Integrated Covariance Estimation using High-frequency Data in the Presence of Noise
Valeri Voev () and
Asger Lunde ()
Journal of Financial Econometrics, 2007, vol. 5, issue 1, 68-104
Abstract:
We analyze the effects of nonsynchronicity and market microstructure noise on realized covariance type estimators. Hayashi and Yoshida (2005) propose a simple estimator that resolves the problem of nonsynchronicity and is unbiased and consistent for the integrated covariance in the absence of noise. When noise is present, however, we find that this estimator is biased, and show how the bias can be corrected for. Ultimately, we propose a subsampling version of the bias-corrected estimator which improves its efficiency. Empirically, we find that the usual assumption of a martingale price process plus an independently and identically distributed (i.i.d.) noise does not describe the dynamics of the observed price process across stocks, which confirms the practical relevance of our general noise specification and the estimation techniques we propose. Finally, a simulation experiment is carried out to complement the theoretical results. Copyright 2007, Oxford University Press.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (74)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbl011 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:5:y:2007:i:1:p:68-104
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().