Option Prices under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities
Allan Timmermann and
Massimo Guidolin
FMG Discussion Papers from Financial Markets Group
Abstract:
This paper shows that many of the empirical biases of the Black and Scholes option pricing model can be explained by Bayesian learning effects. In the context of an equilibrium model where dividend news evolve on a binomial lattice with unknown but recursively updated probabilities we derive closed-form pricing formulas for European options. Learning is found to generate asymmetric skews in the implied volatility surface and systematic patterns in the term structure of option prices. Data on S&P 500 index option prices is used to back out the parameters of the underlying learning process and to predict the evolution in the cross-section of option prices. The proposed model leads to lower out-of-sample forecast errors and smaller hedging errors than a variety of alternative option pricing models, including Black-Scholes and a GARCH model.
Date: 2001-11
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.lse.ac.uk/fmg/workingPapers/discussionPapers/fmg_pdfs/dp397.pdf (application/pdf)
Related works:
Journal Article: Option prices under Bayesian learning: implied volatility dynamics and predictive densities (2003)
Working Paper: Option Prices under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities (2001)
Working Paper: Option prices under Bayesian learning: implied volatility dynamics and predictive densities (2001)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:fmg:fmgdps:dp397
Access Statistics for this paper
More papers in FMG Discussion Papers from Financial Markets Group
Bibliographic data for series maintained by The FMG Administration ().