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If A is a small category and E a Grothendieck topos, the Kan extension
LanF of a flat functor F : A → E along any functor A → D preserves whatever
finite limits may exist in D; this is a well known fundamental result in topos
theory. We shall present a metamathematical argument to derive out of this
some other left exactness results, for Kan extensions with values in a (possibly
large) site E.

Loosely speaking, we prove that for any specific finite limit diagram (Di)i∈I
inD, the Kan extension LanF preserves the limit diagram, provided the colimits
in E used in the construction of the finitely many relevant Lan(Di)’s are what
we call ‘postulated’ colimits.

Both the notion of ‘flat’ F : A → E, and the notion of ‘postulated’ colimit in
E are expressed in elementary terms in terms of the site structure (the covering
notion) in E. If E is small with subcanonical topology, a colimit is postulated
iff it is preserved by the Yoneda embedding of E into the topos Ẽ of sheaves on
E.

As a corollary, we shall conclude that if E satisfies the Giraud axioms for a
Grothendieck topos, except possibly the existence of a set of generators (so E
is an ∞-pretopos [2]), then any flat functor into E has left exact Kan extension
(Corollary 3.3 below).

We believe that the general method presented here is well suited to give
partial left exactness results1, by for instance allowing for coarse site structure
on the recipent category E, so that there are relatively few flat functors into E.

I am grateful to Bob Paré for bringing up the question of left Kan exten-
sions with values in a ∞-pretopos, and for his impressive skepticism towards
my original hand-waving change-of-universe arguments. I benefited much from
several discussions we had on the subject.

This work was carried out while we were both visiting Louvain-la-Neuve in
May 1988. I want to express my gratitude to this university for its support and
hospitality.

Also, I want to thank Francis Borceux for bringing up, at the right moment,

∗This is a re-typed version (October 2003) of an Aarhus Preprint (Preprint Series 1989/90
No. 9, October 1989). Only a few minor corrections have been made. Equation numbers in
§1 have changed. Diagrams in the present version were (partially) typeset with Paul Taylor’s
package.

1Added in 2003: this is corroborated by recent results of Karazeris and Velebil.
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the question of whether the amalgamation theorem for groups were valid in a
topos; contemplating pushouts of groups led me in the direction of postulating
colimits.

1 Postulated colimits in a site

To say that a diagram

R
a -

b
- X

q- Q

in the category of sets is a coequalizer may be expressed in elementary terms
by saying that q ◦ a = q ◦ b, and that the following two assertions hold

q is surjective(1.1)

for any x and y in X with q(x) = q(y),
there exists a finite chain z1, . . . , zm of elements of R
with x = a(z1), b(z1) = a(z2), . . . , b(zm) = y

(1.2)

These assertions can be interpreted in any category where sheaf semantics is
available; this means in any site, cf. [3], II.8. If they hold for a given diagram
in the site, we shall say that the diagram is a postulated coequalizer.

We shall more generally describe what we mean by a postulated colimit dia-
gram in a site. If the site is subcanonical and small, this is equivalent to saying
that the diagram goes to a colimit diagram in the category of sheaves on the
site. We shall only be considering subcanonical sites, with finite limits.

We introduce first a few auxiliary notions. Let C be a small category. By a
zig-zag in C, we understand a diagram g in C of form

C1 C3 Cn

	�
�

�
�

g0

@
@

@
@

g1

R 	�
�

�
�

g2

@
@

@
@R 	�

�
�

� @
@

@
@

gn

R
C0 C2 . . . D

for some (odd) integer n. The displayed g is said to be a zig-zag from C to D,
written d0(g) = C, d1(g) = D. Let ZC(C,D) denote the set of zig-zags in C from
C to D. If h : C → D is a functor, we get a map ZC(C,D) → ZD(h(C), h(D)).

If now P : C → E is a functor into a category with finite limits, and g is a
zig-zag in C, as displayed above, we let

MP (g) ⊆ P (C) × P (C1) × . . .× P (Cn) × P (D)

be the object
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[[(x, x1, . . . , xn, y) | P (g0)(x1) = x ∧ P (g1)(x1) = x2 ∧ . . .

∧P (g2)(x3) = x2 ∧ . . . ∧ P (gn)(xn) = y]].

The projections from MP (g) to P (C) and P (D) are denoted d0 and d1, respec-
tively.

By a postulated colimit diagram for P : C → E, where E is a site, we
understand a cocone on P

{P (C)
inclC- L | C ∈ C}(1.3)

which satisfies

` ∀x ∈ L
∨

C∈C

∃y ∈ P (C) : inclC(y) = x,(1.4)

and, for each pair C,D of objects in C,

` ∀x ∈ P (C) ∀y ∈ P (D) : inclC(x) = inclD(y)

⇒
∨

g∈ZC(C,D)

∃x ∈MP (g) : d0(x) = x ∧ d1(x) = y.(1.5)

(One may compare (1.4) and (1.5) with (1.1) and (1.2), respectively.)
It is easy to express (1.4) without sheaf semantics: it is just the assertion

that (1.3) is a covering family. Also (1.5) can be expressed elementarily without
sheaf semantics, but it is less economical.

Proposition 1.1 Let E be a subcanonical site. Then every postulated colimit
diagram in E is an actual colimit diagram.

Proof. Let P : C → E be a diagram, and consider a postulated colimit for it,
as in (1.3); let

{P (C)
fC - B | C ∈ C}(1.6)

be a cocone on the diagram P . Since hom(−, B) is a sheaf, and the family (1.3) is
a covering, we may get the desired map L→ B by means of a compatible family
of maps, P (C) → B; we intend to prove that the family (1.6) is compatible.
This means that for C, D in C, we should prove that the square

X := P (C) ×L P (D)
y- P (D)

P (C)

x

?

fC
- B

fD

?

(1.7)
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commutes, where x and y denote the projections. Then x and y are elements
of P (C) and P (D), respectively, defined at the same stage X , and we have

`X inclC(x) = inclD(y),

by commutativity of the square that defines the pull-back X . so we have also,
by (1.5), that

`X
∨

g∈Z(C,D)

∃x ∈MP (g) : d0(x) = x ∧ d1(x) = y.

This means that we have a covering {ξt : Xt → X | t ∈ T}, and, for each t ∈ T ,
we have for some g ∈ Z(C,D) an x : Xt →MP (g) with

`Xt
d0(x) = x ∧ d1(x) = y.(1.8)

For any given t, g, x, we have commutativity of the upper triangles in the fol-
lowing diagram (for simplicity, we assume that the zig-zag g has length 3)

x ◦ ξt y ◦ ξt

? ?

Xt
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Z
Z

Z
Z
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Z
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�
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?

this follows from (1.8) and from the equations that defines the object MP (g).
Also, the lower triangles commute, since the fC form a cocone. So the

outer square commutes. So for each t ∈ T , (1.7) composed with ξt : Xt → X
commutes.

Thus the family (fC)C∈C is compatible, and by the sheaf property of
hom(−, B), there exists a unique f ∈ hom(L,B) with f ◦ inclC = fC . This
proves that (1.3) has the universal property required of a colimit diagram. Thus
Proposition 1.1 is proved.

If we in the proof replace hom(−, B) by an arbitrary sheaf S ∈ Ẽ, the
argument gives that the Yoneda embedding E → Ẽ takes the postulated colimit
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in E into a colimit in Ẽ; this in fact characterizes the postulated colimits. But
note thar Ẽ is an illegitgimate category, in case E is a large site.

For the case where C is empty, (1.5) says nothing, and (1.4) says that L is
covered by the empty family. Thus, in a subcanonical site, a postulated initial
object is not only initial, but strictly initial: if f : X → L is any map, X is
covered by the pull-back of the empty family, which is empty, thus X itself is
(postulated) initial. Let us denote such object by ∅.

For a discrete C in general, i.e. for a postulated coproduct, the set ZC(C,D)
of zig-zags from C to D is empty if C 6= D and quite trivial if C = D, so that
the conditions (1.4) and (1.5) may be expressed in elemetary terms by

the inclusions into a postulated coproduct form a cover(1.9)

( for i = j in C) : P (i) →
∐

P (i) is monic(1.10)

( for i 6= j) : P (i) and P (j) have intersection ∅ in
∐

P (i),(1.11)

(the coproducts in question assumed to be postulated). Except for the univer-
sality assertion, we have therefore proved

Proposition 1.2 Postulated coproducts in a subcanonical site are disjoint and
universal.

Proof of the universality assertion. The properties (1.9) and (1.10) are clearly
preserved under pull-back. And (1.10) is preserved under pull-back since postu-
lated initial objects are strictly initial. But (1.9) –(1.11) characterize postulated
coproducts.

It is not hard to see that if the site E is cocomplete, and if all coequalizers
and small coproducts in E are postulated, then so are all small colimits.

We need to describe a notion of postulated epi: if q : X → Q is any map
in a subcanonical site, it is easy to see that the following three conditions are
equivalent; if they hold, we call q a postulated epi:

• i) q is a singleton covering
• ii) ` ∀y ∈ Q ∃x ∈ X : q(x) = y
• iii) the square

.
q - .

.

q

?
id

- .

id

?
is a postulated pushout.
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From i), it is clear that postulated epis are stable under pull-back. Also,
playing the sheaf condition for hom(−, B) out against the singleton cover q
proves that q is coequalizer of its kernel pair; so postulated epis are in fact stable
regular epis. One may similarly see that any postulated colimit is preserved
by pulling back, and that (hence) colim(Ci) × colim(Dj) = colim(Ci × Dj),
provided colim(Ci) and colim(Dj) are postulated (and then colim(Ci × Dj)
will also be postulated).

2 Pretoposes

Let E be an ∞-pretopos. We make it into a (subcanonical) site by letting the
coverings of X ∈ E be the jointly epi (not necessarily small) families.

Proposition 2.1 Every small colimit diagram in an ∞-pretopos is a postulated
colimit.

Proof. In a coproduct in a pretopos, the inclusions are jointly epi, and they are
monic and disjoint, by the Giraud axioms, so (1.9)–(1.11) hold, so coproducts
are postulated. Consider a coequalizer diagram R ⇒ X → Q in E. Consider the
union S in X×X of the diagonal X → X×X and the images of R(n) → X×X ,
where R(n) (described as if E were the category of sets) consists of n-tuples
z1, . . . , zn ∈ R with (1.2) satisfied. This S is an equivalence relation on X , also
with coequalizer Q, and hence, by another Giraud axiom, S is the kernel pair
of q. But the fact that the R(n) and the diagonal map jointly epi to the kernel
pair of q means that (1.5) (or (1.2) appropriately internalized) holds. Also (1.4)
holds since q is epi, hence a singleton cover. From coproducts and coequalizers
being postulated, the result follows.

Proposition 2.2 Let E be a cocomplete finitely complete subcanonical site in
which every small colimit diagram is postulated. Then E is an ∞-pretopos (and
the small covering families are exactly the small jointly epi families).

Proof. Coproducts are postulated, hence disjoint and universal, by Propo-
sition 1.2. Let R ⇒ X be an equivalence relation and q : X → Q its coequalizer.
Then it is a postulated coequalizer, and this implies that the map R(n) → S to
the kernel pair S of q, as constructed in the proof of Proposition 2.1 is postu-
lated epi. But since R ↪→ X×X is already an equivalence relation, all the maps
R(n) → X×X factor through R, whence R = S; so R is the kernel pair of q. So
equivalence relations are effective. They are also universal, because postulated
epis are universal, and because the notions of postulated epi and regular epi
coincide in this case, by the assumption that all coequalizers are postulated. So
E is an ∞-pretopos.

For the last (parenthetical) assertion: covering families are jointly epi, in
any subcanonical site. Conversely, if {fi : Xi → X | i ∈ I} is a small jointly
epi family,

∐
Xi → X is epi, hence postulated epi, which implies that the given

family is covering.
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Propositions 2.1 and 2.2 together characterize ∞-pretoposes as those “co-
complete sites where all colimits are postulated”.

3 Left exactness of Kan-extensions

We consider a situation

A
H - D

	�
�

�
�

�

LanHF

E

F

?

(3.1)

where A is a small category, E is a cocomplete category, and D is arbitrary;
the left Kan extension functor LanHF is described by

(LanHF )(D) = colim((H ↓ D)
δ
→ A

F
→ E)(3.2)

(where δ(H(A) → D) = A). To study which finite limits LanHF preserves is

immediately reducible to the special case where D = SetA
op

=: Â, the category
of presheaves on A. For, given H : A → D, as in (3.1), we have the ‘singular’

functor SH : D → Â, given by

SH(D) = homD(H(−), D).

It preserves whatever finite limits may exist in D. Let also y : A → Â denote
the Yoneda embedding. From the Yoneda lemma follows that, for any D ∈ D

H ↓ D = y ↓ SH(D),

and from this, and the general colimit formula for Kan extensions, one concludes
easily that

LanHF = (LanyF ) ◦ SH .

So it suffices to study left exactness properties of LanyF ; so consider the situ-
ation (where A is small and E is cocomplete):

A
y- SetA

op

= Â

	�
�

�
�

�

LanyF

E

F

?

(3.3)

(it is actually commutative up to isomorphism, and LanyF has a right adjoint,
namely the singular functor SF ).
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We consider the language LA for “functors on A”: it has one sort F (A) for
each object A of A, and one unary operation F (α), from F (A) to F (A′), for
each arrow α : A → A′ in A. Any functor F : A → E defines a structure for
this language, in an evident way.

We can now present our pivotal, but somewhat technical, result:

Theorem 3.1 For each finite cone D in Â, there exists a set Λ(D) of geometric
sentences in the language LA, such that for any functor F : A → E into
a (cocomplete, finitely complete, subcanonical) site E, if the colimits used for

constructing (LanyF )(Di) (for those Di ∈ Â that occur in D) are postulated,
then

F satisfies Λ(D)

iff
LanyF takes D into a limit diagram in E.

Proof. We shall only consider in detail the case where D is an equalizer
shaped diagram. So let H → K ⇒ L be such in Â. We shall consider the
categories of elements of H , K, and L, i.e. H = (y ↓ H), etc., so that we have
a diagram of categories (all small except for E):

H
η - K

φ -

ψ
- L

@
@

@
@

@
h

R 	�
�

�
�

�

l

A

k

?

E

F

?

(Then (LanyF )(H) = colim(F ◦ h), and similarly for K and L.) For each pair
of objects v and w of H, we write down the following sentence in the language
LA (recalling the MF and Z’s of §1):

∀x ∈ F (h(v)) ∀y ∈ F (h(w)) :
∨

g∈ZK(η(v),η(w))

∃x ∈ MF (k(g)) : d0x = x ∧ d1x = y

⇒
∨

g′∈ZH(v,w)

∃x′ ∈ MF (h(g′)) : d0x
′ = x ∧ d1x

′ = y.

(3.4)

This is to be read informally: if (x, v) and (y, w) represent elements in colim(F ◦
h) which become equivalent in colim(F ◦ k) (namely in virtue of g, x) then they
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are already equivalent in colim(F ◦h) (namely in virtue of g′, x′). The intended
meaning of the sentences of this form is: “(LanyF )(H → K) is monic”. –
Furthermore, for each u in K, we write down the sentence

∀x ∈ F (k(u)) :
∨

g∈ZL(φu,ψu)

∃x ∈MF (l(g)) : d0(x) = d1(x) = x

⇒
∨

v∈H

∨

g′∈ZK(u,η(v))

∃x ∈MF (k(g′)) : d0(x) = x.
(3.5)

This is to be read informally: if (x, u) represents an element in colim(F ◦ k)
which is equalized (in virtue og g, x) by the maps induced by φ and ψ, then (x, u)
is equivalent, (in virtue of g′, x′) to an element (namely (d1(x), η(v)) which is
in the image of colim(F ◦ h) → colim(F ◦ k). The collection of sentences (3.4)
and (3.5) is to be our Λ(D), for the case where D is the diagram H → K ⇒ L.

Consider now the diagram in E

colim(F ◦ h) → colim(F ◦ k) ⇒ colim(F ◦ l),(3.6)

where the maps are induced by η, φ and ψ, respectively. Assuming the three
colimits are postulated, and that Λ(D) holds for F , we should prove that (3.6)
is an equalizer. The two composites are equal, since they are so in H → K ⇒ L.
The existence and uniqueness aspects of proving (3.6) to be an equalizer is taken
care of by (3.5) and (3.4), respectively; we shall only do uniqueness, i.e. proving
that the left hand arrow in (3.6) is monic:

Let x, y : X → colim(F ◦ h) be a pair of elements equalized by the left
hand map in (3.6). Since the inclusions inclu : F (h(u)) → colim(F ◦ h) form
a covering, by (1.4), it is easy to see that X may be covered by a cover {ξt :
Xt → X | t ∈ T}, such that on each part Xt of this covering, x and y factor
through inclusion maps inclv and inclw, respectively, (v, w ∈ H). To prove x
and y equal, it suffices to see that they are equal on each Xt. For fixed t ∈ T ,
we change notation, and denote Xt by X ; in other words, we now assume that
the given pair of elements is of the form

X
x
→ F (A)

inclv−→ colim(F ◦ h), X
y
→ F (A′)

inclw−→ colim(F ◦ h),(3.7)

where A = h(v), A′ = h(w). The assumption that this pair is equalized in
colim(F ◦ k) then means that

X
x
→ F (A)

inclη(v)
−→ colim(F ◦ k) = X

y
→ F (A′)

inclη(w)
−→ colim(F ◦ k).

By the assumption that colim(F ◦ k) is postulated, it follows from (1.5) that X
can be covered by {Xt → X | t ∈ T}, such that for each Xt, there is a zig-zag
g in K from η(v) to η(w), such that

`Xt
∃x ∈ MF (k(g)) : d0(x) = x ∧ d1(x) = y.
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(Observe MF (k(g)) = MF◦k(g).) For this Xt, the assumption (3.4) therefore
gives

`Xt

∨

g′∈ZH(v,w)

∃x′ ∈ MF (h(g′)) : d0(x
′) = x ∧ d1(x

′) = y

which implies `Xt
inclv(x) = inclw(y). Since the Xt cover X , we conclude

`X inclv(x) = inclw(y), so the two elements in the pair (3.7) are equal.
The converse implication is proved much the same way.

For the case of binary products H × K in Â, sentences in LA that in-
tend to express that the comparison map (LanyF )(H ×K) → (LanyF )(H) ×
(LanyF )(K) is monic, are easy to write down, much like the sentences (3.4).
To express its surjectivity, one writes down, for each u′ ∈ H(A′), u′′ ∈ K(A′′)
the sentence

∀x′ ∈ F (A′) ∀x′′ ∈ F (A′′)
∨

A∈A

∨

u1∈H(A)
u2∈K(A)

∨

g′
∈ZH(u1,u

′)

g′′
∈ZK(u2,u

′′)

∃x′ ∈MF (h(g)) ∃x′′ ∈ MF (k(g′′)) : d1x
′ = x′ ∧ d1x

′′ = x′′ ∧ d0x
′ = d0x

′′.

(3.8)

To prove that validity of these sentences does indeed force the comparison map
to be (postulated) epi, provided the colimits for (LanyF )(H) and (LanyF )(K)
[and (LanyF )(H×K)] are postulated, one uses that limCi× limDj

∼= lim(Ci×
Dj), for any postulaated colimits. – We omit the rest of the details.

If in particular one takes H = yA′, K = yA′′, and x′ and x′′ the generic
elements (x′ = idA′ , x′′ = idA′′), the category H is A/A′ which has a terminal
object, and similarly for K, which means that the zig-zags may as well be chosen
to be of length one, so that (3.8) in this case is equivalent to the simpler

∀x′ ∈ F (A′) ∀x′′ ∈ F (A′′)
∨

A∈A

∨

u1:A→A′

u2A→A′′

∃x ∈ F (A) : F (u1)(x) = x′ ∧ F (u2)(x) = x′′,

(3.9)

which is one of the two sentences that defines the notion of flat functor on A.
The other two groups of sentences that defines this notion could be similarly
motivated; they are

∨

a∈A

∃x ∈ F (A)(3.10)

and, for each pair a, b : A′
⇒ A′′ of parallel arrows in A, the sentence

∀x ∈ F (A′) : F (a)(x) = F (b)(x) ⇒
∨

A

∨

c:A→A′

with ac=bc

∃y ∈ F (A) : F (c)(y) = x.

(3.11)
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The sentencues (3.9), (3.10), and (3.11) are geometric sentences in the lan-
guage LA. Together with the equations needed to ensure that F commutes
with composition and identities, they define the geometric theory FlatA of flat
functors on A. Thus it makes sense to talk about flat functors from A into
any site E. Like any geometric theory, FlatA has a classifying topos with
a generic model. A fundamental result in topos theory is the so-called “Dia-
conescu Theorem” (cf. [1] 4.3) which asserts that the classifying topos for FlatA
is Â, with y : A → Â as the generic flat model. Diaconescu proved it in the
context of elementary toposes. In the context of Grothendieck toposes, the theo-
rem is virtually identical to the assertion that, for any Grothendieck topos E,
F flat ⇒ LanyF is left exact , which may be essentially found in [4], Exposé
1.

Note that Lany(y) = identity functor on Â.

From the fact that all colimits in Â are postulated (by Proposition 2.1), and
from the implication ‘⇐’ in Theorem 3.1, we therefore immediately conclude
that the generic flat functor y satisfies Λ(D), for any finite limit diagram D in

Â. (This fact could of course also be easily seen by direct inspection.)
From the Completeness Theorem for Geometric Logic, we therefore conclude

FlatA ` Λ(D)(3.12)

for any finite limit diagram D in Â.
From the soundness of geometric logic for interpretations in subcanonical

sites E, we conclude from (3.12) that if A → E is any flat functor into such site,
then F satisfies the sentences Λ(D). This does not imply that LanyF preserves
the limit diagram in D, but it does, by Theorem 3.1, if the appropriate colimits
in E are postulated. We thus have

Corollary 3.2 Let E be a (cocomplete, finitely complete, subcanonical) site,

and let F : A → E be a flat functor. Let D be a finite limit diagram in Â. If
the colimits used for constructing (LanyF )(Di) (for those Di ∈ Â that occur in
D) are postulated, then LanyF preserves the limit diagram D.

Corollary 3.3 Let E be an ∞-pretopos, and let F : A → E be flat. Then
LanyF : Â → E is left exact.

Proof. All small colimits in E are postulated, by Proposition 2.1. Now
apply Corollary 3.2.
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