serve as a resolvent, 
is also complete for Horn clauses [Boyer, 1971]. The 
purpose here is to design Horn clause strategies that 
make more comprehensive use of orderings in control l ing 
inference. 

Positive-unit resolution, or any other complete varia­
t ion of resolution, could be used to prove theorems in 
equational Horn theories (the equality axioms, including 
functional reflexivity, are Horn), but the cost of treating 
equality axioms like any other clause is prohibi t ive. For 
this reason, special inference mechanisms for equality, 
notably paramodulat ion [Robinson and Wos, 1969], have 
been devised. In the Horn case, a uni t strategy can 
be combined wi th paramodulat ion [llenschen and Wos, 
1974; Furbach, 1987]. 

In this paper, we describe two complete theorem-
proving methods for equational Horn theories. As in 
[Hsiang and Rusinowitch, 1986; Kounalis and Rusinow­
i tch, 1987; Zhang and Kapur, 1988; Rusinowitch, 1989; 
Bachmair and Ganzinger, 1990; Nieuwenhuis and Orejas, 
1990], our goal is to minimize the amount of paramodu­
lat ion, while maximizing the amount of simplif ication -
wi thout threatening completeness. Orderings, described 
in detail in Section 2, are used to choose which literals 
participate in a paramodulat ion step), and which side 
of an equality l iteral to use. They util ize orderings 
of terms and atoms to restrict inferences, and are 
generalizations of ordered completion [Bachmair et al., 
1986; Hsiang and Rusinowitch, 1987], an "unfai l ing" 
extension of the "completion procedure" in [Knuth and 
Bendix, 1970] for uncondit ional equational inference. 
Completionoperat.es on asymmetrical equations, that is, 
on rewrite rules, and has as its goal the production of 
confluent (Church-Rosser) systems of rules that can be 
used to decide validity. To achieve this, the larger sides 
of rules are overlapped on (non-variable) subterms of 
each other, producing equations that are called "crit ical 
pairs . Brown [1975] and Lankford [1975] first suggested 
combining completion for oriented uncondit ional equa­
tions, w i th paramodulat ion for unorientable ones and 
resolution for non-equality atoms. Paul [1986] studied 
the application of completion to sets of Horn clauses wi th 
equality. 

Complet ion was extended to condit ional equations by 
Kaplan [1987], who turns equations into rules only if 
they satisfy a certain "decreasingness" condit ion. The 
problem is that the crit ical pair of two decreasing rules 
can easily be nondecreasing. Like standard completion, 
both these methods may fai l on account of inabi l i ty 
to form new rules. Kounalis and Rusinowitch [1987] 
suggested narrowing conditions to achieve completeness. 
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Recently, several restrictions of paramodulat ion based on 
term orderings have been proposed for the fu l l first-order 
case, including [Zhang and Kapur, 1988; Rusinowitch, 
1989; Bachmair and Ganzinger, 1990]. For a survey of 
rewr i t ing, see [Dershowitz and Jouannaud, 1990]. 

Section 3 presents a set of inference rules that severely 
restricts resolution w i th paramodulat ion by incorporat­
ing an ordering on (atoms and) terms. L im i t ing inference 
part ia l ly controls growth; keeping clauses ful ly simplified 
stunts growth even further. Such restrictions are of 
paramount importance in any practical theorem prover, 
but their (refutat ional) completeness has been diff icult 
to establish. For our completeness proofs, sketched 
in Section 4, we adapt the proof-ordering method of 
[Bachmair et a/., 1986] to condit ional proofs. Section 4.1 
demonstrates the completeness of a uni t strategy (sug­
gested in [Dershowitz, 1990]) and Section 4.2 considers 
a strategy based on condit ional completion of decreasing 
rules. Proof orderings allow us to l im i t narrowing 
to negative literals in the uni t strategy, something 
that appears impossible w i th the recent transfinite-tree 
proof method used in [Hsiang and Rusinowitch, 1987]. 
The crux of our proof normalizat ion argument is the 
observation that any condit ional equational proof not 
in "normal f o rm" must either have a "peak", that is, 
two applications of equations such that the middle term 
is the largest of al l those involved and al l subproofs are 
in normal fo rm, or a "d rop" , that is, an application of 
an equation (or refiexivity of equals) to an instance of 
a condit ion in which all subproofs are in normal form. 
The strategies are designed to el iminate peaks and drops, 
thereby reducing the complexity assigned to the proof. 

Section 5 concludes w i th a short discussion. 

2 S imp l i f i ca t i on Order ings 

Let T be a set of (f irst-order) terms, w i th variables taken 
f rom a set A', and G be its subset of ground (variable-
free) terms. If t is a term in T, by t\x we signify the 
subterm of t rooted at posit ion 7r; by t[s]Vl we denote 
the term t w i th its subterm t\* replaced by some term s. 

Term orderings are of central importance in the 
proposed methods. A tota l ordering > on ground terms 
Q is called a complete simplification ordering [Hsiang 
and Rusinowitch, 1987] if it has (a) the "replacement 
property" , s > t implies that any term t i [s]T , w i th 
subterm s located at some posit ion 7r, is greater under 
> than the term u[t]w w i th that occurrence of s replaced 
by <, and (b) the "subterm proper ty" , t > t\n for 
all subterms / |^ of t. Such a ground-term ordering 
must be a well-ordering (see [Dershowitz, 1987]). A 
completable simplification ordering on all terms T is a 
partial ordering >- (c) that can be extended to a complete 
simpli f icat ion ordering > on ground terms, such that (d) 
s y t implies that sa > ta for all ground substitutions 
<r. Furthermore, we w i l l assume (e) that the constant T 
is m in ima l in >-. 

Imagine a tota l ordering of atoms and wi th no equa­
tions, per se. The method of Section 4 .1 , then, is just 
selected posit ive-unit resolution, in which the largest 
negative l i teral is chosen. The appropriate inference rule 
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itself, and "cr i t ica l " subproofs, for which equations in 
exp1(E) are needed. A peak 

, is critical if the posit ion TT is at 
or below the posit ion p in w at which u v is applied, 
but not at or below a posit ion corresponding to any 
variable in ui, or (symmetr ical ly) if p falls w i th in the 
non-variable part of the occurrence of / in w. Similarly, 
a drop is critical if the first or last step 
of one of the subproofs for qcr takes place w i th in the 
non-variable part of the condit ion q. 

Since any proof must have at least one subproof of 
depth 0, any non-normal proof must have a plateau, 
an unconditional peak, or a drop of depth 1 w i th 
(uncondit ional) valley subproofs. Thus, we need not 
worry about peaks involv ing a condit ional rule, nor 
drops in which the proof of some condit ion is not 
uncondit ional. A l l plateaus can be spliced out. Cr i t i ­
cal uncondit ional peaks, cri t ical drops w i th non-empty 
uncondit ional valley subproofs, and drops wi th empty 
proofs of conditions can each be replaced by a smaller 
proof, using the condit ional equation generated by a 
required appl icat ion of s u p e r p o s e , n a r r o w , or re f l ec t 
inference, respectively. Narrowing can be restricted to 
the maximal side of the max imal condit ion, since a drop 
wi th non-empty subproofs must have a step emanating 
f rom the larger side of its largest condit ion. 

Theorem 1 follows: If s t is provable in Eo, 
then (by Lemma 1) it has a proof P in the l im i t Eoo. 
If P is non-normal, then (by Lemma 2) it admits a 
smaller proof P' using ( in addi t ion to a finite 
number of equations in e x p 1 By fairness, each 
of those equations appeared at least once along the way. 
Subsequent inferences (by Lemma 1) can only decrease 
the complexity of the proof of such an equation once it 
appears in a set E i, (and has a one-step proof) . Thus, 
each equation needed in P' has a proof of no greater 
complexity in itself, and hence (by the mult iset 
nature of the proof measure), there is a proof of 8 t in 
EQQ that is str ict ly smaller than P. Since the ordering 
on proofs is well-founded, by induct ion there must be a 
normal proof in £"00. 

4.2 D e c r e a s i n g S t r a t e g y 

In the above method, only uncondit ional equations are 
used for superposition and narrowing. An alternative is 
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to design an inference system that distinguishes between 
decreasing and nondecreasing non-unit clauses. We 
give here a method based on the incomplete completion 
method in [Ganzinger, 1987]. The required inferences 
(using s u p e r p o s e and n a r r o w ) are again a stringent 
restriction of paramodulat ion. 

For the decreasing method, we redefine a normal-form 
proof of s ~ t to be a valley proof in which each subproof 
is also in normal form and each term in a subproof 
is smaller than the larger of s and t; see [Dershowitz 
ana Okada, 1988]. Any non-normal-form proof has a 
peak made f rom decreasing instances w i th normal-form 
subproofs, or has a nondecreasing step wi th normal-
form subproofs, or has a t r iv ia l step. The Cri t ical Pair 
Lemma of [Kaplan, 1987] for decreasing systems can 
be adapted to ground confluence of decreasing systems. 
Superposition is needed between decreasing conditional 
rules. As before, we must perform enough expansions 
w i th persistent condit ional equations for there to always 
be a normal- form proof in the l im i t . 

D e c r e a s i n g S t r a t e g y : An inference sequence E0 f~ E1 

h - i s fair w i th respect to the decreasing strategy if 

where exp(EOQ) is the set of conditional equations 
that may be inferred f rom persisting equations by one 
application of an expansion rule supe rpose , n a r r o w , 
or r e f l ec t . 
T h e o r e m 2. If an inference sequence is fair for the 
decreasing strategy, then for any proof of s ~ t in the 
initial set Eo of conditional equations, there is a normal-
form proof of s ~ t in the limit E^. 

5 Discussion 
We presented two complete theorem-proving strategies 
based on the use of term-orderings. Both strategies 
provide for simpli f icat ion (demodulat ion) by what we 
called "decreasing" equations. 

Our uni t strategy is the first to combine a restriction 
to paramodulat ion w i th unit equations wi th a strategy 
based on maximal terms. It l imi ted inferences in the 
fol lowing ways: (1) The functional reflexive axioms are 
not needed and, at the same t ime, paramodulat ion into 
variables is avoided (as for some versions of paramod­
ulat ion); (2) for all (resolution and paramodulat ion) 
inferences, at least one of the equations must be uncon­
di t ional (as in positive uni t resolution and positive unit 
paramodulat ion); (3) unless an equation is unconditional 
only its condit ional part is used for paramodulat ion 
(analogous to posit ive-unit resolution); (4) only maxi­
mal terms (w i th respect to a given ordering) are used 
(analogous to ordered resolution). Unlike [Kounalis 
and Rusinowitch, 1987], we use only uni t clauses when 
paramodulat ing into conditions; unlike [Bachmair et a/., 
1989], all inferences use only the maximal side of an 
equation. 

The second strategy prefers paramodulat ion between 
positive literals. It requires less paramodulat ion and 
offers more simpl i f icat ion than [Kounalis and Rusinow­
i tch, 1987], for example. In essence, it treats decreasing 



equations l ike un i t clauses of the f irst strategy. When 
the order ing suppl ied to the prover is empty (the 
empty order ing is completable), the method reduces 
to "special" paramodu la t ion , in which the funct ional -
reflexive axioms are not needed and paramodulat ion 
in to variables is not performed (see [Lankford, 1975]). 
The l im i ta t ions on paramodu la t ion are l ike those in 
[Ber t l ing , 1990], bu t we give a specific, pract ical strategy 
for s impl i f i ca t ion. 

The strength of these methods, bo th in m in im iz ing 
possible inferences and max im iz ing potent ia l simpl i f ica­
t ions, is brought to bear by employ ing more complete 
orderings than the empty one. A nonempty order ing 
el iminates many potent ia l pararnodulat ions and allows 
condi t ional equations tha t are s impl i f iable to be replaced 
w i thou t compromis ing ( re futat ion) completeness. In 
practice, any efficiently computable order ing should be 
better than uncontro l led paramodu la t ion . The polyno­
mia l and path orderings commonly used in rewrite-based 
theorem provers [Dershowitz, 1987] are completable. In 
par t icu lar , the recursive path orderings have decidabi l i ty 
properties [Jouannaud and Okada, 1991] tha t make it 
ideal for th is purpose. Choosing an order ing tha t takes 
the goal ( theorem) in to account can impar t a top-down 
f lavor to an otherwise bo t t om-up procedure. 

We used the same order ing for s impl i f icat ion as for 
choosing the m a x i m a l l i te ra l . In fact, a different selection 
strategy can be used for choosing the l i teral to narrow, 
as in [Ber t l ing and Ganzinger, 1989], bu t then the te rm 
order ing must be used to choose the larger side of the 
equality. 
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