Estimating the Output Gap After COVID: How to Address Unprecedented Macroeconomic Variations
Camilo Granados and
Daniel Parra-Amado
Borradores de Economia from Banco de la Republica de Colombia
Abstract:
This study examines whether and how important it is to adjust output gap frameworks during the COVID-19 pandemic and similar unprecedentedly large-scale episodes. Our proposed modelling framework comprises a Bayesian Structural Vector Autoregressions with an identification setup based on a permanent-transitory decomposition that exploits the long-run relationship of consumption with output and whose residuals are scaled up around the COVID-19 period. Our results indicate that (i) a single structural error is usually sufficient to explain the permanent component of the gross domestic product (GDP); (ii) the adjusted method allows for the incorporation of the COVID-19 period without assuming sudden changes in the modelling setup after the pandemic; and (iii) the proposed adjustment generates approximation improvements relative to standard filters or similar models with no adjustments or alternative ones, but where the specific rare observations are not known. Importantly, abstracting from any adjustment may lead to over or underestimating the gap, to too-quick gap recoveries after downturns, or too-large volatility around the median potential output estimations. **** RESUMEN: Esta investigación examina si y cómo es importante ajustar la estimación de la brecha de producto (PIB) durante la pandemia de COVID-19. Para ello, proponemos dentro de un enfoque bayesiano un modelo de Vectores Autoregresivos estructurales (BSVAR) con un esquema de identificación basado en la descomposición de choques permanentes y transitorios que explota la relación de largo plazo entre el consumo y el PIB, y cuyos residuales se escalan alrededor del periodo de COVID-19. Nuestros resultados indican que (i) Con un sólo choque estructural es suficiente para explicar la componente permanente del PIB; (ii) el método ajustado permite la incorporación del período de COVID-19 sin asumir cambios bruscos en la configuración de modelización después de la pandemia; y (iii) el ajuste propuesto genera mejoras en la aproximación en comparación con filtros estándar u otros modelos similares sin ajustes o alternativos, pero donde las observaciones específicas poco comunes no son conocidas. Es importante destacar que prescindir de cualquier ajuste puede llevar a sobreestimar o subestimar la brecha de PIB, a una recuperación de la brecha demasiado rápida después de las caídas o a una volatilidad demasiado grande alrededor de la mediana de dichas estimaciones.
Keywords: Bayesian methods; business cycles; potential output; output gaps; structural estimation; Métodos Bayesianos; Ciclos económicos; Producto potencial; Brecha de producto; Estimación estructural (search for similar items in EconPapers)
JEL-codes: C11 C53 E3 E32 E37 (search for similar items in EconPapers)
Pages: 38
Date: 2023-09
New Economics Papers: this item is included in nep-ets and nep-inv
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.32468/be.1249
Related works:
Journal Article: Estimating the output gap after COVID: How to address unprecedented macroeconomic variations (2024)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bdr:borrec:1249
Access Statistics for this paper
More papers in Borradores de Economia from Banco de la Republica de Colombia Cra 7 # 14-78. Contact information at EDIRC.
Bibliographic data for series maintained by Clorith Angélica Bahos Olivera ().