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Abstract

The tumour microenvironment is the primary location in which tumour cells and the host immune 

system interact. Different immune cell subsets are recruited into the tumour microenvironment via 

interactions between chemokines and chemokine receptors, and these populations have distinct 

effects on tumour progression and therapeutic outcomes. In this Review, we focus on the main 

chemokines that are found in the human tumour microenvironment; we elaborate on their patterns 

of expression, their regulation and their roles in immune cell recruitment and in cancer and stromal 

cell biology, and we consider how they affect cancer immunity and tumorigenesis. We also discuss 

the potential of targeting chemokine networks, in combination with other immunotherapies, for the 

treatment of cancer.

Chemokines are small, secreted proteins that are best known for their roles in mediating 

immune cell trafficking and lymphoid tissue development1,2. The chemokines are the largest 

subfamily of cytokines and can be further subdivided into four main classes depending on 

the location of the first two cysteine (C) residues in their protein sequence: namely, the CC-

chemokines, the CXC-chemokines, C-chemokines and CX3C-chemokines2. There is an 

important degree of redundancy in the chemokine superfamily, with many ligands binding 

different receptors and vice versa2 (FIG. 1). In the tumour microenvironment, chemokines 

can be expressed by tumour cells and other cells, including immune cells and stromal cells. 

In response to specific chemokines, different immune cell subsets migrate into the tumour 

microenvironment and regulate tumour immune responses in a spatiotemporal manner. In 

addition, chemokines can directly target non-immune cells — including tumour cells and 

vascular endothelial cells — in the tumour microenvironment, and they have been shown to 
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regulate tumour cell proliferation, cancer stem-like cell properties, cancer invasiveness and 

meta stasis. Therefore, chemokines directly and indirectly affect tumour immunity; shape 

tumour immune and biological phenotypes; and influence cancer progression, therapy and 

patient outcomes3–10 (FIG. 1). In this Review, we describe the expression patterns and 

regulation of the main chemokines that are found in the human cancer microenvironment, 

and their effects on immune cells and non-immune cells. There has recently been a huge 

amount of research on cancer immunology and immunotherapy10,11, and here we discuss 

whether selectively targeting chemokine–chemokine receptor signalling could complement 

and increase the efficacy of the immunotherapies that are currently being used in cancer 

treatment3,4,10,12.

Immune cell tumour trafficking

Different lymphocytes traffic into the tumour microenvironment, and they can modulate 

tumour immune responses in both primary tumours and metastatic sites. Here, we discuss 

several key chemokine networks that regulate lymphocyte recruitment into the tumour 

microenvironment, and discuss how the recruited lymphocyte subsets regulate tumour 

immunity and tumorigenesis.

The recruitment of effector T cells and natural killer cells

CD8+ T cells that are specific for tumour-associated antigens (TAAs) can engage tumour 

cells in an antigen-specific manner, and they drive antitumour immunity by secreting 

effector cytokines, releasing cytotoxic molecules (such as granzyme B and perforin) and 

inducing apoptosis in tumour cells. In addition to CD8+ T cells, interferon-γ (IFNγ)-

expressing T helper 1 (TH1) cells and natural killer (NK) cells have potent antitumour 

effects in the tumour microenvironment. Effector CD8+ T cells, TH1 cells and NK cells 

express CXC-chemokine receptor 3 (CXCR3), which is the receptor for the TH1-type 

chemokines CXC-chemokine ligand 9 (CXCL9) and CXCL10, and they can migrate into 

tumours in response to these chemokines (FIG. 2). Increased levels of CXCL9 and CXCL10 

are associated with increased numbers of tumour-infiltrating CD8+ T cells, and correlate 

with decreased levels of cancer metastasis and improved survival in patients with ovarian 

cancer and colon cancer13–18. Recent studies have demonstrated that tumour-infiltrating 

CD8+ T cells and intratumoural TH1-type chemokines are associated with positive responses 

to therapeutic blockade of the immune checkpoint molecules programmed cell death protein 

1 (PD1) and PD1 ligand 1 (PDL1; also known as B7-H1)10. Interestingly, CD8+ T cells in 

the tumour microenvironment were shown recently to regulate the metabolism of the 

chemotherapeutic agent cisplatin by fibroblasts in ovarian cancer19. In this study, CD8+ T 

cell-derived IFNγ altered glutathione and cysteine metabolism in fibroblasts, and abolished 

their resistance to platinum-based chemotherapy19, suggesting that CD8+ T cells can also 

affect tumour cell fate in a TAA-independent manner. Therefore, TH1-type chemokines can 

recruit effector immune cells into the tumour microenvironment, and these immune cells can 

subsequently shape tumour immunity and therapeutic responses through both TAA-specific 

and TAA-independent mechanisms.
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The recruitment of TH17 cells

Human TH17 cells express high levels of CC-chemokine receptor 6 (CCR6), CXCR4, 

multiple CD49 integrins and the C-type lectin-like receptor CD161 (REFS 17,20–22). These 

homing molecules may be associated with TH17 cell migration and retention within 

inflammatory tissues and tumours17,21,23,24. For example, high levels of CXCL12 (also 

known as SDF1; the ligand for CXCR4)25,26 and CC-chemokine ligand 20 (CCL20; the 

ligand for CCR6)27 are found in human tumour microenvironments. This chemokine profile 

may facilitate the trafficking of TH17 cells into tumours. TH17 cells do not express CD62 

ligand (CD62L; also known as L-selectin) or CCR7 (REF. 17), which promote lymphocyte 

homing to lymph nodes, and this suggests that their potential to home to lymphoid tissues is 

limited. In both humans and mice, tumour- infiltrating TH17 cells are polyfunctional17,22,28, 

have stem-like properties and mediate potent antitumour immunity8,17,22,24,28. TH17 cells do 

not secrete cytotoxic molecules such as granzyme B and perforin, but instead mediate 

antitumour activity by recruiting CD8+ T cells17,22, NK cells29 and dendritic cells (DCs)24 

into the tumour microenvironment. Of note, interleukin-17 (IL-17) has been shown to target 

the tumour stroma and also to promote tumour angiogenesis in mouse models, an effect that 

may promote tumour growth8. Nevertheless, the chemokine-driven recruitment of 

polyfunctional TH17 cells into the tumour micro environment may be beneficial for patients 

with cancer8.

The recruitment of TH22 cells

TH22 cells are found in the microenvironment of several types of human cancer, including 

colon cancer, pancreatic cancer and hepatocellular carcinoma30–33. These cells express 

CCR6, migrate towards the CCR6 ligand CCL20 in the colon cancer microenvironment, and 

have been shown to promote and support tumorigenesis30. TH22 cell-derived IL-22 acts on 

cancer cells to promote the activation of the transcription factor signal transducer and 

activator of transcription 3 (STAT3), increase the expression of the histone H3 lysine 79 

(H3K79) methyltransferase DOT1L30, and upregulate the expression of the H3K27 

methyltransferase Polycomb repressive complex 2 (PRC2), particularly the enhancer of zeste 

homologue 2 (EZH2) subunit34. The DOT1L complex induces the expression of the core 

stem cell genes NANOG, SOX2 (which encodes SRY-box 2) and POU5F1 (which encodes 

POU class 5 homeobox 1), resulting in increased cancer stemness and tumorigenic 

potential30, whereas increased expression of EZH2 has been shown to support the 

proliferation of colon cancer cells34. A pro-tumour role of IL-22 has been supported by 

studies in two mouse models of colon cancer. In a bacteria-induced colon cancer model, 

IL-22-expressing colonic innate lymphoid cells (ILCs) accumulate in the tumour tissues, and 

their depletion blocks the development of invasive colon cancer35. In a colon tumour model 

that is induced by azoxymethane and dextran sulfate sodium, the downregulation of IL-22-

binding protein (IL-22BP) expression increases the ratio of IL-22 to IL-22BP and promotes 

tumorigenesis36. Thus, the recruitment of TH22 cells into the tumour microenvironment via 

the CCL20–CCR6 axis may promote tumorigenesis37.

Nagarsheth et al. Page 3

Nat Rev Immunol. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The recruitment of regulatory cells

Another way in which chemokines may promote tumorigenesis is by mediating the 

recruitment of regulatory T (Treg) cells into the tumour microenvironment. Treg cells express 

CCR4 and are recruited into the tumour micro environment in response to CCL22, which is 

produced mainly by macrophages and tumour cells38. Treg cells suppress spontaneous and 

therapy-induced T cell antitumour immunity, leading to tumour growth and poor patient 

outcomes5,38. In addition to the CCL22–CCR4 signalling pathway, Treg cells express 

CCR10 and migrate in response to the CCL28 that is found in hypoxic regions of the tumour 

microenvironment39.

The bone marrow is a common site of tumour metastasis in humans, suggesting that the 

bone marrow may provide an immunosuppressive microenvironment that supports tumour 

retention and growth40. In line with this notion, high frequencies of Treg cells are found in 

the bone marrow41. Bone marrow Treg cells exhibit a memory phenotype and express 

functional CXCR4 (REF. 41). Treg cells can be mobilized from the bone marrow into the 

periphery by granulocyte colony-stimulating factor (G-CSF), which promotes the 

degradation of CXCL12 in the bone marrow41. High numbers of Treg cells in the bone 

marrow may provide an immune ‘shield’ that facilitates tumour metastasis to this site. This 

may explain why cancers often metastasize to the bone marrow6,42. In further support of this 

possibility, the numbers of Treg cells are further increased in the bone marrow of patients 

with prostate cancer who show bone metastasis42. These Treg cell populations are recruited 

into the bone marrow via the CXCL12–CXCR4 signalling pathway and are expanded by 

DCs via the receptor activator of NF-κB (RANK)–RANK ligand (RANKL) signalling 

pathway (also known as the TNFRSF11A–TNFSF11 signalling pathway)42.

Treg cells may express inflammatory cytokines — including CXCL8 (also known as IL-8)43 

and IL-17 (REF. 44) — in the human colon cancer microenvironment. Interestingly, 

CXCL8+ and IL-17+ Treg cells not only mediate T cell suppression but also promote 

inflammation in the cancer microenvironment. Thus, the chemokine-mediated recruitment of 

Treg cells into the tumour microenvironment and their presence at pre-metastatic sites 

supports tumour initiation, progression and metastasis (FIG. 3).

The recruitment of NKT cells

Type I NKT cells, which are defined by their expression of an invariant T cell receptor 

(TCR) — namely, Vα14Jα18+ in mice and Vα24Jα18+ in humans — mainly have 

antitumour immune activities, as they produce IFNγ to activate NK cells and CD8+ T cells, 

and they activate DCs to produce IL-12 (REF. 45). By contrast, type II NKT cells, which are 

characterized by the expression of more diverse TCRs that recognize lipids presented by 

CD1d, primarily inhibit tumour immunity45. Most NKT cells express non-lymphoid-homing 

or inflammation- related chemokine receptors including CCR2, CCR5 and CXCR3 (REF. 

46). CCL2 mediates the trafficking of type I NKT cells into neuroblastomas47,48. NKT cell 

trafficking into other types of tumour is poorly studied.
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The recruitment of B cells

Human tumour-infiltrating B cells have been less well-studied than have effector T cells49. B 

cells express CXCR4 and may be recruited by CXCL12 into the cancer microenvironment. 

High levels of tumour-infiltrating B cells are associated with a survival advantage in breast 

cancer50, high-grade serous ovarian cancer51 and cervical cancer52. B cells may also be 

present in tumour-associated tertiary lymphoid structures53 and increase T cell responses by 

releasing cytokines and chemokines, by serving as antigen-presenting cells (APCs) and by 

producing antibodies. However, mouse studies indicate that B cells may negatively regulate 

tumour immunity and promote tumour progression via IL-10 and transforming growth 

factor-β (TGFβ) expression54–56. Furthermore, by activating Fcγ receptors (FcγRs) on 

myeloid cells and mast cells, B cells can promote tumour angiogenesis and the recruitment 

of tumour-promoting immune cells54–56. There may be different subsets of B cells, 

including regulatory B cells57; however, it is unknown whether different B cell subsets are 

recruited into the tumour microenvironment by different chemokines, and whether they have 

differential roles in human tumour immunity and tumorigenesis.

In summary, different lymphocyte subsets are recruited into the tumour microenvironment 

by distinct chemokine–chemokine receptor signalling pathways. Effector T cells, NK cells 

and perhaps NKT cells may mediate an antitumour immunity, whereas Treg cells, TH22 cells 

and perhaps B cells may promote tumorigenesis.

Chemokines and tumour-associated APCs

APCs — including DCs, macrophages, B cells (discussed above) and perhaps myeloid-

derived suppressor cells (MDSCs) — are recruited into the tumour microenvironment; they 

regulate antitumour immunity by interacting with T cells, and affect tumorigenesis by 

interacting with tumour (stem-like) cells and stromal cells.

The recruitment of myeloid DCs to tumours

Mature myeloid DCs can drive potent antitumour immune responses by priming and 

activating TAA-specific T cells58. By contrast, immature myeloid DCs are poor mediators of 

T cell activation and can induce TH2-type immune responses27,59, which may support 

tumour progression. Immature myeloid DCs, but not mature myeloid DCs, are found in 

breast cancer and the cancer stroma27,60. Immature DCs express CCR6 and are recruited 

into tumours in response to tumour-derived CCL20 (REFS 27,60). However, in experimental 

mouse models, the overexpression of CCL20 (REF. 61) and CXCL14 (REF. 62) can attract 

myeloid DCs to the tumour, and promote DC maturation and inhibit tumour growth. The 

trafficking patterns of myeloid DCs in other types of human cancer are poorly defined.

The recruitment of plasmacytoid DCs

Plasmacytoid DCs are found in the human tumour microenvironment. Tumour and stromal 

cells produce CXCL12 (REFS 25,26,63), and plasmacytoid DCs express integrin α5 (also 

known as VLA5) and CXCR4, which are the key molecules that mediate plasmacytoid DC 

trafficking to tumours25. CXCL12 also protects plasmacytoid DCs in tumours from 

undergoing apoptosis26. In vitro studies have shown that plasmacytoid DCs isolated from 
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human tumour tissues can respond to viral infection by producing high levels of type I 

IFN25. However, plasmacytoid DCs can also induce the development of IL-10-producing 

regulatory CD8+ T cells that suppress the ability of myeloid DCs to activate TAA-specific 

effector T cells25,64. Furthermore, these regulatory CD8+ T cells express CCR7, and may 

home to the draining lymph nodes and suppress TAA-specific T cell priming64. In addition, 

plasmacytoid DCs can promote tumour angiogenesis65. Thus, the recruitment of plasma 

cytoid DCs into the human tumour micro environment by CXCL12 may support the 

development of an immunosuppressive site that is permissive for tumour progression.

The recruitment of macrophages

Macrophages can be recruited into the tumour microenvironment by CCL2–CCR2 

signalling66. CCL2 expression by tumours correlates with the numbers of tumour-associated 

macro phages (TAMs) in many tumours and is associated with poor patient prognosis in 

some cancers, including breast cancer67. TAMs may inhibit TAA-specific T cell activation 

via the expression of inhibitory B7 family members, including PDL1 and B7-H4 (also 

known as VTCN1), and through the induction of the galectin 9–T cell immunoglobulin 

mucin 3 (TIM3) pathway68–71. Furthermore, TAMs support chemo resistance72, and 

promote cancer stemness and meta stasis67,73. CCL2 can also activate metastasis-associated 

macrophages to secrete CCL3, which further promotes macrophage retention in the tumour 

and tumour meta static sites74. The CCL5–CCR5 pathway may be an additional chemo 

attractant signalling axis that affects macrophages in breast cancer. Increased CCL5 

expression correlates with more advanced stages of breast cancer75,76. Thus, the recruitment 

of macrophages into the tumour micro environment may promote tumour progression. 

However, different subsets of macrophages77 and macrophages in different maturation 

stages may have diverse functions in tumours71,78,79. For example, CD68+ macrophages are 

associated with improved survival among patients with colon cancer79. CD169+ macro 

phages can mediate TAA-specific T cell cross-priming in tumour-draining lymph nodes, and 

initiate and promote tumour immunity in a mouse model80. Furthermore, macrophages can 

either increase or antagonize the antitumour efficacy of cytotoxic chemotherapy, cancer-cell 

targeting antibodies and immunotherapeutic agents81. Thus, targeting macrophages by the 

manipulation of chemokine–chemokine receptor signalling as a therapeutic approach may 

need to take these effects into account.

The recruitment of MDSCs

MDSCs represent a heterogeneous population of myeloid cells that includes monocytic and 

granulocytic cells82. Monocytic MDSCs are macrophages in different maturation stages. 

Granulocytic MDSCs are mostly neutrophils in different maturation stages. The immune-

suppressive effects of MDSCs are relatively well-studied in mouse tumour models82–85 and 

in patients with cancer73,86–88. Interestingly, recent studies demonstrate that MDSCs endow 

cancer cells with stem cell-like properties and are linked with cancer stemness73,86–88. 

Monocytic MDSCs (macrophages) can be recruited into the tumour microenvironment by 

CCL2 (REFS 74,89). The CXCL5–CXCR2 and CXCL12–CXCR4 signalling pathways are 

also reported to be involved in MDSC trafficking in a breast tumour mouse model90. 

CXCL8 regulates granulocytic MDSC migration and degranulation via CXCR1 and CXCR2 

signalling91. Tumour cells and myeloid cells express CXCL8, and recruit neutrophils into 
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the tumour microenvironment91. Certain subsets of Treg cells in the human cancer 

microenvironment express CXCL8 and promote neutrophil migration into tumours43. 

Neutrophils secrete various molecules that support and promote tumour angiogenesis. Thus, 

the recruitment of neutrophils by CXCL8 is generally thought to promote tumour 

progression and metastasis91,92.

In summary, distinct chemokines mediate the recruitment of different APC subsets into the 

tumour microenvironment, and these APCs differentially regulate tumour immunity and 

cancer progression. In addition to targeting immune cells, chemokines can also affect 

tumorigenesis by directly targeting tumour cells and tumour stromal cells.

Effects of chemokines on tumour cells

Chemokines can directly and indirectly target tumour stem-like cells and stromal cells in 

tumours. Below, we discuss how different chemokine–chemokine receptor signalling 

pathways affect tumour cell proliferation, stemness and angiogenesis to ultimately alter 

tumour metastasis and disease outcomes in patients (TABLE 1).

Direct pro-tumour effects of chemokines

CCL2, CCL3 and CCL5 can promote tumour invasion and meta stasis. CCL2 targets 

vascular endothelial cells via the Janus kinase 2 (JAK2)–STAT5 and p38 mitogen-activated 

protein kinase pathways93, and affects tumour vas cularization94–96 and tumour 

metastasis93. CCL2, CCL3 and CCL5 can induce matrix metalloproteinase 9 (MMP9) 

secretion by monocytes76,97; MMP9, by degrading the matrix, allows for tumour cell 

extravasation98. Furthermore, CCL2 and CCL5 can promote cancer cell proliferation, 

survival, motility99, epithelial–mesenchymal transition (EMT) and stemness100–103. In 

addition, these chemokines recruit MDSCs and macrophages into the tumour 

microenvironment, and in turn, promote and sustain human cancer stemness73,86,88,104.

CCL18 can directly influence tumour cells by, for example, promoting invasion, metastasis 

and EMT in breast cancer, pancreatic cancer, ovarian cancer and prostate cancer105–109. 

However, the effect of CCL18 seems to depend on the cancer type, as high levels of CCL18 

are a good prognostic factor in gastric cancer110. CCL18 inhibits cutaneous T cell 

proliferation111. In some cancers, such as breast cancer, the main source of CCL18 in the 

tumour is TAMs, whereas ovarian cancer cells can overexpress CCL18 (REFS 105,106). 

Although not shown in cancer, CCL18 has an immunosuppressive effect on DCs and 

macrophages112–115. CCL18-conditioned APCs may induce the differentiation of Treg cells, 

leading to immunosuppression. This CCL18-driven immunosuppression might exist in the 

tumour microenvironment112–115.

The receptor for CCL25, CCR9, is highly expressed in many cancers. CCR9 signalling in 

tumour cells increases their resistance to chemotherapy116,117 and their expression of 

MMPs, which promote cancer invasion and metastasis118–122. CCL25 can also promote 

metastasis by recruiting CCR9+ cancer cells into CCL25-expressing tissues, such as the 

small intestine. For example, cutaneous melanoma cells, and possibly adult lymphoblastic 
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leukaemia cells, preferentially metastasize to the small intestine owing to signalling via the 

CCR9–CCL25 axis123–125.

CXCL8 targets vascular endothelial cells and regulates angiogenesis by promoting 

endothelial cell survival126. CXCL8 targets cancer cells; promotes cancer invasion and 

migration127; induces tumour premature senescence128; contributes to hypoxia-induced 

tumour apoptosis resistance129; and promotes EMT130 and cancer stemness131–135. Thus, 

CXCL8 signalling is important in cancer cell biology.

CXCL12 targets vascular endothelial cells and synergizes with vascular endothelial growth 

factor (VEGF) to promote tumour angiogenesis26,136. CXCL12 can also promote tumour 

cell proliferation and survival63,137. Furthermore, the CXCL12–CXCR4 signalling pathway 

promotes cancer cell invasion and metastasis138–143. It has been suggested that CXCR4+ 

tumour cells may have stem-like properties, have a high metastatic potential and show 

radiation resistance144– 146. Thus, the CXCL12–CXCR4 signalling pathway has a role in 

tumour proliferation, metastasis and stemness. CXCL12 can also bind to CXCR7 (REFS 

147,148). Although considered a decoy and scavenger receptor147–149, CXCR7 can signal 

through non-G-protein-mediated mechanisms in cancer cells and endothelial cells, including 

tumour-associated endothelial cells150,151. Its role as a stand-alone G protein-coupled 

receptor is still under debate, but it can bind to CXCR4 and mediate signalling through 

intracellular CXCR4 signalling molecules, a process implicated in the chemotaxis of T 

cells147,152. As mentioned above, cancer cells express CXCR7, which can promote the 

adhesion, invasion, survival and growth of prostate cancer153,154, breast cancer148,150, and 

lung cancer cells150. CXCR7 signalling can also indirectly contribute to angiogenesis by 

increasing the expression of CXCL8 and VEGF in prostate cancer cells153.

CXCL14 (also known as BRAK) has been reported to be involved in tumorigenesis. 

Interestingly, the effect of CXCL14 in different cancers varies. Cancers such as those of 

pancreas155 and prostate156 show increased CXCL14 expression, whereas other types of 

cancer — including breast cancer, kidney cancer, cervical cancer, and head and neck cancer 

— consistently lose expression of CXCL14 (REFS 157–160). In line with this, the 

overexpression of CXCL14 in breast tumours that lack CXCL14 or even in tumour 

myoepithelial cells leads to reduced tumour growth, metastasis and invasion158,161. Even 

though the receptor for CXCL14 is still unknown, in vivo loss of CXCL14 is correlated with 

reduced DC loss in a head and neck squamous cell carcinoma mouse model62.

CXCL17 is highly expressed in various cancer cells, recruits granulocytic MDSCs into the 

tumour, and increases tumour growth partially by increasing angiogenesis162,163. Indeed, 

CXCL17 induces VEGF expression in monocytes and endothelial cells163,164. As CXCL17 

is highly expressed in many cancers, including colon cancer, it is likely to be an important 

chemokine for mucosal tumours and mucosal immunity165.

Direct antitumour effects of chemokines

Dying cancer cells can be immunogenic and can direct the antitumour immune response. 

CXCL8, for example, can increase the immunogenicity of dying cancer cells by 

translocating calreticulin to the cell surface166. Calreticulin exposure on the cell surface 
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increases the immunogenicity of the cell, and thus promotes the phagocytosis of these cells 

and antitumour immune responses to the tumour167. CXCL9 and CXCL10 are endogenous 

tumour angiogenesis inhibitors168,169. CXCL10 prevents both CXCL8-induced and basic 

fibroblast growth factor-induced angiogenesis in vivo and in vitro170,171.

Regulation of chemokine expression in tumours

Chemokine expression is regulated by cancer-intrinsic genetic and epigenetic mechanisms 

and by environmental cues in the tumour microenvironment.

Epigenetic and oncogenic regulation of chemokine expression

The role of oncogenic genetic and epigenetic pathways is extensively studied in cancer 

biology. Interestingly, recent studies have shown that in human ovarian cancer and colon 

cancer, the PRC2 complex, the H3K27me3 demethylase JMJD3 (also known as KDM6B) 

and DNA methylation repress the expression of TH1-type chemokines in tumours and 

prevent the trafficking of effector T cells into the tumour micro environment172,173. 

Pharmacological and genetic interventions that increase TH1-type chemokine production 

lead to increased effector T cell trafficking into tumours, and improve the therapeutic 

efficacy of PDL1 blockade and T cell transfusion in preclinical models172,173. CXCL14 
expression is also reported to be repressed in lung cancer cells by DNA methylation, and 

forced expression of CXCL14 leads to reduced tumour growth174. Furthermore, human 

melanoma tissues that show little T cell infiltration display active β-catenin signalling175. In 

a genetically engineered mouse melanoma model, β-catenin activation results in poor 

expression of CCL4 — a chemokine that is essential for CD103+ DC migration — and 

subsequently limits DC-mediated effector T cell activation and expansion within the 

tumour175. Another epigenetic repressor, histone deacetylase 1 (HDAC1) can interact with 

the nuclear factor-κB (NF-κB) subunit p65 (also known as RELA) and repress CXCL8 
expression176,177.

Genetic regulation, mainly mutations, can influence chemokine receptor expression and 

function. A point mutation has been identified in CXCR4 (G574A) in a melanoma cell line 

and a colon cancer cell line178. This mutation is functionally active, and the mutant receptor 

signals and traffics in response to CXCL12, but when tumours expressing this mutant 

receptor were allowed to grow in vivo, tumour growth was delayed178. Indirectly, a common 

gene fusion of PAX3 (which encodes paired box 3) and FKHR (which encodes forkhead 

homologue in rhabdomyosarcoma; also known as FOXO1) in rhabdomyosarcoma is 

associated with higher CXCR4 expression179. Transfer of this gene fusion leads to higher 

CXCR4 expression in embryonic rhabdomyosarcoma cells and increases invasion in 
vitro179. Both of these studies indicate the diverse roles of the chemokine receptor CXCR4. 

Thus, tumour-intrinsic oncogenic175 and epigenetic172,173 pathways control chemokine 

expression, and influence immune cell activation in and/or migration into the tumour 

microenvironment.

Both PRC2-mediated epigenetic silencing180 and β-catenin signalling are tumour-intrinsic 

tumorigenic mechanisms, and are associated with cancer EMT and a stem cell-like 

biological phenotype. Interestingly, these tumour-intrinsic mechanisms can regulate 
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chemokine expression and control immune cell infiltration into tumours. Based on having 

either relatively high or low immune cell infiltration, tumours may be immunologically 

classified into ‘hot’ (inflamed) or ‘cold’ (non-inflamed) phenotypes, respectively. Thus, 

oncogenic genetic and epigenetic pathways simultaneously define the biological and 

immunological phenotypes of the tumour, affect tumour progression, and alter spontaneous 

and therapy-induced tumour-specific T cell immunity (FIG. 4). The manipulation of these 

tumour-intrinsic pathways may promote the infiltration of T cells into tumours, alter tumour 

immune phenotype and ultimately lead to tumour regression.

Hypoxia and chemokine expression in tumours

Hypoxia is a general phenomenon in the cancer microenvironment. The transcription factor 

hypoxia-inducible factor 1 (HIF1; which comprises HIF1α and HIF1β) is the central 

mediator of the cellular response to hypoxia181. Hypoxia triggers CXCL12 expression in 

primary human ovarian tumour cells26, fibroblasts182 and haematopoietic stem cells 

(HSCs)183. In the promoter region of the CXCL12 gene, there are two potential HIF1-

binding sites (HBSs) termed HBS1 and HBS2 (REF. 183). The HBS1 region may be 

responsible for the HIF1-dependent induction of CXCL12 synthesis183. Hypoxia also 

promotes CXCR4 expression in TAMs and tumour cells184,185. In renal cell carcinoma, the 

mechanism of CXCR4 upregulation involves mutation of the tumour-suppressor gene VHL 
(which encodes von Hippel–Lindau protein)185. Increased CXCR4 expression and migration 

towards CXCL12 are dependent on HIF1α activation and CXCR4 transcript 

stabilization184,185. As well as inducing the expression of CXCR4 and CXCL12, hypoxia 

can induce CXCR7 expression in rhabdomyosarcoma cells186. In addition, CCL2 also has 

HBSs in its promoter, and hypoxia has been found to induce CCL2 expression in human 

astrocytes187 and CXCL8 expression in ovarian cancer cells188. Thus, hypoxia can affect 

tumour immunity and biology by regulating the expression of several chemokines and 

chemokine receptors.

Metabolic regulation of chemokine expression in the tumour microenvironment

Aerobic glycolysis is a feature of cancer cell metabolism. In aerobic glycolysis, cancer cells 

produce lactic acid, which activates NF-κB and induces CXCL8 expression in vascular 

endothelial cells, resulting in angiogenesis in breast and colon cancer189. In breast cancer 

cells, reactive oxygen species can upregulate CXCL14 expression through the transcription 

factor activator protein 1 (AP-1), thus increasing cell invasion and motility190. Hormones 

can also regulate chemokine expression. In breast cancer cells, oestrogen can upregulate the 

expression of CXCR4 and CXCL12 and downregulate that of CXCR7 (REF. 191). Further 

studies will determine how cancer metabolism affects the expression of different 

chemokines in the tumour microenvironment.

The microbiota and tumour chemokine expression

Different bacteria can negatively and positively influence tumour growth. The microbiota 

and its by- products can modulate the tumour immune response192,193. These bacteria can 

recruit specific immune cell subsets, thus shaping tumour growth. For example, 

Fusobacterium nucleatum accelerates intestinal tumours, in part by increasing the infiltration 

of myeloid cells that suppress T cell activity into the tumours194. The binding of short-chain 
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fatty acids from microorganisms to G protein-coupled receptor 43 (GPR43) leads to 

inflammation resolution in mouse models. GPR43-deficient mice have high levels of 

inflammation and immune cell recruitment, and an exacerbated immune response195. 

Another bacterium, Faecalibacterium prausnitzii, is an anti-inflammatory commensal 

bacterium that decreases in abundance in patients with Crohn’s disease196,197. Its 

metabolites block NF-κB activation and CXCL8 production196,197. Thus, although there is 

no direct evidence of microbiota-induced regulation of chemokine expression in tumours, 

the microbiota and its by-products are presumably involved in tumour immune responses in 

specific types of human cancers such as colon cancer.

Chemokines and cancer immunotherapy

Given that chemokines and their receptors have crucial roles in inflammatory human 

diseases, efforts have been made to target chemokine networks in patients with autoimmune 

diseases and chronic inflammation. Drugs that target CCR5 (namely, maraviroc) and 

CXCR4 (namely, plerixafor; also known as AMD3100 and marketed as Mozobil by 

Genzyme) have been approved for use in HIV infection and for the mobilization of HSCs for 

transplantation, respectively. However, the targeting of chemokines and chemokine receptors 

has so far failed to yield any viable anti-inflammatory drugs. As discussed above, the 

chemokines CCL2, CCL3, CCL5, CXCL8, CXCL9, CXCL10 and CXCL12 are relatively 

well studied in human cancer. Below, we focus on the potential of targeting these 

chemokines and their receptors to promote antitumour immune responses in patients with 

cancer, and we discuss the possibility of combining chemokine-based therapies with current 

cancer immunotherapies.

CXCL9 and CXCL10

Poor tumour infiltration by T cells has been attributed to potent epigenetic silencing of the 

genes encoding the TH1-type chemokines CXCL9 and CXCL10 in tumours172,173. As 

discussed above, these chemokines promote the migration of effector T cells and NK cells 

into tumours. Studies have shown that improved therapeutic responses to cancer 

immunotherapy and chemotherapy are associated with increased levels of TH1-type 

chemokines and increased numbers of effector T cells in the tumour 

microenvironment10,198. Thus, cancer epigenetic reprogramming may remove the epigenetic 

repression of genes encoding TH1-type chemokines, thus promoting effector T cell 

trafficking into the tumour microenvironment and improving the therapeutic efficacy of 

immunotherapy. In support of this, treatment with cancer epigenetic re programming drugs 

— including EZH2 inhibitors, DZNep199, a selective inhibitor of EZH2 methyltransferase 

activity (GSK126)200 or a DNMT inhibitor (5-aza-2′-deoxycytidine) — increases tumour 

TH1-type chemokine production and T cell trafficking into tumours172,173, and augments the 

therapeutic effects of PDL1 blockade and T cell therapy in a preclinical model172. 

Furthermore, treatment with azacitidine upregulates the expression of IFN signature genes in 

several human cancer cell lines201,202. 5-aza-2′-deoxycytidine treatment increases the 

expression of the cancer and germline TAA NY-ESO-1 (also known as cancer/testis antigen 

1) in human ovarian cancer cells203, and promotes chemokine expression and T cell tumour 

trafficking in a mouse ovarian cancer model198. Thus, epigenetic re-programming can de-
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repress the repressed TH1-type chemokine-encoding genes, and promote the expression of 

IFN signature genes and TAAs, and may thus promote T cell infiltration into tumours and 

ultimately potentiate PDL1 and PD1 blockade therapy172,173,198.

CXCL12 and CXCR4

CXCL12–CXCR4 signalling is implicated in immune cell tumour trafficking and tumour 

cell biology. CXCL12–CXCR4 signalling mediates plasmacytoid DC trafficking into 

tumours25 and Treg cell homing to the bone marrow microenvironment41,42, and is involved 

in tumour cell proliferation63, metastasis138 and tumour vascularization26. AMD3100 is a 

CXCR4 antagonist and has been used in human clinical trials for the treatment of HIV 

infection204. The blockade of CXCR4–CXCL12 signalling may reduce tumour 

angiogenesis, invasiveness and tumour-induced immunosuppression. Indeed, anti-CXCR4 

and anti-CXCL12 antibodies each prevented metastasis, reduced tumour weight and 

prevented tumour extravasation in preclinical models138,205–208. Thus, it is tempting to 

speculate that the administration of antagonists of CXCR4–CXCL12 signalling could be 

therapeutically beneficial in combination with current immunotherapies. A clinical trial is 

now underway to evaluate the safety of combinatorial immunotherapy with the CXCR4 

peptide antagonist LY2510924 and the anti-PDL1 antibody durvalumab209.

CXCL8 and CXCR1

CXCL8–CXCR1 signalling is involved in tumour angiogenesis, tumour stemness and 

inflammatory immune cell trafficking into the tumour microenvironment91. Strategies that 

aim to interfere with this chemokine regulatory loop may represent a strategy for targeting 

the cancer microenvironment. Repertaxin (also known as reparixin) is a noncompetitive 

allosteric inhibitor of CXCR1 and CXCR2. Repertaxin was originally developed to block 

CXCL8 activity, and thus reduce tissue damage after myocardial infarction or stroke210. A 

phase I clinical trial has demonstrated that repertaxin is well tolerated in healthy 

volunteers211. Further clinical trials are needed to determine the safety and efficacy of 

repertaxin in combination with current immunotherapies in patients with cancer.

CCL2, CCL3 and CCL5

These chemokines are implicated in macrophage and neutrophil recruitment into the tumour 

microenvironment. CCL5 promotes ovarian cancer stem-like properties101,102. CCL2, CCL3 

and CCL5 may bind to CCR1, CCR2, CCR3 and CCR5. Targeting these chemokine 

receptors may prevent the accumulation of immunosuppressive myeloid cell in tumours. 

Indeed, targeting CCL2, CCL3 or CCL5 signalling inhibits metastasis and angiogenesis in 

mouse models of breast cancer, lung cancer and ovarian cancer66,74,96,101. However, the 

cessation of CCL2 neutralization monotherapy leads to increased metastasis and rapid death 

in mouse models of breast cancer96. Thus, CCL2 blockade may need to be combined with 

other immunotherapies to increase the antitumour response and avoid the potential 

detrimental effect of single-chemokine blockade. For example, CCL2 blockade 

synergistically improves the cancer vaccine response in mouse models of lung cancer and 

mesothelioma212. Macrophage depletion increases the therapeutic efficacy of anti-cytotoxic 

T lymphocyte antigen 4 (CTLA4) and anti-PD1 antibodies in mouse pancreatic cancer 

models213. Given that different subsets of macrophages may be functionally different, 
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clinical studies are needed to determine whether macrophage depletion can yield an 

antitumour response. Indeed, a phase II clinical trial has been conducted using MLN1202, 

an anti-CCR2 monoclonal antibody, in patients with cancer bone metastasis214. In addition, 

Chemocentryx recently initiated a phase Ib trial of a CCR2 antagonist (CCX872) in patients 

with non-resectable pancreatic cancer215. These clinical studies will provide the most-

needed information on the safety and potential therapeutic efficacy of CCR2 signalling 

blockade in patients with cancer.

Concluding remarks

Chemokines and chemokine receptors mediate immune cell trafficking into the tumour 

micro environment. Different immune cell subsets differentially contribute to cancer 

progression and therapy. The genes that encode TH1-type chemokines are repressed by 

epigenetic mechanisms in cancer, and this affects the numbers of antitumour effector 

immune cells that are present within tumours, determines the cancer immune phenotype, and 

shapes the therapeutic efficacy of immune checkpoint blockade, adoptive T cell therapy and 

conventional therapy10,172,173. By contrast, the chemokines associated with the tumour 

trafficking of myeloid cells, Treg cells and TH22 cells can directly and indirectly influence 

the biological phenotype of a tumour (for example, whether it is a stem/EMT-type or non-

stem/EMT-type tumour)30,34,43,73,86. Thus, direct and indirect manipulation of chemokine–

chemokine receptor signalling pathways may reshape the immune and biological phenotypes 

of a tumour in a manner that increases the therapeutic efficacy of immunotherapy. Of note, 

clinical trials of agents that directly target a single chemokine or chemokine receptor have 

not yielded impressive therapeutic efficacy in patients with chronic inflammatory diseases 

such as AIDS, diabetes and rheumatoid arthritis. One reason for this is that chemokines 

generally bind to multiple receptors. These ligands may then activate alternative receptors, 

abrogating the effect of the single antagonist or blocker. Furthermore, therapies that target 

specific chemokines or chemokine receptors can affect the trafficking of different immune 

cell subsets into tumours and alter the biological activities of non-immune cells in the 

tumour microenvironment. Hence, similarly to what is seen in chronic inflammatory 

diseases, a therapeutic strategy of directly targeting a single chemokine or chemokine 

receptor may not achieve a meaningful clinical response. Based on current findings and the 

above discussion, it is predicted that directly targeting both pro-tumour and antitumour 

chemokine– chemokine receptor signalling pathways10,172,173 in combination with other 

immunotherapies could achieve clinical benefits in patients with cancer. Further studies in 

preclinical models and patients are required to bring this combination approach into clinical 

application.
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Glossary

Cancer stem-like cell
A cell that can self-propagate, is less-differentiated and can give rise to other tumour cells. 

These properties enable these cells to be potentially key players in tumour initiation, 

metastasis, and treatment resistance and/or cancer relapse
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Figure 1. Chemokine receptor and ligand pairings
The chemokine receptors and ligands that belong to each of the main chemokine families 

(namely, the C-, CC-, CXC- and CX3C-chemokine families) are shown. Blue and red boxes 

represent chemokine–chemokine receptor interactions that occur in mice and humans, 

respectively, and the non-boxed interactions occur in both humans and mice. Abbreviations 

enclosed in parentheses indicate alternative names for the preceding chemokine or 

chemokine receptor. Question marks indicate that the respective chemokine receptor is 

currently unknown.
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Figure 2. The promotion of tumour immunity by chemokines
Immune cells with antitumour effects — such as CD8+ T cells, T helper 1 (TH1) cells, 

polyfunctional TH17 cells and natural killer (NK) cells — are recruited to the tumour 

microenvironment through chemokine–chemokine receptor signalling pathways. CXC-

chemokine receptor 3 (CXCR3) and its ligands CXC-chemokine ligand 9 (CXCL9) and 

CXCL10 have a key role in driving the trafficking of TH1 cells, CD8+ T cells and NK cells 

into the tumour microenvironment, whereas CC-chemokine ligand 20 (CCL20) signalling 

through CC-chemokine receptor 6 (CCR6) promotes the recruitment of TH17 cells. Antigen-

presenting cells (APCs) such as macrophages and dendritic cells are also recruited into the 

tumour microenvironment, and they can activate and expand the local effector immune cells, 

thereby promoting tumour regression.
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Figure 3. Pro-tumour effects of chemokines
Immune cell populations such as granulocytic and monocytic myeloid-derived suppressor 

cells (MDSCs), regulatory T (Treg) cells, IL-22+CD4+ T helper 22 (TH22) cells, IL-22+ 

innate lymphoid cells (ILCs) and plasmacytoid dendritic cells (pDCs) can promote tumour 

growth. These cells are recruited to the tumour microenvironment in response to different 

chemokines that are expressed in the tumour microenvironment (the relevant receptors and 

ligands are shown). Pro-tumour immune cells may inhibit antitumour immune responses, 

and may also promote and maintain cancer stemness and angiogenesis, leading to cancer 

progression. CCL, CC-chemokine ligand; CCR, CC-chemokine receptor; CXCL, CXC-

chemokine ligand; CXCR, CXC-chemokine receptor.
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Figure 4. The relationship between, and mechanisms that underlie, tumour immune phenotype 
and biological phenotype
Active tumour β-catenin signalling inhibits CC-chemokine ligand 4 (CCL4) expression, and 

limits CD103+ dendritic cell (DC) recruitment and CD8+ T cell activation and expansion. 

The expression of the genes encoding the T helper 1 (TH1)-type chemokines CXC-

chemokine ligand 9 (CXCL9) and CXCL10 is repressed by the histone-lysine N-

methyltransferase enhancer of zeste homologue 2 (EZH2) and DNA methyltransferase 

(DNMT)-mediated epigenetic silencing. Consequently, CD8+ T cells poorly infiltrate the 

tumour, and the tumour is immunologically ‘cold’ (left). High levels of tumour β-catenin, 

EZH2 and DNMTs endow cancer stemness, which can be further promoted and maintained 

by pro-tumour immune cells. Thus, the immunologically cold tumour is biologically prone 

to have a more stem-like phenotype. Reversing this mechanism by epigenetic 

reprogramming and the suppression of β-catenin signalling may make the tumour 

immunologically ‘hot’ and promote the recruitment of effector immune cells with 

antitumour functions (including TH1 cells, natural killer (NK) cells, CD8+ T cells, 

polyfunctional TH17 cells and functional antigen-presenting cells (APCs)), thereby driving 

tumour regression. MDSC, myeloid-derived suppressor cell; PDL1, programmed cell death 

protein 1 ligand 1; Treg cell, regulatory T cell.
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Table 1

Chemokine functions in the tumour microenvironment

Chemokine Effects on immune cell 
trafficking into the 
tumour or bone marrow

Direct effects on 
tumour cells

Indirect effects on tumour cells Refs

Chemokines with pro-tumour roles

CCL2 Recruitment of monocytes, 
NKT cells and monocytic 
MDSCs

Promotes tumour cell 
proliferation, stemness 
and survival

Promotes tumour vascularization, 
and cancer extravasation and 
metastasis

93–97,99,100

CCL3 Recruitment of monocytes 
and macrophages

ND Promotes cancer extravasation 97

CCL5 Recruitment of monocytes 
and macrophages

Drives metastasis Promotes cancer invasion 76,97,103

CCL18 ND Promotes invasion and 
metastasis

ND 105–109

CCL25 ND Promotes 
chemoresistance, and 
tumour invasion and 
metastasis

ND 116–120,122

CXCL8 Recruitment of neutrophils 
and granulocytic MDSCs

Promotes stemness, 
invasion and migration; 
apoptosis; resistance to 
hypoxia; and premature 
senescence

Promotes angiogenesis 126–129,132–135

CXCL12 Recruitment of B cells and 
pDCs; and recruitment of 
Treg cells into the bone 
marrow

Promotes proliferation 
and survival; drives 
invasion and metastasis; 
and promotes stemness

Promotes angiogenesis For CXCR4: 
26,136,139–144,146

For CXCR7: 
148,150,153,154

CXCL14 Recruitment of DCs Promotes invasion and 
motility

ND 190

CXCL17 Recruitment of granulocytic 
MDSCs

ND Promotes angiogenesis 163,164,216

Chemokines with antitumour roles

CXCL8 Recruitment of neutrophils 
and granulocytic MDSCs

Increases the 
immunogenicity of the 
tumour

ND 166

CXCL9 and CXCL10 Recruitment of T cells and 
NK cells

ND Angiogenesis inhibitors 169–171

CXCL14 Recruitment of DCs Inhibits proliferation, 
invasion and metastasis; 
increases apoptosis

ND 158,161,174

CCL, CC-chemokine ligand; CXCL, CXC-chemokine ligand; CXCR, CXC-chemokine receptor; DC, dendritic cell; MDSC, myeloid-derived 
suppressor cell; ND, not defined; NK, natural killer; NKT, natural killer T; pDC, plasmacytoid DC; Treg cell, regulatory T cell.
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