Transparency challenges in policy evaluation with causal machine learning -- improving usability and accountability
Patrick Rehill and
Nicholas Biddle
Papers from arXiv.org
Abstract:
Causal machine learning tools are beginning to see use in real-world policy evaluation tasks to flexibly estimate treatment effects. One issue with these methods is that the machine learning models used are generally black boxes, i.e., there is no globally interpretable way to understand how a model makes estimates. This is a clear problem in policy evaluation applications, particularly in government, because it is difficult to understand whether such models are functioning in ways that are fair, based on the correct interpretation of evidence and transparent enough to allow for accountability if things go wrong. However, there has been little discussion of transparency problems in the causal machine learning literature and how these might be overcome. This paper explores why transparency issues are a problem for causal machine learning in public policy evaluation applications and considers ways these problems might be addressed through explainable AI tools and by simplifying models in line with interpretable AI principles. It then applies these ideas to a case-study using a causal forest model to estimate conditional average treatment effects for a hypothetical change in the school leaving age in Australia. It shows that existing tools for understanding black-box predictive models are poorly suited to causal machine learning and that simplifying the model to make it interpretable leads to an unacceptable increase in error (in this application). It concludes that new tools are needed to properly understand causal machine learning models and the algorithms that fit them.
Date: 2023-10, Revised 2024-03
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ecm
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2310.13240 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2310.13240
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().