
A Web Framework for Cross-device Gestures Between
Personal Devices and Public Displays

Marco Barsotti, Fabio Paternò, Francesca Pulina
CNR-ISTI, HIIS Laboratory

Via Moruzzi 1, 56124 Pisa, Italy
{marco.barsotti, fabio.paterno,
francesca.pulina}@isti.cnr.it

ABSTRACT
In order to exploit the wide availability of public displays
and personal devices on the mass market at affordable
prices it is important to provide developers with
frameworks that ease obtaining cross-device user interfaces
able to exploit such device ecosystems. We present the
design and implementation of a Web framework for the
development of cross-device user interfaces able to take
advantage of both personal devices and public displays, and
support various types of gestures and their combinations in
such multi-device environments. We introduce the design
space addressed, describe the framework functionality, its
application interface and run-time support, show some
example applications, and report on a first test with
developers.

Author Keywords
Public Displays; Personal devices; Cross-Device
Interaction; Gestures; Framework; Web Applications.

ACM Classification Keywords
H.5.2 [User Interfaces]: Input Devices and Strategies,
Interaction Styles

INTRODUCTION
Nowadays, public displays are pervasive in many contexts
of use with different purposes, generally to heighten user
experience in specific environments, such as museums,
hospitals or shopping centres. For example, in museums,
visitors can obtain more information about exhibitions and
artworks or special events can be promoted in the public
display; in hospital centres, it can be useful to connect to
public displays in waiting rooms or in departments to check
exams, booked appointments or medical information; in
shopping centres, customers can use public displays to
select products or to access additional information to
discuss with others. In general, contents can be abundant,

derive from various sources, and be split into several
sections in order to improve their consultation. Mobile
device technology is evolving fast as well and is not limited
only to smartphones. For example, smartwatches are
becoming popular as well, and the usage of such wearable
devices, either alone or in combination with other personal
devices or public displays, leads the way to new models of
interaction, which still have not been totally defined [13].
Each device type has specific features that make it more
suitable for some task type: for example, smartwatches
have distinguished themselves for fast access, glanceability,
and in general for being more convenient than other devices
[12] in performing some daily activities.

Overall, the usage of smartwatches, as well as other
personal devices, in combination with public displays can
be exploited to create new interaction possibilities
involving more than one device at a time. In this way, the
available devices can cooperate and coordinate with each
other to encourage interaction with the information
presented in public displays. However, despite several
research efforts current tools for user interface development
still provide poor support for the development of interactive
applications accessible through public displays in
combination with personal devices. In order to contribute to
overcome such limitations, we have analysed the various
possible options, and then designed and implemented a
corresponding framework that is able to support
communication and interaction across personal and public
devices, also involving mid-air gesture sensors, such as
Microsoft Kinect, when interacting with Web applications.
Such novel framework can be used for the development of
various domain applications, which can exploit different
kinds of multi-device interactions.

In particular, the contribution of this work consists in:

• The design and implementation of a Web framework to
facilitate the development of applications supporting
cross-device gestures between personal devices and
public displays;

• Example applications of such framework in order to
show how it can be concretely exploited;

• Test with developers carried out in order to check
whether they can learn how to use it with limited effort.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MUM 2017, November 26–29, 2017, Stuttgart, Germany
© 2017 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-5378-6/17/11…$15.00
https://doi.org/10.1145/3152832.3152858

RELATED WORK
Cross-device interaction and communication in the context
of public screens and personal devices has already been
considered. Related work shows some example
applications. Touch&Screen [2] is a set of interaction
techniques for the remote control of widgets (menu, lists,
videos, maps etc.) for large screens through smartphones.
That study has reported interesting user feedback, but does
not provide any framework for developing new multi-
device interactive applications, and no other personal
device type has been considered. WallSHOP [15] is an
application for interactive shopping and is composed of a
client-server system in which some users are connected
simultaneously to a public screen and can remotely interact
with it. Thus, it uses Web-based technology, but the mobile
device is only a remote controller for selecting elements in
the public display. Also in [10] the only type of interaction
with the public display is to control it remotely and change
contents on the screen with the user’s mobile devices.
CurationSpace [3] is an environment for curating and
composing digital historical artefacts by using
smartwatches to support content modification and
development during the creation process. In the context of
public transport, some authors [11] have shown an example
of remote control of a public display by using mobile
devices. This is an example of a remote control application
without support for direct interaction with the public
display. Other authors [9] have developed some
applications through which users can use their smartphones
to interact with the touch screen by analysing data from
internal sensors, but the work does not address any other
type of device.

WatchConnect [8] targets an interaction space in the
complex process of integration between a smartwatch and
an interactive surface for general purposes. The authors
found some important principles and concepts in the
context of cross-device interaction with smartwatches and,
to deploy such aspects, they built a software toolkit to
support an Arduino-based hardware prototype. This
application does not define a framework, nor does it aim to
exploit interactions with other personal devices. WEAVE
[5] is a JavaScript framework to to easily distribute user
interface output across mobile and wearable devices. It
provides functionalities to select target devices, perform
output actions, and handle input events on one device. It has
then been improved with a visualization technique to
simulate the actual behaviour of the multi-device user
interface [6]. Its limitations are that it requires a Weave
proxy to be pre-installed and run on each individual device,
it is not able to manage mid-air gestures, and it does not
provide explicit functionalities to directly create and
manage events obtained by combining events from multiple
devices. Moreover, the WEAVE framework was not
designed to support interaction with public displays, but
was limited to addressing mobile and wearable devices.
Duet [4] aims to address the mobile interaction in a cross-
device context when a smartphone is paired with a

smartwatch. Thus, also in this case public displays have not
been addressed. The authors start with the study of the
spatial configuration of the two devices and then propose a
design space with four different typical configurations. For
each configuration, the authors have indicated some
corresponding applications and example interactions but
they do not provide a framework for developing
applications able to address the identified design space.

XDBrowser [16] is a tool that supports the implementation
of some cross-device features through a browser extension:
it supports the possibility to select parts of the user
interfaces and distribute them to other devices running the
tool, and then keep their state synchronised. Panelrama [20]
supports the automatic distribution of user interface parts
based on their features and the characteristics of the
available devices. A model-based approach to customizing
user interface distribution has been proposed in [14].
However, such approaches do not support interaction by
means of gestures combined through multiple devices.

A couple of frameworks for cross-device Web applications
[7, 18] have addressed the issue of independence from
external servers, while in our case we focus on how to
allow developers to specify gestures that involve multiple
devices. The SoD-Toolkit [19] aims to support interactively
prototyping and developing multi-sensor, multi-device
applications. In this perspective, it supports a fusion method
for multiple Kinect devices, but it does not provide an API
for supporting developers in defining specific cross-device
gestures.

Our research leverages such contributions, for example it
considers the design space addressed in the Duet approach
and examines how to consider public displays as well. In
particular, we aim to investigate how these concepts and
approaches can be extended in order to better support
development of applications with cross-device interactions
between public displays and personal devices, including
mid-air gestures as well. For this purpose, we have
designed and implemented a Web framework, which can be
exploited to easily design and develop various types of
cross-device gestures, including flexible combinations of
gestures from different devices.
INTERACTION DESIGN SPACE
In a cross-device context [17] in which the public display is
an important input/output system, it is crucial to define the
roles that other devices can have. Generally, a key feature
of a public display is its large touch surface, which is an
important resource for the user, who can perform direct
interactions. Mid-air gestures can be exploited too, allowing
users to maintain a certain distance from the display to have
a better point of view of the information presented on the
screen, while still allowing interaction with it.

The set of interactive techniques can be extended to obtain
wider and more interesting interactive scenarios. Starting
with common and simple interaction techniques that can be
performed on a single device (single-tap, double-tap, swipe

etc.), also using mid-air gestures when interacting with a
public display, we can identify and design gestures that
involve multiple devices at the same time.

The interactive design space becomes more complex when
considering interaction techniques with the public display
able to involve personal devices as well. We have identified
some cross-device interaction techniques (see examples in
Figure 1) that can be classified into two main categories:

• Cross-device gestures;
• Cross-device input and output.

The first group (cross-device gestures) refers to gestures
that are performed in multiple devices within some
temporal constraint in order to obtain a combined gesture.
Thus, also a simple tap or a swipe gesture on the personal
device can be a part of a more complex gesture that
involves the public display, even when using mid-air
gestures. Some examples of cross-device gestures are:

• Swipe-Hand open: the user performs a swipe on a
personal device to select some information, then this
content is presented on the public display by
performing a hand-open mid-air gesture in front of its
large screen;

• Press-press: the user performs a double press, first on
the smartwatch and then on the public display or vice
versa; for example, this technique is useful to
synchronize some information between devices;

• Hand close-tap: the user performs a mid-air gesture
closing her hand in front on a public display, then taps
her personal device; for example, the user can use this
technique to download some information from the
public display to the personal device.

By the second group (Cross-device input and output), we
refer to gestures that are performed on one device but their
effects change the user interface of another device as well.
Therefore, the public display and the information that it
shows are only a part of the entire interface and the user can
use the personal device to take advantage of some
additional tools. Examples of this group are the following
techniques:

• Auxiliary Display with Task-based Tools: the personal
device is an auxiliary display and its interface can
contain tools, links or other useful information to
perform a specific task or to better navigate the public
display content;

• Overview+Detail: the public display provides an
additional viewpoint for the user and it can show some
device content in detail while the personal device can
be used to have an overview of the information space,
thus providing a spatial separation between focused
and contextual views (Figure 1-B1).

THE CDI FRAMEWORK FOR CROSS-DEVICE
INTERACTIONS
To allow designers and developers to more easily address
such design space, we have designed and implemented a
framework that allows multiple devices to interact through
both cross-device gestures and cross-device input and
output. Our framework has been designed to address the
development of Web applications, and it allows developers
both to choose which cross-device interactions to manage
and to decide what Web page element(s) the gesture applies
to. In this way, developers can abstract out of the devices’
features and communication, thereby enabling simplified
and faster programming, and rapid prototyping of cross-
device user interfaces.

The Development Framework
To this end, we have designed and developed the JavaScript
framework “CDI” (Cross Device Interaction). It has been
implemented as a JavaScript library with a server for run-
time support.

As Figure 2 shows, the framework uses communication
channels based on WebSockets specifications in order to
connect the application parts running on multiple devices.

Figure 1. Examples of cross-device techniques supported by
the framework: (A1) Closedin-Tap, (A2) Swipe-Closedout,
(B1) Overview+Detail, (B2) Auxiliary Tool.

In order to detect the basic “native” gestures (i.e. gesture
performed on a single device) our framework exploits
wrappers, which can be used to easily extend its
possibilities. Thus, for example, if there is a need to
integrate events from a new sensor connected to a specific
device, then it will be possible to add a few code lines to
access the wrapper of that device in order to detect those
events without modifying the rest of the library. The use of
the Node.js server is also useful to detect events that occur
on devices not directly running Web browsers, such as a
Kinect device.

Our framework exploits the functionalities offered by the
Hammer.js 1library for detecting the basic touch events
such as single-tap, double-tap, swipe, pinches etc. In
addition, in order to support mid-air gestures we have also
developed a wrapper and a library KGR (Kinect Gesture
Recognizer), which is able to recognize gestures detected
through a Microsoft Kinect 2 in Node.js environment.

Conversely, complex Cross-device gestures detection is
performed through the CDI server: in fact, as soon as a
device detects a native gesture, it notifies the server. If other
compatible gestures are also detected on other devices
within a certain time, the server combines the two detected
gestures as a single complex gesture.

Developers can design their applications by writing an
event-based code, in which a callback function is called
when the cross-device event occurs. In this JavaScript
function, developers define the actual behaviour of their
applications, which can be updating the interface or
transferring a piece of information between the devices.

1 http://hammerjs.github.io/

Framework API

Developers can use the framework by writing the
application code for all the application parts in the various
devices. When they create new instances of CDI objects
two parameters should be specified: an ID, used for
identifying the device, and the address of the CDI server,
used for the WebSocket connection. Optionally, it is
possible to indicate the wrappers to use for recognizing the
native gestures. Table 1 shows an example of JavaScript
code necessary to create an instance of the CDI client-side
library in two devices. In this case, three scripts are
included: Hammer.js, the corresponding wrapper, and the
CDI library. Then, it is necessary to instantiate the library
by calling its constructor. In this case, the device model has
been used as the ID for the connection. The CDI
constructor has also received an instance of the Hammer.js
wrapper as a parameter.

After having instantiated the clients, it is possible to bind
gestures on the devices and define cross-device interactions.

The framework manages two types of events: single and
combined. A single event has five properties: name, the
target element on which the event is recognised, recognizer
(which is the corresponding wrapper), the optional
associated data, and a serial number indicating how many
times that event has occurred (this can be useful also when
combining events from multiple devices in order to
facilitate matching events generated by different devices).

A combined event is defined by a name and an array of
segments, which are either single events already recognised
or elements still undefined. For such single events already
recognised both the device where they occurred and an
optional attachment (which is the data transmitted by the
onSend callback) are indicated.

Figure 2. The CDI Framework Architecture. // HTML in the first device

<html>
 <head>
 <script src="./js/hammer.min.js"></script>
 <script src="./js/cdi-wrapper-hammer.min.js"></script>
 <script src="./js cdi-client.js"></script>
 <script>
 var cdi = new CDI(‘Samsung Galaxy S5’, 'ws://192.168.2.10:50500', {
 wrappers: [new CDIWrapperHammer()]
 });
 </script>
 ...
// HTML in the second device
<html>
 <head>
 <script src="./js/hammer.min.js"></script>
 <script src="./js/cdi-wrapper-hammer.min.js"></script>
 <script src="./js cdi-client.js"></script>
 <script>
 var cdi = new CDI(‘Apple iPhone 5S’, 'ws://192.168.2.10:50500', {
 wrappers: [new CDIWrapperHammer()]
 });
 </script>
 ...
Table 1. Example of CDI instantiation on two devices.

In terms of methods there are on and off that activate or
deactivate the recognition of an event from one device. The
sendInput method allows a device to send an input or some
data from one device to another. The receiving device can
enable or disable receiving data from one specific device
through the onInput and offInput methods.

The onCombined method is particularly important because
it allows developers to endow the application with cross-
device gesture management; it has four parameters:

• the target element, is the identifier of an element which
has a wrapper able to handle the associated events, for
example it can be the ID of a DOM element,

• a string indicating the sequence of gestures to combine,
• a number for selecting an element in the sequence of

gestures (0 for the first, 1 for the second, …), which is
used to identify the one to be recognised in the current
device, and that should occur on the element indicated
as the first parameter,

• the callback associated with the cross-device gesture.
Actually, this fourth parameter may be not only a
single, but also multiple optional callbacks (which can
be either generic functions or one of the possible types
indicated in Table 2).

For example, consider the case in which the developer
wants to implement a swipe-tap combined gesture, which
will be used to send an image from one device to another
(for example from a smartphone to a public display). To
achieve this behaviour, the onCombined method with
onSend and onTimeout callbacks should be used. onTimeout
is used because if the gesture composition fails then the
user should be notified. onSend is used to return the image
selected by the swipe. Then, the indicated image (which is
in the attachment of the first segment associated with the
combined event) is inserted in the DOM of the application
in the target device in the position indicated when the tap
event occurs. Table 3 shows the code lines necessary to
recognize this example of cross-device gesture.

As can be seen, it is possible to obtain the desired behaviour
in a few lines thanks to the expressiveness of the callbacks
accessible from the onCombined method.

CDI FRAMEWORK APPLICATION
In order to indicate the potentialities of the framework,
especially using personal devices such as smartphones and
smartwatches in combination with public displays, we
present some example applications that have been
implemented with it.

The first one, Tour, is an application supporting tourists
during a city tour. It shows some interesting places to visit
through an image gallery displayed in the public display.
The user can slide images performing mid-air gestures, and
read short descriptions about the corresponding place, as
well as route indications to reach it, in her personal device.
The second one, Dress Shop, is an example application for
a clothing store equipped with a public display, in which
the products for sale in that shop are showed: the user can
perform mid-air gestures to display details of a specific
product on her smartphone, and optionally add it in the
whishlist (performing a closedin-tap combined gesture, like
the one showed in Figure 1-A1).

We carried out a first user test on these two applications in
order to gather some initial user feedback regarding the
cross-device gestures that can be implemented with the
framework. The obtained feedback has been taken into
account in the development of a third application, a Car
configurator application. Thus, in this one we have
introduced the use of tooltips on the public display and
vibrations on personal devices, useful to inform the user
about the availability and the completion of the gestures.

Callback Usage

onComplete Activated when the cross-device gesture has
been recognized.

onSend

Activated when a device sends to the server a
gesture for possible composition. It
associates some information to the gesture
that can be exchanged across devices.

onTimeout
Activated when the cross-device gesture fails
because it has not been completed within the
given time.

Table 2. The possible specific callbacks associated with the
onCombined method.

Figure 3. The CDI Framework Architecture.

// JavaScript in the first device, where the swipe on the image with ID “img”
occurs

cdi.onCombined(‘img’, ‘swipe tap’, 0, {
 onSend: function() {
 // the image url is attached to the swipe gesture
 return document.getElementById('img’).src;
 },
 onTimeout: function() {
 alert(‘You have to tap on the second device’);
 }
);
// JavaScript on the second device, where the tap on the container with ID
“area” triggers the receipt of the image sent from the first device

cdi.onCombined(‘area’, ‘swipe tap’, 1, function(e) {
 // the image url is obtained from the first segment (swipe)
 // of the cross-device gesture
 document.getElementById(‘area’).src = e.segments[0].attachment;
});
Table 3. Example of use of the framework on two devices.

This complex application allows users to personalize a car
model by selecting specific accessories, and receive
associated price quotes. For the smartwatch we have tested
it with a Samsung Gear S, running the Web-based Tizen
OS.

Below we indicate the main tasks of the “Car configurator”
application, and the interactions to accomplish them (a
video showing such interactions is available at
https://youtu.be/AcJ91pjz00I):

• Rotate the car: holding their arm outstretched toward
the screen, users can move their hand to the left or right
(panleft or panright gestures) to rotate the car in the
direction of the hand. The larger the movement the
greater the rotation.

• Show an accessory: with the arm bent, users have to
close their hand into a fist holding the index out (lasso
gesture). The public display shows a cursor that can be
placed on various parts of the car by moving their
hand. When the cursor is located on an editable part,
the personal device vibrates and displays the chosen
accessory. This task uses public displays and personal
device for an “overview + detail” technique.

• Select an accessory: this task requires also closing the
index finger (lassoclosed gesture), which triggers the
personal device to display the options available for the
part currently selected. Users can scroll by swiping
their finger across the personal device. This task uses
public displays and personal device according to the
“auxiliary display with task-based tools” technique.

• Install an accessory: during the task “select an
accessory”, users must open their hand towards the
public display (closedout gesture) on the car to install
the option chosen on the personal device.

• Save a quote: it is necessary to close the hand towards
the public display (closedin gesture), and then tap a
corresponding button on the personal device. The car
quote shown on the public display is also added to a
searchable list displayed on the personal device.

• Open a quote: users can perform the reversed cross-
device gesture of “save a quote”. A quote can be
selected by tapping on a list item on the personal
device, then opening their hands to the public display
to show the quote on the larger device (Figure 4, top
part).

While the “rotate the car” task only uses the Kinect sensor
as an input device for the public display, the other tasks
require a composed interaction between multiple devices.
Despite this, the application development required writing
no more than 200 lines for each device. This number is low,
given that most of the code has the purpose of improving
the graphical interface through the use of jQuery and
Google MDL template in order to make the Web
application graphics similar to those of native apps.
In this application, it is possible to use two types of
personal devices (smartwatches and smartphones) at

different times. For example, the user can change the
accessory via the smartwatch (see Figure 4), and then finish
saving the quotes in the smartphone. This type of
interaction technique can be interesting because it exploits
the glanceability of smartwatches, used both as an external
display and toolbox near the user’s hand used in the mid-air
gestures. This will be further investigated in future user
tests.
A TEST WITH DEVELOPERS
To evaluate the framework’s usability, we have carried out
a study with 10 developers. Our study’s goal was to verify
from the developer’s point of view if the CDI library is easy
to learn and use, and if it actually does facilitate the
development of cross-device interactions in Web
applications. We also collected their feedback through a
post-study questionnaire.

Participants and Setup
Ten users (3 females), aged between 26 and 48 years (mean
33), took part in the study. A good knowledge in
programming with JavaScript was required for
participation. We recruited them from researchers working
in our Institute who had not used CDI before, and from
students who had subscribed to a mailing list and answered
our invitation. They all have an educational qualification in
informatics or digital humanities: high-school (1),
bachelor’s degree (2), master’s degree (5), Ph.D. (2).

We asked them to evaluate, on a 5-point scale (1 min – 5
max), their level of experience in programming with
JS/jQuery, in Web programming (server-side and other
programming languages), and in creating applications with
UIs that adapt to devices with responsive design rules. The
results indicate that, except for one (who rated himself 2 for
all the three aspects), participants had a generally good
background in programming (on average rating themselves
4). Moreover, two of them had already realized applications
with distributed user interfaces, and 6 out of the 10 know
other JS tools such as jQueryUI, Hammer.js, Node.js,
Angular, D3. None of them has ever programmed with

Figure 4. The “Car Configurator”CDI application.

https://youtu.be/AcJ91pjz00I

Kinect SDK; just 2 have used applications involving the
Kinect sensor.

A couple of days before the experiment, participants
received a summary documentation explaining the
framework’s architecture, the types of cross-device
interactions that the CDI library allows developers to
define, the supported gestures, all API’s methods provided
with related examples. They received also a video showing
the execution of a cross-device Web app created with CDI.

First, we asked participants to compile a pre-study
questionnaire, containing questions about demographic and
professional background information, whose results are
referred above.

After that, they were asked to complete three programming
tasks using the CDI library, in order to implement cross-
device interactions – with both single and combined
gestures – on a Web application created for this study. This
application allows users to colour, with mid-air gestures, a
white grid shown on the public display by picking colours
from the palette available in the wearable device. It
involves a public display, two personal devices (smartphone
and smartwatch) and the Kinect sensor. First, both grid and
palette are on the smartphone; then the former element can
be transferred to the public display, and the latter to the
smartwatch. In this way, the white grid, now visible in the
public display, becomes ready to be coloured. Tasks are
consequential and, one by one, lead to the application
complete with all functionalities. Moreover, they have been
conceived in order to encompass the various possible ways
of interaction that CDI allows: “mixed” (touch + mid-air)
combined gestures; only touch combined gestures; single
mid-air gestures with hand position detection; sending and
receiving of inputs with attachments to be sent from a
device to another.

Participants worked with three screens. In the first one, they
found the editor in which they could write their code, and
the command shells showing devices running on the CDI
server. In the second one, they found the two mobile
emulators (smartphone and smartwatch) with the
correspondent app’s pages opened. The third one, with the
Kinect sensor placed above, showed the public display
view.

Once they completed all tasks, we asked them to complete a
post-study questionnaire, in order to get feedback about
their programming experience with CDI, and additional
positive and negative comments concerning CDI features.

Tasks
Participants worked in the presence of one researcher who
at the beginning clarified doubts regarding the summary
documentation or the instructions given. They could also
look up the summary documentation at any moment during
the test, and decide whether or not to execute their scripts.
We asked them to complete three tasks. Task 1 and Task 2
are divided into 2 subtasks.

Task 1 – distribute the smartphone’s interface elements
with cross-device combined gestures:

Subtask 1 – transfer the uncoloured grid to the public
display with a swipe closedout combined gesture;

Subtask 2 – transfer the colour palette to the
smartwatch with a swipe tap combined gesture.

Task 2 – identify a rectangular area inside the grid now
visible on the public display:

Subtask 1 – select a cell with a lasso mid-air gesture
using the left hand, as the first extremity of the
rectangular area;

Subtask 2 – select another cell with a lasso mid-air
gesture using the right hand, as second extremity of the
rectangular area.

Task 3 – colour the rectangular area with a combined
lassoclosed tap gesture: the tap is on the smartwatch
element containing the colour we want the area to be
coloured with.

Results
Participants worked without a maximum time limit. We
measured the completion time for each task (and subtask)
without stopping the timer when they looked up the
documentation or tested their scripts. Therefore, the
collected time values also include the time dedicated to
these two activities. The box-plot in Figure 5 presents the
completion time for each task and subtask.

Subtask 1 of Task 1 is the one that took most time to be
completed followed by Task 3. Not all participants read the
summary documentation we sent to them, so they spent
most of the time first looking up what the necessary
methods were, and then understanding their syntax. Even
participants who read the documentation before the test
needed some time to get familiar with those methods, and,
once completed the first task, they went on with less
hesitation and therefore more quickly. This aspect partially
explains the long completion time recorded for the ST1 of
Task 1. Furthermore, we should consider that ST1 of Task

Figure 5. Task completion time

1, as well as Task 3, requires the implementation of an
interaction that includes, besides the combined gesture, an
input exchange between devices: a more complex
interaction that probably justifies the greater amount of time
needed by participants to complete those two tasks.

Subtasks 2 is very similar to Subtasks 1 as regards the
interaction logic. Taking into account this analogy and
considering that participants had become more familiar
with the methods, we can suppose that these reasons
explain why Subtasks 2 took much less time to be
completed.

Task 3 requires a bit more effort than ST1 of Task 1: as
ST1 of Task 1, it requires the implementation of a mixed
combined gesture, but the input to the public display has to
be enhanced with a piece of information (the background
colour value) provided through another device. The Task 3
average completion time is higher than Task 2, but still
lower than ST1 of Task 1. Even though at that point of the
study participants were more efficient in using CDI
methods, they encountered some difficulties in identifying
the coordinates of the target elements to be coloured.
However, this aspect is unrelated to the CDI library
specifically, so we did not consider failure to identify the
area an error, when it occurred. We only verified that the
transfer of the colour to the public display was implemented
correctly.

Not all participants tested their scripts during the study: 5
tested all scripts, 3 tested none, 2 instead tested only for
some tasks. Participants who read the summary
documentation a couple of days before the test were more
inclined to test their scripts. Those who tested without
having read the documentation before registered a high
global completion time (170-180 minutes). Global
completion times are lower for participants who read the
documentation before the test and also tested all scripts (70-
120 minutes), and for those who tested not all scripts (135
minutes approximately).

Errors
To evaluate the correct use of the CDI library, we have
taken into account the number of methods required to
perform the logic of interactions required by our tasks.
After assigning to each method written by the developers a
value between 0 and 1 depending on its degree of
correctness, we have expressed the global level of
correctness in % values. We have considered “wrong” a use
with correctness value less than 50%. Almost all
participants had used the relevant methods to implement the
cross-device interactions, and used them correctly, without
making mistakes in sending and receiving inputs between
devices. The lowest overall level of correctness was
detected for Task 3 (84.1%), followed by Task 1 (92.8%)
and Task 2 (94.8%), as shown in Figure 6. Most of the
errors found in the participants’ code concern the methods
parameters. For example, someone failed in identifying the
right action target to be recognized by the onCombined

method (e.g. writing the same target ID in the versions for
both devices for ST2 of Task 1). Someone else made a
mistake in the sendInput method, writing the wrong device
name as first parameter (which is the string used to identify
it when the CDI framework is instantiated), e.g. because
they did not understand they had to specify the name of the
sending device in ST1 of Task 1.

In addition, we observed that there is a strong positive
correlation (r = 0.88) between the level of global accuracy
and the level of programming knowledge and experience
stated by participants in the pre-study questionnaire (there
were more errors and uncertainties in participants who
evaluated themselves less experienced than others).

Developers’ Feedback
Overall, the developers’ feedback concerning the CDI
framework has been positive (see Figure 7). In a 1 (min) to
5 (max) scale, they found fairly easy to understand in
general its functioning (median 4; mode: 4). At the same
time, they did not encounter excessive difficulty in
understanding how methods worked (median 4; mode: 4).
The referencing to elements and devices involved in
combined gestures has been considered quite intuitive and
easy to handle (median 4; mode: 4).

As for the CDI features, we asked participants to evaluate
on a 5-point scale the level of difficulty encountered in task
completion, see Figure 8. In case of low ratings (1 and 2),
we asked them to explain their difficulties.

They considered Task 3 as the one that required more effort
to complete. Task 3 is indeed the one where we have
detected more errors in the use of methods. Difficulties in
Task 3 completion are related to how to transfer the

Figure 6. Accuracy levels for the various tasks

0%

20%

40%

60%

80%

100%

Task 1
ST1

Task 1
ST2

Task 2
ST1

Task 2
ST2

Task 3

%
 o

f p
ar

tic
ip

an
ts

partially correct correct

Figure 7. Evaluation of the CDI features

event handling/device selection

methods

framework

very hard hard neither easy nor hard easy very easy

selected colour from one device to another (“I had some
troubles in transferring the cell’s colour from smartwatch
to public display”, “just the ultimate part for colouring the
cell”). Two participants also suggested that it would be
better to find an already implemented function for helping
them to detect the two extremes of the rectangular area
However, this was an issue related to general Web
programming and not to the specific CDI framework.

Problems regarding Task 1 completion (median 3; mode: 3)
are mostly related – as we expected – to the ST1, as it was
more complex (the interaction involves also the Kinect
sensor) and it was the first task, thus it required participants
greater effort to understand how to use methods to achieve
the interaction logic (“I found more difficulties with subtask
1 than with subtask 2 because I still had to get familiar with
the functioning of methods”). Task 2 was generally
considered simpler (median 4; mode: 5) and no particular
comment was given for difficulties encountered.

Qualitative developer evaluation
We asked participants to provide their feedback about
aspects they most liked as well as the ones they did not like.
Some comments containing a negative feedback were about
the Kinect part (for example, they would prefer an
automatic way to execute again the corresponding .js file on
Node.js after making any change) and the framework
functioning: “with regard to syntax and operating
principles it’s difficult to understand without a minimal
training phase”, “understanding well how to send and
recover attachments to messages”. Among positive
comments, instead, participants stated methods themselves
and their ease of use (e.g. “I find quite simple the general
functioning of methods, once the initial difficulty is over”).
Moreover, they appreciate salient library’s features such as
“the possibility to recall events on multiple devices”, “the
possibility to combine different gestures”, “methods for
communication between devices, the logic for exchanging
messages between the Kinect and the other devices”, “the
immediacy of transferring events from one device to
another”. Finally, “the possibility of distributing interfaces,
transferring them with gestures on various devices is very
interesting”.

We asked participants if they would use CDI in the future
to develop cross-device applications with interaction
techniques such as those experienced during the test. Since

they found the libraries easy to use, and were interested in
the possible techniques enabled by CDI, they said they
would use it in the future to develop applications involving
both a public display and personal devices in domains such
as museums, games, smart-cities, or for diagnostic imaging
in the medical field, and to access content such as
encyclopedias and newspapers. .

Someone provided also additional suggestions for
improving the CDI framework, such as integrating vocal
interaction, and introducing the possibility to customize the
timeout duration according to the specific combined
interactions.

CONCLUSION
Our life is becoming a multi-device experience and we need
support to facilitate the development of cross-device user
interfaces able to exploit such technological richness.

We have analysed the interaction design space considering
public displays and their integration with personal devices.
In this context, we have identified a set of relevant
interaction techniques and gestures that involve personal
devices in conjunction with public displays. We have
presented a framework, together with its Web-based
architecture, which enables developers to implement user
interactions with limited effort in such a way to exploit the
large surface of public displays together with personal
devices through various types of gesture-based cross-device
interactions. Then, we have described some example
applications, and reported on a first test with developers.
The framework has been designed in such a way to be
easily extensible with new gesture types, and provides an
expressive API for supporting such features.

Future work will be dedicated to further validating the
usefulness and the usability of the framework with end
users and Web developers.

REFERENCES
1. Matthias Baldauf, Florence Adegeye, Florian Alt and

Johannes Harms. 2016. Your Browser is the Controller
- Advanced Web-Based Smartphone Remote Controls
for Public Screens. In The 5th International Symposium
on Pervasive Displays (PerDis ’16), pages 175-181.
https://doi.org/10.1145/2914920.2915026

2. Alessio Bellino, Federico Cabitza, Giorgio De Michelis
and Flavio De Paoli. 2016. Touch&Screen: Widget
Collection for Large Screens Controlled through
Smartphones. In Proceedings of the 15th International
Conference on Mobile and Ubiquitous Multimedia
(MUM ’16), pages 25-35.
https://doi.org/10.1145/3012709.3012736

3. Frederik Brudy, Steven Houben, Nicolai Marquardt,
and Yvonne Rogers. 2016. CurationSpace: Cross-
Device Content Curation Using Instrumental
Interaction. In Proceedings of the 2016 ACM on
Interactive Surfaces and Spaces (ISS '16), pages 159-
168. https://doi.org/10.1145/2992154.2992175

Figure 8. Difficulties in performing tasks assessment

task 3

task 2

task 1

very hard hard

neither easy nor hard easy

very easy

4. Xiang ‘Anthony’ Chen, Tovi Grossman, Daniel J.
Wigdor and George Fitzmaurice. 2014. Duet: exploring
joint interactions on a smart phone and a smart watch.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14), pages 159-
168. https://doi.org/10.1145/2556288.2556955

5. Pey-Yu (Peggy) Chi and Yang Li. 2015. Weave:
Scripting Cross-Device Wearable Interaction. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’15), pages 3923-
3932. https://doi.org/10.1145/2702123.2702451

6. Pey-Yu (Peggy) Chi, Yang Li and Björn Hartmann.
2016. Enhancing Cross-Device Interaction Scripting
with Interactive Illustrations. In Proceedings of the
2016 CHI Conference on Human Factors in
Computing Systems, pages 5482-5493.
https://doi.org/10.1145/2858036.2858382

7. Luca Frosini and Fabio Paternò. 2014. User interface
distribution in multi-device and multi-user
environments with dynamically migrating engines. In
Proceedings of the 2014 ACM SIGCHI symposium on
Engineering interactive computing systems (EICS ’14),
pages 55-64. https://doi.org/10.1145/2607023.2607032

8. Steven Houben and Nicolai Marquardt. 2015.
WatchConnect: A Toolkit for Prototyping Smartwatch-
Centric Cross-Device Applications. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’15), pages 1247-1256.
https://doi.org/10.1145/2702123.2702215

9. William Hutama, Peng Song, Chi-Wing Fu and Wooi
Boon Goh. 2011. Distinguishing multiple smart-phone
interactions on a multi-touch wall display using tilt
correlation. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’11),
pages 3315-3318.
https://doi.org/10.1145/1978942.1979433

10. K.P. Ludwig John and Thomas Rist. 2012. xioScreen:
Experiences Gained from Building a Series of
Prototypes of Interactive Public Displays. In
Ubiquitous Display Environments. Springer Berlin
Heidelberg, 125-142. https://doi.org/10.1007/978-3-
642-27663-7_8

11. Romina Kühn, Diana Lemme and Thomas Schlegel.
2013. An interaction concept for public displays and
mobile devices in public transport. In Human-
Computer Interaction. Interaction Modalities and
Techniques. Springer Berlin Heidelberg, pages 698-
705. https://doi.org/10.1007/978-3-642-39330-3_75

12. Kent Lyons. 2015. "What can a dumb watch teach a
smartwatch?: informing the design of smartwatches."
In Proceedings of the 2015 ACM International
Symposium on Wearable Computers (ISWC ’15),
pages 3-10. https://doi.org/10.1145/2802083.2802084

13. Kent Lyons. 2016. Smartwatch Innovation: Exploring a
Watch-First Model. In IEEE Pervasive Computing,
2016, 15.1, pages 10-13.
https://doi.org/10.1109/MPRV.2016.21

14. Marco Manca and Fabio Paternò. 2016. Customizable
dynamic user interface distribution, in Proceedings of
the 8th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS ’16), pages 27-
37. https://doi.org/10.1145/2933242.2933259

15. Soh Masuko, Masafumi Muta, Keiji Shinzato and
Adiyan Mujibiya. 2015. WallSHOP: Multiuser
Interaction with Public Digital Signage using Mobile
Devices for Personalized Shopping. In Proceedings of
the 20th International Conference on Intelligent User
Interfaces Companion (IUI ’15), pages 37-40.
https://doi.org/10.1145/2732158.2732179

16. Michael Nebeling and Anind K. Dey. 2016.
XDBrowser: User-defined cross-device web page
designs. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, pages 5494–
5505. https://doi.org/10.1145/2858036.2858048

17. Fabio Paternò, Carmen Santoro. 2012 A logical
framework for multi-device user interfaces. In
Proceedings of the 2012 ACM SIGCHI symposium on
Engineering interactive computing systems (EICS ’12),
pages 45-50. https://doi.org/10.1145/2305484.2305494

18. Mario Schreiner, Roman Rädle, Hans-Christian Jetter
and Harald Reiterer. 2015. Connichiwa: a framework
for cross-device web applications. In Proceedings of
the 33rd Annual ACM Conference Extended Abstracts
on Human Factors in Computing Systems, pages 2163-
2168. https://doi.org/10.1145/2702613.2732909

19. Teddy Seyed, Alaa Azazi, Edwin Chan, Yuxi Wang
and Frank Maurer. 2015. SoD-Toolkit: A Toolkit for
Interactively Prototyping and Developing Multi-
Sensor, Multi-Device Environments. In Proceedings of
the ACM Conference on Interactive Tabletops and
Surfaces (ITS ’15), pages 171-180.
https://doi.org/10.1145/2817721.2817750

20. Jishuo Yang and Daniel Wigdor. 2014. Panelrama:
enabling easy specification of cross-device web
applications. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 2783-
2792. https://doi.org/10.1145/2556288.2557199

	A Web Framework for Cross-device Gestures Between Personal Devices and Public Displays
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	INTERACTION DESIGN SPACE
	Framework API
	Developers can use the framework by writing the application code for all the application parts in the various devices. When they create new instances of CDI objects two parameters should be specified: an ID, used for identifying the device, and the ad...
	CDI FRAMEWORK APPLICATION

	A TEST WITH DEVELOPERS
	Participants and Setup
	Tasks
	Results
	Errors

	Developers’ Feedback
	Qualitative developer evaluation

	CONCLUSION
	REFERENCES

