Deep Packet Inspection

Ryan Goss
Institute for ICT Advancement & School of ICT
Nelson Mandela Metropolitan University
Port Elizabeth, South Africa
Email: ryan@goss.co.za

Abstract—Enterprise and service provider customers develop,
maintain and operate network infrastructure in order to support
the applications required to perform their day to day tasks.
These applications have certain requirements and expectations
from the infrastructure, including access to public networks,
and thus rely on quality of service (QoS) controls to manage
network traffic. QoS controls are used to ensure non-critical
applications do not hamper the operation of critical ones, all
the while providing fair access to all legitimate applications.
QoS systems are increasingly being used as firewalls, filtering
bad traffic and allowing good traffic to traverse the network
without delay.

This paper investigates the effectiveness of protocol matching
within current QoS classifiers and shows that even with the
most up to date classifiers, “unknown” or unidentified traffic
is still prevalent on a network; a serious concern for IT network
administrators. This “unknown traffic could consist of viruses,
attempted exploits and other un-authorized connectivity from
outside sources.

I. INTRODUCTION

Communication has, since the inception of the personal
computer system, become a vital lifeline in modern society
for businesses and individuals alike. The increase in need for
communication has resulted in the development of faster, more
connected computer networks over a vast geographical area
[1]. The fastest way to improve global reach of communication
is to harness the power of broader reaching public networks,
such as the Internet, for day to day communications, for both
personal and business use. Connecting to public networks,
specifically the Internet, introduces a variety of potential at-
tacks and unwanted traffic to once closed, protected computer
systems. These unwanted traffic flows may slow throughput,
degrade communication performance and potentially expose
these computer systems to a wide variety of direct and indirect
attacks. It is therefore necessary to separate “Good traffic”
from “Bad traffic” to optimize performance of communication
networks and mitigate the risk imposed on these once closed
computer systems. Internet firewalls and intrusion detection
systems have thus subsequently become a vital component of
these global networks [2].

These devices, which were initially designed solely with
“best effort” packet switching on a first-come-first-served basis
in mind, have been called upon to provide different qualities of
service to manage traffic [3]. The enhanced traffic management
requirements include admission control, resource reservation,

- Fear of the Unknown

Reinhardt Botha
Institute for ICT Advancement & School of ICT
Nelson Mandela Metropolitan University
Port Elizabeth, South Africa
Email: reinhardta.botha@nmmu.ac.za

per-flow queueing and fair scheduling. These features require
the router to distinguish packets belonging to different flows,
marking them as related in order to effectively route and
manage each individual connection. The traffic flows have
previously been specified by various predefined rules, applied
to all incoming packets through a router’s network interface.
This collection of rules are collectively known as a classifier
[3].

The rules of a traditional classifier follow the convention
that rules closer to the top of the list take priority [3]. The
rules operate on a pass-through basis whereby the rule set is
traversed until a match has been made, at which time a mark is
set and applied to the flow. These marks have traditionally been
set based on simplistic packet header information [2] and lim-
ited by syntax to a simple address/mask or operator/number(s)
specification such as source or destination ports [3].

Past firewall matching capabilities were shown to focus on
more simplistic traffic matching mechanisms, such as port
and protocol comparisons [4]. Recent advances in network
applications make use of application layer communication
protocols, designed to circumvent simple protocol matching
such as port and IP address information found in packet
headers [5], [6]. Peer-to-peer applications such as Skype,
Bittorrent and the GNUtella network applications do not
operate on standard or fixed ports, protocols or IP addresses
[7], but rather randomly select ports on which to send and
receive data [6], [8]. These applications account for up to
50%-70% of Internet traffic [7] and are designed to pass
through firewalls and traffic shaping mechanisms [8] imposed
by network administrators. These rules are put in place in order
to ensure the organizational policies governing network usage
are strictly adhered to and that the network is optimized for
its primary use. Enhancements in firewall filtering techniques
have adapted to look into the underlying packet payload of
network traffic to classify it, rather than solely the packet
headers [9].

It is important to classify network traffic in order to assist
network administrators in managing data flows on their IP
networks [7], [10]. By providing network administrators the
ability to flag traffic flows with a particular firewall mark, they
are able to block, restrict flow (traffic-shape) and possibly redi-
rect certain flows based on a predefined ruleset. This process
increases the overall security of the network as unclassified
traffic will not go unnoticed as is the case in many network

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

0000 00 0c 422df59100 1e 64 50 e0 5a 08 00 45 00 ..B-...dP.Z..E
0010 00 44 47 eb 40 00 80 06 86 8¢ c0 a8 10 64 4c 0d DGC.@... dL
0020 0f23 c6 a9 13 bafacO 21c9f1 5e 57 d6 50 18 Ho LAW.P.
0030 1021 a4 250000 59 4d 53 47 00 11 00 00 00 08 L%.YMSG......
0040 00 57 00 00 00 00 00 00 00 00 31 cO 80 62 6f 62 W...... .1..bob
0050 c0 80

Fig. 1. Wireshark Snapshot of the Yahoo! Messenger Protocol

implementations.

Projects such as the L7-Filter project [12] and the Open
Deep Packet Inspection Engine project [13] attempts to address
this problem through deep packet inspection techniques. By
using regular expressions, deep packet inspection systems
attempt to match patterns or signatures in the packet pay-
load [7]. Commercial applications also exist with their own
classification engines, designed using deep packet inspection
techniques. Some examples of these systems include the
Cisco nBAR application [14], Bluecoat appliances [15] and
Checkpoint firewalls [16].

Many systems focus on the use of regular expressions to
match strings in the underlying packet payload [11]. The reg-
ular expressions used in these systems usually originate from
the manufacturer of the system, or network administrators
who create their own. The requirement for manual creation
of a classifier to match each protocol has at least one major
drawback - if no classifiers have been released or created for
a particular protocol, that particular protocol will traverse the
network as “unknown” traffic. This design promotes scalability
issues for the system due to the unavailability of sufficient
pattern signatures [7].

Each regular expression describes a set of strings without
enumerating them explicitly [11]. Consider for example the
following regular expression which matches the popular
Yahoo! Messenger traffic flow [11]:

(ymsg|ypns|yhoo) .?2.2.2.2.2.2.2[1lwt].~*
\ch \XSO

The QoS system would attempt to match the data payload
contained within the first few packets of each connection
to the regular expression. If no match is found, it tries the
next regular expression until either a match is found, or the
connection is marked as “unknown”.

An example of a packet payload containing Yahoo! infor-
mation was captured using the Wireshark application and is
shown in Figure 1. In amongst the various other characters,
this packet’s payload included a string of characters which
would cause a match if compared to the Yahoo! messenger
protocol’s classifier.

A hexidecimal representation of the packet’s payload is
shown on the left hand side, with the ASCII representation
on the right. As can be seen, the characters “YMSG” exist,
followed by 7 other characters and then the “W” character.
Finally, a few characters later the characters cO and 80 are

found, terminating the string.

The requirement for manual creation of regular expressions
leads to a potential delay in the ability to match certain
protocols which may be essential to network administrators,
such as new virus attacks or worms. Any traffic not matched
by existing regular expressions are generally marked with
the “unknown” classifier. However, the unknown classifier
does not help the administrator or network security engineer
establish the legitimacy of the underlying traffic flow. This
provides potential for the administrators to either accidentally
block good traffic, or unblock bad traffic.

The question thus posed by this paper relates directly to
the operation of these systems: Just how much of the traffic
flowing on a particular network is able to be matched by
existing, fully updated classification systems?

In order to answer this question, the following experiment
was setup to establish the status quo of classifiers currently
available - from both commercial and open source offerings.

II. EXPERIMENT

In order for a deep packet inspection engine to be effective
in matching traffic, both directions of traffic flow need to be
seen by the classifier. The traffic generated by the source and
the replies generated by the destination thus need to be passed
through the classifier.

This experiment was setup in such a way that a particular set
of traffic was recorded, so that it could be replayed to multiple
classification engines and thus ascertain the effectiveness of
each in a controlled test environment. As the traffic was being
recorded and replayed, the experiment would not be able to
replay replies from hosts which were not part of the local
network, due to the potential inability to record such traffic.
For this reason, the traffic recorded and replayed was that
which was sent and received on the local network segment.

A. Data set

The data set used for this experiment was captured on the
local area network of an information technology company, us-
ing Wireshark [17] on a Linux based host machine. Permission
was obtained from the operations manager of the organization
to record traffic flows traversing their network during a 1
hour period of a normal business day. Users were aware of
the experiment and that the information generated for the
course of the day was subject to being recorded, in line with
Section 86 of the South African Electronic Communications
and Transactions Act 25 of 2002. The data set comprised
of traffic flows generated by users during the day for the
purposes of conducting their work and included HTTP, SSH,
FTP, Instant Messenger and Email traffic flow information
within the local network. Further to this, a small amount of
Peer to Peer based traffic was also recorded, which consisted
of Skype [18] and Bittorrent [19] protocols. Filters configured
on the Wireshark application ensured that only local traffic
was recorded, ensuring that when the traffic was replayed in
the offline test environment, both directions of the traffic flow
would be seen by the classifier.

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

<=

Packets replayed to each router

Fig. 2. Network Topology Design

The data was recorded from 13:30 until 14:30 on a Monday,
with the time difference between packets also captured so that
during the replay of the traffic on the test network, the exact
packet delays could also be simulated, rather than replaying
the packets in a seemingly uncontrolled manner.

B. Test Environment

A simplistic network topology, illustrated in Figure 2, was
setup in order to insert the routers whose classifiers would be
tested and subject them to the recorded data set. All tests were
performed in a totally isolated network setup, away from any
external traffic influences.

The authors decided to gauge the effectiveness of both the
open source and commercial deep packet inspection offerings.
The routers were thus selected based on their availability at
time of testing. Both routers were subjected to the same test
data. This was done with two objectives. First, to ascertain
which percentage of the traffic was identified by each. Second,
to compare results and determine on average how much traffic
were “unknown”, i.e. it could not be classified.

Based on these requirements, the following two deep packet
inspection engines were selected for testing:

o Cisco' Network Based Application Recognition (nBAR)
- A commercial application developed by Cisco with
the intent on matching Real-time Transport Protocol
(RTP) and other applications using deep packet inspection
techniques.

o Linux based router running L7 Filtering - Mikrotik
RouterOS? offers support for using regular expressions to
match connections using the underlying packet payload
with an IP network traffic flow, using the protocols cre-
ated and managed by the Open Source L7-filter project.

The Cisco router used was a 2621 series, running version
12.3 of Internetwork Operating System (IOS) and NBAR ap-
plication produced by Cisco Systems. The Mikrotik router was
a Routerboard 433, running RouterOS version 3.33 with layer
7 filter support. Each router was in turn inserted into the test
network shown described in Figure 2, with its primary ethernet
interface directly connected to a laptop running Windows 7.
This laptop stored the information recorded by the Linux host
machine and had the application installed to replay the traffic
to the test routers.

Thttp://www.cisco.com/
Zhttp://www.mikrotik.com/

C. Test Execution

In order to ensure the best possible chance for maximum
traffic identification, each system was updated with the latest
version of their operating system and protocol information
databases (signatures). These signatures were loaded into the
system’s forwarding chain, allowing them to count the bytes
and mark connections associated with the various traffic flows.
Although the results could provide information as to the
accuracy of these systems, including false positives and false
negatives for each protocol, the focus of this paper is merely
to ascertain traffic matched versus the amount of unidentified
traffic, marked “unknown” by the system. It should further
be noted that the tests conducted during this experiment
were performed purely with deep packet inspection filters.
Standard port-based filters were purposefully excluded in order
to indicate the accuracy of the router’s deep packet inspection
engine and classifiers.

Each router was in turn placed into the test network
and had its primary IP address for the interface connected
to the laptop configured on the same range as the subject
network was running. An application called PrePlay [20]
running on the Windows 7 laptop was used to read the file
produced by the Wireshark application and replay this traffic
to each of the routers. After the data set had been transmitted
(approximately 1 hour for each), the byte and packet counters
on each router were recorded and documented in Table 1.

III. RESULTS

The results observed after replaying the 27,502 packets
(totalling 16,088,348 bytes) of the sample data set on each
router independently yielded the following results:

TABLE 1
RESULTS OF EXPERIMENT
Known Unknown Classifiers
Cisco nBAR 87.44% 12.56% 71
Mikrotik 69.56% 30.44% 105
[Average [785% | 21.5%] |

The results recovered from this experiment indicate that the
open-source application, although having significantly more
classifiers than the commercial application, failed to match as
much of the traffic as the Cisco nBAR product. Even so, the
results were not too far apart, providing enough information
to formulate a fair set of findings. The averages for the two
application’s results were also calculated and are shown at the
bottom of the table.

IV. DISCUSSION

The results produced by this experiment indicate that al-
though a significant amount of research has been conducted
into the improvement of deep packet inspection engines, there

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

is still a lot more work to be done to achieve perfection. This
paper has shown that a significant portion of all traffic recorded
on the network was unable to be identified by popular deep
packet inspection engines.

Comparing the results between the two systems tested, it
can clearly be seen that the open source offerings lacked
in identification compared with the commercial product. The
open source system, although boasting more than 34 additional
classifiers than the Cisco product, resulted in almost 18%
less identifications. Whilst commercial systems may have a
lot more time and resources invested with their development,
open source systems are generally able to produce significant
results due to the overwhelming support of the community of
developers. The open source systems inability to identify as
much as the Cisco product may thus be due to the classifiers
themselves being too specific. Alternatively, the implemen-
tation of the deep packet inspection techniques used by the
system may not be as efficient or optimized as the various
commercial offerings.

Although the commercial product in this test appeared to
outperform the open source one, it can be seen that there
is a significant amount of “unknown” traffic which neither
system classified. This result appears to be directly due to the
effectiveness of each of the classifiers of the systems. The
traffic that was identified by each system may also not be
correct in that the classifier may over generalize in order to
make a match, rather than very specific which would limit
the results significantly. These classifiers may result in traffic
being skipped, instead of it being matched by the system. It
is therefore possible that the unknown traffic may wrongfully
contain traffic which should be known to at least one of the
classifiers of the system, or that certain known traffic should
in fact have been marked as unknown.

As more and more applications are developed to elude stan-
dard QoS techniques and deep packet inspection classfiers, the
amount of unknown traffic traversing networks will increase.
The unavailability of classifiers for a new protocol prevents the
network administrator from managing the traffic flow until one
becomes available. In contrast, perhaps there was a classifier
designed with the intention of matching the specific traffic,
however problems within the regular expression caused it to
fail to match the protocol. Human error in the creation and
maintenance of classifiers thus plays a significant part in the
accuracy and effectiveness of the system.

Another method of eluding these systems includes applica-
tions which opt to encrypt the underlying protocol information
contained within the data packet. Upon inspection of the
data field of such packets, the classifiers will generally not
match any of the strings due to them being encrypted. This
alone forms a large area for future researchers to investigate
when ascertaining the effectiveness of deep packet inspection
systems.

This paper serves as a basis for future research in various
areas of deep packet inspection. The correctness of the known
and the unknown traffic needs to be addressed - just how
accurate are the classifiers when marking traffic? How could

the accuracy of these systems be increased without incurring
any additional penalties such as slower throughput due to
processing time. The development of techniques to handle
unknown traffic in a controlled manner is also an area worth
investigating. Simply allowing this data to flow on the network
in a seemingly uncontrolled manner may not be enough
for certain network administrators. It may be necessary to
implement controls whereby this data can be managed and
prioritized in a structured, controlled manner.

There are numerous ways to validate the findings of this
paper in more detail. This includes the broadening of the base
of the experiment, by including more deep packet inspection
products into the experiment and by comparing more than one
set of sample data. This paper has shown that popular deep
packet inspection engines are unable to identify a significant
portion of all traffic recorded on the network.

V. CONCLUSION

The results produced by this experiment indicate that there
is a clear requirement for improving existing traffic classi-
fication systems. Application protocols are adapting to the
signatures deployed by manufacturers of firewall applications
at a rate that the manufacturers are unable to keep up with.
This results in an increasing percentage of “unknown” traffic
on a corporate network, lowering the overall security and
control of the data network.

Based on the average results obtained through the experi-
ment described in this paper, almost a quarter of all network
traffic observed on the subject network was classified as
“unknown” by the firewall, leaving a significant amount of
unmanageable traffic traversing the network with no foresee-
able way of managing it. This provides a cause for concern for
network administrators, who attempt to manage their networks
in a secure and efficient manner.

REFERENCES

[1] Curtis, N., & Taylor, P. (2008). Network architecture. The Independent
Institute of Education.

[2] Moscola, J., Lockwood, J., Loui, R. P, & Pachos, M. (2003, April). Im-
plementation of a content-scanning module for an internet firewall. In
Proceedings of the 11th Annual IEEE Symposium on Field Programmable
Custom Computing Machines (p. 31). IEEE Computer Society.

[3] Gupta, P., & McKeown, N. (2001, March). Algorithms for packet classi-
fication. IEEE Network, 15 (2), 24-32

[4] Zhang, J., Qian, Z., Shou, G. & Hu, Y. (2009). An Automated On-
line Traffic Flow Classification Scheme. In Proceedings of the 2009
Fifth International Conference on Intelligent Information Hiding and
Multimedia Signal Processing.

[5] Renals, P, & Jacoby, G. A. (2009, January). Blocking skype through
deep packet inspection. In Proceedings of the 42nd Hawaii International
Conference on System Sciences. Waikoloa, Big Island, Hawaii.

[6] Kim, H., Claffy, K., Fomenkov, M., Barman, D., Faloutsos, M., & Lee,
K. (2008, December). Internet traffic classification demystified: Myths,
caveats, and the best practices. In CoONEXT Proceedings of the 2008
ACM CoNEXT Conference (pp. 1 - 12). Madrid, Spain: ACM.

[7] Xie, X., Yang, B., Chen, Y., Wang, L., & Chen, Z. (2009). Network traffic
classification based on error-correcting output codes and nn ensemble. In
Proceedings of the 2009 Sixth International Conference on Fuzzy Systems
and Knowledge Discovery (pp. 475 - 479). Tianjin, China.

[8] Baset, S. A., & Schulzrinne, H. G. (2006, April). An analysis of the
skype peer-to-peer internet telephony protocol. In Proceedings of the 25th
Conference on Computer Communications (IEEE Infocom 2006) (p. 1-
11). Barcelona, Spain.

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

[9] Dharmapurikar, S., Krishnamurthy, P., Sproull, T., & Lockwood, J. (2004,
January). Deep packet inspection using parallel bloom filters. IEEE Micro,
24 (1), 52 - 61.

[10] Lakhina, A., Crovella, M., & Diot, C. (2004). Characterization of
network-wide anomalies in traffic flows. In IMC Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement (pp. 201 - 206).
Taormina, Sicily, Italy.

[11] Yu, E, Chen, Z., Diao, Y., Lakshman, T., & Katz, R. H. (2006). Fast and
memory-efficient regular expression matching for deep packet inspection.
In Proceedings of the 2006 ACM/IEEE symposium on Architecture for
Networking and Communications Systems (pp. 93 - 102). San Jose,
California, USA: ACM Press.

[12] The L7-Filter project http://I7-filter.sourceforge.net/

[13] The Open Deep Packet Inspection Project http://www.opendpi.org/

[14] Cisco nBar Documentation http.//www.cisco.com/

[15] Bluecoat Proxy and Firewalls http://www.bluecoat.com/

[16] Checkpoint firewalls http://www.checkpoint.com/

[17] Wireshark Network Traffic Monitor http://www.wireshark.org/

[18] Skype http://www.skype.com/

[19] Bittorrent Homepage http://www.bittorrent.com/

[20] PrePlay Homepage http://www.secgeeks.com/

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

