Automatic Financial Feature Construction
Jie Fang,
Shutao Xia,
Jianwu Lin and
Yong Jiang
Papers from arXiv.org
Abstract:
In automatic financial feature construction task, the state-of-the-art technic leverages reverse polish expression to represent the features, then use genetic programming (GP) to conduct its evolution process. In this paper, we propose a new framework based on neural network, alpha discovery neural network (ADNN). In this work, we made several contributions. Firstly, in this task, we make full use of neural network overwhelming advantage in feature extraction to construct highly informative features. Secondly, we use domain knowledge to design the object function, batch size, and sampling rules. Thirdly, we use pre-training to replace the GP evolution process. According to neural network universal approximation theorem, pre-training can conduct a more effective and explainable evolution process. Experiment shows that ADNN can remarkably produce more diversified and higher informative features than GP. Besides, ADNN can serve as a data augmentation algorithm. It further improves the the performance of financial features constructed by GP.
Date: 2019-12, Revised 2020-10
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed
Downloads: (external link)
http://arxiv.org/pdf/1912.06236 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1912.06236
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().