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Abstract

Activation of primordial follicles into the growing pool, selection of the dominant follicle, and its 

eventual ovulation require complex endocrine and metabolic interactions as well as intraovarian 

paracrine signals to coordinate granulosa cell proliferation, theca cell differentiation, and oocyte 

maturation. Early preantral follicle development relies mostly upon mesenchymal-epithelial cell 

interactions, intraovarian paracrine signals, and oocyte-secreted factors, whereas development of 

the antral follicle depends on circulating gonadotropins as well as locally derived regulators. In 

women with polycystic ovary syndrome (PCOS), ovarian hyperandrogenism, hyperinsulinemia 

from insulin resistance, and altered intrafollicular paracrine signaling perturb the activation, 

survival, growth, and selection of follicles, causing accumulation of small antral follicles within 

the periphery of the ovary, giving it a polycystic morphology. Altered adipocyte-ovarian 

interactions further compound these adverse events on follicle development and also can harm the 

oocyte, particularly in the presence of increased adiposity. Finally, endocrine antecedents of PCOS 

occur in female infants born to mothers with PCOS, which suggests that interactions between 

genes and the maternal-fetal hormonal environment may program ovarian function after birth.
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Polycystic ovary syndrome (PCOS) is the most common cause of infertility in women (1), 

so it is essential to understand what endocrinologic, molecular, metabolic, and/or genetic 

factors contribute to this disease and how they alter ovarian follicle development (2–4). 

According to the Rotterdam criteria, PCOS is characterized by two of the following three 

features: [1] clinical or biochemical hyperandrogenism, [2] oligoanovulation, and [3] 

polycystic ovaries (PCO), excluding other endocrinopathies (5). Patients with PCOS also 

often present with elevated serum levels of luteinizing hormone (LH) and insulin. Although 

primordial follicles in the ovaries of PCOS patients leave the resting pool, most arrest at the 

small antral stage preceding dominant follicle selection, giving rise to many small follicles 
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forming a ring around the ovary as a characteristic of PCO. Abnormal follicle growth in 

PCOS accompanies elevated levels of LH, insulin, and androgens; altered expression of 

transforming growth factor-β (TGF-β) family members; and comparatively low levels of 

follicle-stimulating hormone (FSH) (4, 6). Studies have indicated that the expression and 

impact of these factors may vary in PCOS patients by phenotype and may be further 

influenced by the degree of adiposity (7–10).

This review integrates what is currently known about normal follicular development with 

specific events that are altered in the follicles of PCOS patients. Mechanisms by which LH 

hypersecretion, hyperandrogenism, hyperinsulinemia, and TGF-β-related events alter 

ovarian follicle development are discussed, along with the potential roles of the insulin-like 

growth factor-I (IGF-I)/AKT/Forehead BoxO (FOXO) pathway and WNT signaling in these 

events. Due to space limitations, not all aspects of follicle development are covered in depth.

PREANTRAL FOLLICLE DEVELOPMENT

Overview

Primordial follicles are recruited into a cohort of growing follicles, from which one antral 

follicle is selected to become dominant while the others undergo atresia. Each primordial 

follicle contains an oocyte arrested at the diplotene stage of prophase one, surrounded by 

squamous granulose cells. With follicle growth, the oocyte begins to synthesize messenger 

ribonucleic acid (mRNA), while squamous granulosa cells enlarge into a complete single 

layer of cuboidal granulosa cells, forming the primary follicle (11, 12).

The Primordial to Primary Transition

Primordial follicles can remain in the quiescent “resting” stage for many years. The precise 

signals that initiate the transition of a primordial follicle to a growing primary follicle are 

incompletely understood but are independent of gonadotropins (13). Rather, factors derived 

from oocyte and granulosa cells activate primordial follicles or inhibit them (12, 14). In the 

oocyte, the PI3K pathway is critically involved in maintaining oocyte quiescence. 

Disruption of Pten, Foxo3, or other PI3K pathway genes in mice leads to oocyte activation, 

global transition of primordial follicles into the growing pool, and premature ovarian failure 

(15–18). Conversely, granulosa cell antimüllerian hormone (AMH) production, beginning in 

primary follicles, acts to reduce the number of primordial follicles leaving the resting pool 

(19–22). Although granulosa cell AMH produced in response to oocyte-derived factors (23, 

24) inhibits primordial follicle growth, disruption of Amh gene expression does not cause a 

reciprocal activation of all primordial follicles, implying that other factors, including 

granulosa cell-derived kit ligand (KL) and its receptor c-kit on oocytes (11, 12, 25), also 

contribute to the initiation of primordial follicle development and oocyte growth (25–27). 

Whether this initial transition process is altered in the ovaries of PCOS patients remains 

unclear.

Formation of Primary Follicles

Once follicles leave the primordial stage to enter the growing pool, specific changes in the 

oocyte, granulosa cell, and theca cell functions occur, including [1] transition of granulosa 
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cells from a flattened fibroblastic-like morphology to a cuboidal shape, [2] appearance of the 

zona pellucida, and eventually [3] formation of the theca cell layer external to granulosa 

cells and resting upon the basal lamina (Fig. 1).

Formation of the theca cell layer in primary follicles critically depends on oocyte-derived 

growth differentiation factor 9 (GDF9) (28, 29) and the granulosa-derived factor KL (11, 

12). In addition, GDF9 enhances androgen production in cultured small follicles by 

regulating theca cell androgen production either directly or indirectly (25, 30–32). Theca 

cell-derived androgens, in turn, serve essential regulatory roles by increasing the expression 

of FSH receptors (Fshr) in vivo and in vitro (33, 34). In primates, testosterone 

administration to adult female rhesus monkeys increases the number of growing preantral 

and small antral follicles (35, 36); up-regulates mRNA expression of FSH receptors, IGF-I 

receptors, and IGF-I in proliferating granulosa cells (35, 37, 38), and enhances IGF-I and 

IGF-I receptor mRNA expression in primordial follicle oocytes (37). These androgen 

actions likely occur via the androgen receptor (AR), which is present in human and mouse 

primary follicles (39, 40) and if disrupted in mice reduces Fshr and Kitl expression, impairs 

folliculogenesis, and induces premature ovarian failure (41–43). Moreover, targeted loss of 

AR signaling exclusively in murine granulosa cells of preantral and antral follicles also 

reduces fecundity, induces follicular atresia, and impairs oocyte fertilization as well as 

preimplantation embryogenesis (44, 45).

Receptors for LH (LHCGR) are present in theca (but not granulosa) cells of small secondary 

follicles (but not primordial follicles), allowing LH-stimulated androgen production in 

follicles at this early stage (46). The factors that induce LH receptors are unknown but could 

be GDF9 or other oocyte- or granulosa cell–derived factors (IGF-I or IGF-II?), retinoic acid 

signaling (47), or other yet to be identified factors.

Insulin also acts through its own receptors on theca cells, stroma, granulosa, and oocytes to 

promote the primordial to primary follicle transition (48, 49). This is important for many 

women with PCOS who have hyperinsulinemia from insulin resistance beyond that 

predicted by body mass index (BMI) alone, with 50% to 70% of such women demonstrating 

insulin resistance (50). Hyperinsulinemia in PCOS results from abnormal postreceptor signal 

transduction, which reduces insulin-mediated glucose uptake (9) without affecting 

steroidogenesis (51, 52). Thus, insulin excess stimulates theca cell CYP17a activity (53), 

amplifies LH- and IGF-I-stimulated androgen production (54, 55), elevates serum free 

testosterone levels through decreased hepatic sex hormone-binding globulin (SHBG) 

production, and enhances serum IGF-I bioactivity through suppressed IGF-binding protein 

(IGFBP) production, thereby perpetuating ovarian hyperandrogenism (52). High insulin 

levels could theoretically act through IGF-I receptors to exert some of these effects; insulin 

stimulation of human granulosa cell steroidogenesis, however, is mostly mediated through 

its own receptor because this action is inhibited by blocking with antibody to the insulin 

receptor, but not to the IGF-I-receptor (56). Insulin (at high levels) may also enhance GDF9-

mediated increases in androgen production in primary and small follicles (30).

Given this background, hyperandrogenism, hyperinsulinemia, and/or LH hypersecretion in 

PCOS patients would be expected to stimulate early follicle development, increase Fshr 
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expression prematurely or to an exaggerated level, and render granulosa cells prematurely 

more responsive to FSH, perhaps through enhanced FSH-stimulated cyclic adenosine 3′ :5′ 

monophosphate (cAMP) production (57, 58). Conversely, the ability of AMH to decrease 

the expression of Fshr and the response of granulosa cells to FSH (59) would be expected to 

blunt the effects of FSH, at least temporarily, in early growing follicles but not necessarily in 

PCOS follicles (as will be discussed).

In support of this, in vitro studies of PCOS theca cells show intrinsically increased androgen 

biosynthesis and augmented expression of several steroidogenic enzymes (60, 61), 

presumably from the enhancing effects of the retinoic acid pathway (47) and dysregulation 

of theca cell mitogen activated protein kinase signaling (62). However, androgen production 

has not been established for normal or PCOS primordial or primary follicles, and reports 

using in situ hybridization indicate that the ovaries of anovulatory women with PCOS have 

increased primary follicle growth with reduced oocyte GDF-9 mRNA (63, 64). Lower levels 

of GDF9 in PCOS follicles at this stage might be expected to reduce theca cell organization 

or androgen production, but this has not yet been investigated.

Insulin may compensate for reduced GDF9. Furthermore, histologic examination of human 

ovaries from women with PCOS has found an enhanced number of growing primary 

follicles and a reciprocally decreased proportion of primordial follicles, independent of 

ovulatory status or atresia (65, 66). This may be related to the lower level of AMH (but not 

necessarily AMHR2 levels) that is observed in primordial and transitional follicles in 

anovulatory PCOS ovaries (39, 67). Primary PCOS follicles also show increased granulosa 

cell proliferation and enhanced oocyte growth (63), with decreased atresia of preantral 

PCOS follicles grown in vitro, possibly from enhanced survival (68). However, the roles of 

GDF9, AMH, and AMHRII during the primordial to primary transition in normal and PCOS 

follicles remain to be clearly defined with a larger number of samples, especially for GDF9 

and AMHR2 expression, and functional data. Studies in nonhuman primates and other 

species will be especially important in this regard.

The Primary to Secondary Follicle Transition

Secondary follicles develop over several months, acquire additional steroid receptors, and 

become physiologically coupled by gap junctions (Fig. 2 and Fig. 3) (12, 69). As these 

secondary follicles grow, they become more dependent on gonadotropins, likely because of 

the spatial changes within the follicle and receptor levels/activity. As granulosa proliferate 

and an antrum begins to form, the granulosa cells and the theca cells become spatially 

distanced from the oocyte and its secreted factors. Thus, at the secondary stage, LH may 

become more important than GDF9 in promoting theca androgen biosynthesis and affecting 

granulosa cell responsiveness to FSH relative to AMH.

Little is known about secondary follicle development in humans due to the scarcity of this 

follicle stage in archived ovarian tissue (65, 68). Nevertheless, IGF-II mediates FSH-

induced growth of cultured human preantral follicles (70). In PCOS, therefore, when LH 

and/or androgens are elevated, an increased response of granulosa cells to FSH may lead to 

FSH-stimulated expression of aromatase (Cyp19) and other genes along with additional 

developmental changes (46, 71) that promote FSH action despite the repressor effects of 
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AMH, particularly in the presence of insulin excess. This may allow FSH and AMH to 

functionally coexist.

The IGFI/II/FOXO Pathway

Insulin-like growth factor-I or IGF-II (in humans) is expressed in the granulosa cells of 

small growing follicles and can enhance FSH-mediated granulosa cell differentiation. This is 

related to activation of the PI3K and ERK1/2 pathways and to regulation of Forehead BoxO 

transcription factors. Both FOXO1 and to a lesser extent FOXO3 are highly expressed in 

granulosa cells of mouse, rat, nonhuman primates, and humans (72–75). These transcription 

factors have been evolutionarily conserved from Caenorhabditis elegans to man, are 

downstream of AKT in the PI3K pathway, and impact reproductive success (75–77). 

Therefore, FOXO1/3 are targets of both IGF-I/IGF-II and presumably the insulin pathways 

in granulosa cells.

Studies have shown that Foxo1/3 mutant mice are completely infertile and exhibit impaired 

follicular development as well as impaired apoptosis (77). Detailed molecular analyses of 

the mutant ovaries in these mice document that FOXO1/3 interact with activin to control 

genes that promote follicle growth and interact with bone morphogenetic protein-2 (BMP2) 

to direct apoptosis. What controls this switch remains to be determined but is obviously 

critical for determining the fate of follicles, of which 99% undergo apoptosis.

The roles of FOXO1/3, IGF-I, and IGF-II in preantral PCOS follicles have not been fully 

explored, although increased circulating IGF-I bioavailability in women with PCOS could 

have a permissive effect (78). Because IGF-I receptors are present on mouse oocytes, this 

signaling pathway may impact oocyte quality as well. In vitro studies using synthetic IGF-I 

analog with low IGFBP affinity show that an inappropriate increase in IGF bioavailability is 

detrimental to bovine oocytes of preantral follicles (79).

The WNT/Frizzled Pathway

The WNT/Frizzled pathway is essential for specification of the mouse and human 

embryonic ovary and is crucial for the transition of secondary follicles to the antral stage 

(80, 81). Its actions, due in part to activation of β-catenin (CTNNB1), include enhancement 

in gene expressions of Fshr and aromatase (Cyp19a1) (80, 82, 83). The actions of WNT4 

are tightly linked to those of FOXL2, a transcription factor that also is essential for 

embryonic specification of the ovary and suppresses steroidogenic gene expression while 

promoting activin expression (73, 84). Microarray data show that WNT signaling is 

repressed in PCOS theca cells (85), with several genes of the WNT signaling pathway 

dysregulated in ovaries of both PCOS patients and androgen-treated female-to-male 

transsexuals, implicating an androgen influence on this pathway (86). However, the 

expression levels and functions of WNT4/5A in granulosa cells of normal and PCOS 

patients remain to be determined.
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ANTRAL FOLLICLE DEVELOPMENT

Overview

Growth of follicles from the primordial to preovulatory stage in women takes approximately 

6 months, with the final 2 weeks of antral follicular development depending on changing 

circulating gonadotropin levels (87). Antral follicle development is characterized by slower 

oocyte growth (maximum diameter 140 µm), extracellular fluid formation, granulosa cell 

differentiation into mural and cumulus phenotypes, and selection of a dominant follicle (11, 

12). Early antral follicles in humans are responsive to FSH (12, 69). In follicles 6–8 mm in 

size, granulosa cells begin to express CYP19A1 (aromatase) (88), allowing theca-derived 

androgens to undergo aromatization to estrogens by FSH-stimulated granulosa cells. The 

LH-stimulated thecal cell androstenedione production via CYP17A1 is enhanced by 

granulosa cell-derived paracrine factors (89). These paracrine factors include inhibins, IGF-

I, and IGF-II as well as retinoic acid, which stimulate thecal cell androgen production; 

conversely, follistatin binds to activin to inhibit its androgen-suppressing effect (90).

Progressive growth of the antral follicle coincides with gradual acquisition of oocyte 

developmental competence, defined as the ability of the oocyte to complete meiosis and 

undergo fertilization, embryogenesis, and term development (6). Oocytes from healthy large 

antral follicles, exposed to an appropriately timed progression of changes in the 

intrafollicular microenvironment, are more likely to fertilize and undergo successful 

embryogenesis than similarly matured oocytes from small antral follicles (6).

Hyperandrogenism

Elevated androgens appear to increase pituitary LH pulsatility and secretion, leading to 

enhanced theca cell stimulation through reduced hypothalamic sensitivity to steroid 

feedback, which can be established in utero or postnatally (91–95). Increased androgen 

biosynthesis appears to enhance the expression of FSH receptor, leading to an increased 

estradiol (E2) responsiveness of PCOS granulosa cells to FSH in vitro (96, 97). Despite this 

phenomenon, follicular arrest in PCOS patients occurs at the stage when granulosa cells 

normally begin to express aromatase and secrete E2 (6, 88). Androgen excess together with 

premature differentiation of granulosa cells overexpressing LH receptor preempts FSH 

action on E2 production in favor of progesterone synthesis (56, 98–101), perhaps in 

combination with a local inhibitor of FSH action (96). Elevated expression of LH receptor 

mRNA and genes associated with differentiation, such as STAR and RUNX2, have also been 

reported in the cumulus cells of lean PCOS patients but not of obese PCOS patients (102), 

indicating that altered cumulus cell functions likely impact oocyte quality and maturation in 

this context.

Androstenedione biosynthesis and the steroidogenic enzyme CYP17A1 are elevated in 

PCOS theca (60, 61, 96). As a result, serum androstenedione levels positively correlate with 

antral follicle number in normal women and those with PCOS (103, 104), while 

antiandrogen therapy to PCOS patients improves PCO morphology (105). Small PCOS 

follicles also have elevated 5α-reductase activity, which elevates 5a–reduced androgen 

levels to concentrations capable of inhibiting, rather than increasing, granulosa cell 
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aromatase activity in vitro (58, 106, 107). Consistent with this finding, dihydrotestosterone 

(DHT) impairs gonadotropin-stimulated E2 secretion in female rhesus monkeys (108) and 

can inhibit gran-ulosa cell proliferation in rodents in certain contexts (109). Clearly the 

effects of DHT are dose and concentration dependent, and the beneficial effects of 

androgens can support follicle development (110) in part by regulating the FSH receptor 

(33, 34).

High androgens in small antral PCOS follicles may also decrease rates of in vitro 

maturation, fertilization, and embryo development compared with immature oocytes from 

normal women (111) by interfering with E2-mediated effects that promote oocyte 

cytoplasmic maturation (112–114).

Hyperinsulinemia

Insulin can enhance granulosa cell responsiveness to LH (56, 98), implying that premature 

follicle luteinization may occur in hyperinsulinemic PCOS patients (99). As evidence, 

cultured granulosa cells from small PCOS follicles exhibit premature responsiveness to LH 

due to early expression of LH receptors (3, 99, 100), leading to enhanced progesterone 

production (101). Such premature follicle luteinization facilitated by insulin excess may also 

affect human oocyte development as well because insulin receptors are present in oocytes 

(48). As an example, insulin together with FSH up-regulates LH receptor expression in 

cultured mouse cumulus-oocyte complexes and reduces blastocyst development (115). One 

caveat of these studies, however, is the extremely high levels of insulin that were used.

Hyperinsulinemic PCOS patients undergoing gonadotropin therapy develop a larger number 

of follicles between 12 and 16 mm in diameter (116). Of relevance, mRNA expressions of 

insulin receptor (INSR) and specific fatty acid binding proteins (FABP) are elevated in 

cumulus cells of obese PCOS compared to lean PCOS patients (102) and the INSR also may 

be elevated in oocytes of PCOS versus non-PCOS patients (205). These distinctly different 

patterns of insulin-related gene expression suggest that the cumulus cells and oocytes of 

obese PCOS patients have different responses to insulin than those of lean PCOS patients. 

Because insulin can bind directly to oocytes, a direct effect of insulin excess may alter 

oocyte quality (117).

Increased Vascular Endothelial Growth Factor (VEGF)

Vascular endothelial growth factor A (VEGF-A) and its related protein members (VEGF-B, 

VEGF-C, and VEGF-D) of the platelet-derived growth factor family are potent cytokines 

that promote angiogenesis and vascular permeability (118). Vascular endothelial growth 

factor gene expression occurs in normal and PCOS ovaries (119) and increases after human 

chorionic gonadotropin (hCG) administration in human luteinized granulosa cells (120, 

121), elevating VEGF protein levels in blood and follicles as well as in peritoneal fluids of 

women at risk of or with ovarian hyperstimulation syndrome (OHSS) (121–123). Ovarian 

VEGF synthesis and vascular blood flow as well as serum VEGF levels are increased in 

PCOS patients (124–126). Consequently, enhanced VEGF-mediated vascular permeability 

and fluid extravasation can occur in PCOS patients undergoing controlled ovarian 

stimulation, increasing their risk of developing the complications of OHSS, including 

Dumesic and Richards Page 7

Fertil Steril. Author manuscript; available in PMC 2015 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ascites, intravascular fluid depletion, hemoconcentration, hypercoagulation, hypotension, 

pleural effusion, hematologic and liver dysfunction, renal failure, and respiratory distress 

(127). This increased risk of OHSS also is linked with hyperinsulinemia because in vitro 

VEGF-A production by luteinized granulosa cells of PCOS patients compared with normal 

women is preferentially enhanced by synergistic interactions between LH/hCG and insulin 

(128). Whether other factors, including angiopoietins, further alter the ovarian vascular 

network in PCOS, as they do in the DHEA-treated rodent model of PCOS (129), remains to 

be determined.

Increased AMH Production

Antimüullerian hormone is normally produced by the granulosa cells of growing follicles 

(67, 130), so low AMH levels occur in primordial and primary follicles, increase to maximal 

levels in large preantral and small antral stages, and then decline in granulosa cells but not 

cumulus cells during final follicular maturation (67, 131–133). As a marker of growing 

follicles in normal women undergoing in vitro fertilization (IVF), serum AMH levels 

positively correlate with the number of antral follicles, the serum androgen concentration, 

and the oocytes retrieved, and negatively correlate with amount of recombinant human FSH 

administered (132, 134). Intrafollicular AMH levels also negatively correlate with FSH 

levels in the follicles of normal women undergoing IVF (135).

Women with PCOS have elevated circulating and intrafollicular AMH levels related to an 

increase in the number of follicles as well as from hypersecretion by granulosa cells 

themselves (59, 136–139). With AMH production in anovulatory PCOS significantly higher 

on the basis of the granulosa cell per se, raised serum AMH levels in PCOS patients 

represent both enhanced production by granulosa cells and an increased number of follicles. 

Consequently, serum AMH levels are elevated in normoandrogenic women with PCO 

undergoing ovarian stimulation for IVF, and are further increased in hyperandrogenic 

women with PCO, independent of antral follicle number (133). Some investigators have 

suggested that serum AMH levels (>35 pmol/L, or >5 ng/mL) may serve as a surrogate 

marker of PCOS, although insufficient data exist regarding the ability of circulating AMH 

determinations to discriminate PCOS phenotypes by patient age (140).

An inverse relationship between serum AMH and E2 levels in PCOS agrees with the ability 

of AMH to decrease FSH receptor mRNA expression and impair FSH-induced aromatase 

activity in vitro (59, 138, 139, 141). However, other data show that mRNA levels for Amh, 

Fshr, and Ar are all higher in small and large follicles obtained from hormone-stimulated 

PCOS patients compared with those from control patients (142). These results indicate that 

in PCOS antral follicles the inhibitory effects of AMH are reduced/altered. The question is 

why? The possible explanations are multiple and need to be resolved. For example, follicle 

development may differ among women, with lean PCOS patients exhibiting follicles at a 

more differentiated stage and obese patients having follicles at a less differentiated stage 

(see Fig. 2). Alternatively, androgens that enhance FSH-receptor expression (33) when 

combined with the mitogenic actions of growth factors (i.e., LH, epidermal growth factor, 

TGF-β, IGF-I, or insulin) on PCOS granulosa cells (6, 12, 48) may overcome AMH 

inhibition of FSH-dependent aromatase activity. In light of these considerations, serum 
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AMH and LH levels are positively linked in severe PCOS (143, 144), with AMH secretion 

by cultured PCOS granulosa cells enhanced by LH (136), perhaps from premature 

differentiation due to early expression of LH receptors (3, 99, 100). Collectively, serum 

AMH concentrations in PCOS are [1] positively predicted by LH and testosterone levels as 

well as antral follicle number, [2] variably related to Fshr expression or action, [3] 

negatively predicted by BMI (144), and [4] variably reduced by weight loss (145, 146) or 

metformin (134, 147), suggesting complex interactions between LH, androgen, and insulin 

with ovarian function in obese women with PCOS.

Inhibins, Activins, and Follistatin

Granulosa cell-derived inhibins and activins belong to the TGF-β superfamily. Follistatin 

binds activin with high affinity to inhibit its action (148). In addition, FSH increases activins 

and inhibin, which in turn regulate granulosa cell, theca cell, and pituitary Fshb cell 

functions (29, 84).

Inhibin A occurs in follicles as small as 6.5 mm and increases in parallel with α-subunit and 

βA-subunit mRNA expression during antral follicle growth (149, 150). Inhibin A suppresses 

FSH synthesis by inhibiting Fshb gene transcription (151) and enhances LH-stimulated 

androgen biosynthesis (152). In contrast, intrafollicular inhibin B levels do not necessarily 

increase, nor does its βB-subunit mRNA expression vary, by follicle size (149, 150). Activin 

promotes follicle growth by stimulating granulosa cell proliferation while delaying 

luteinization, increasing granulosa cell FSH receptor expression and E2 synthesis (i.e., 

enhanced FSH-induced Cyp19, Ccnd2, and Inha and other genes) and decreasing androgen 

production (148, 153). Activin actions are balanced by bone morphogenetic proteins (BMPs) 

within the ovary, such as BMP6 and BMP15 (oocyte), BMP4 (theca), and BMP2 (apoptotic 

granulosa cells) (84, 154, 155). Collectively, activins promote follicular development by 

enhancing granulosa cell responsiveness to FSH and by suppressing androgen synthesis, 

while inhibins produced by the dominant follicle stimulate theca cell androgen production 

(89, 148–150).

Inhibin α-subunit and βA-subunit mRNA levels are reduced in granulosa cells of small 

PCOS follicles (156). Inhibin A and B concentrations also are decreased in some, but not all, 

small PCOS follicles, despite normal amounts of activin and follistatin unbound to activin 

(150, 157). Although exogenous FSH stimulates the growth of PCOS follicles, 

intrafollicular inhibin A levels in PCOS patients receiving gonadotropin-releasing hormone 

(GnRH) analog/gonadotropin therapy for IVF remain reduced (158). On the other hand, 

serum inhibin B levels arising from the multiple small follicles are elevated in PCOS 

patients (159) and are suppressed by exogenous hCG and endogenous insulin (160), linking 

defective inhibin biosynthesis with follicular arrest, likely by reducing FSH levels (151).

High follistatin and low activin A levels also have been reported in the circulation of some 

PCOS patients (161, 162). Follistatin levels in small human antral follicles, however, are 10-

fold greater than those of activin A levels, which brings into question the role of activin A 

bioactivity in these follicles (163). Thus, the overall impact of the activin and inhibin 

pathways on PCOS remains unclear.
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Adipocyte-Ovarian Interactions

Adiposity-dependent insulin resistance, although not necessarily intrinsic to PCOS, has 

become inextricably linked with the syndrome (164). Greater total and abdominal obesity as 

well as insulin resistance, menstrual irregularity, and hyperandrogenism occur in women 

with classic PCOS, while weight loss in obese women with PCOS lowers circulating LH, 

androgen, and insulin levels, thereby improving hirsutism and menstrual and ovulatory 

dysfunction as well as dyslipidemia (4, 165–169).

In addition to obesity, insulin resistance in PCOS is greater than that predicted by BMI, with 

40% to 50% of women with PCOS being nonobese (170). Nevertheless, adipose function is 

important because adipose tissue secretes many factors that not only regulate adipocytes, 

macrophages, and pluripotential cells but also likely alter ovarian function in PCOS (171, 

172). These factors may act indirectly or directly on granulosa cells (i.e., IL6, leptin, 

adiponectin) or cumulus cells and oocytes (leptin, adiponectin) (173). Adiponectin has many 

functions (174), including its ability to promote oocyte maturation and blastocyst formation 

(175), and is reduced in the circulation of women with PCOS (176), together with tumor 

necrosis factor-α-induced dysregulation of adiponectin secretion by PCOS adipocytes in 

vitro (177). In addition, leptin impairs FSH-stimulated steroidogenesis in human granulosa 

cells, thereby reducing ovarian responsiveness to FSH (178–181). Obesity also lowers LH 

pulse amplitude and alters LH pharmacokinetic structure (182, 183), contributing to reduced 

serum LH levels in obese women with PCOS (184, 185), who may be more susceptible to 

the modulatory effects of insulin excess than LH.

THE DIFFERENTIATED PREOVULATORY FOLLICLE

Overview

The hallmarks of normal preovulatory follicles are acquisition of LH receptors on mural 

granulosa cells, elevated expression of aromatase (Cyp19a1) with increased E2 production, 

and markedly enhanced responsiveness of granulosa cells to FSH and LH via increased 

cAMP production (Fig. 4) (186–189). Only preovulatory follicles ovulate in response to the 

LH surge, and only preovulatory follicles express high levels of LH receptor in granulosa 

cells, a response mediated by the coordinate actions of FSH and E2 or FSH and androgens 

(187).

With the midcycle LH surge, the preovulatory follicle shifts steroidogenesis from androgen 

and estrogen to progesterone production (87). Critical events induced in granulosa cells by 

the LH surge depend on induction of epidermal growth factor-like factors (amphiregulin, 

epiregulin, and β-cellulin) (190, 191), which activate the epidermal growth factor receptor, 

leading to activation of RAS and the MEK/MAPK1/3 (ERK1/2) pathway. This pathway is 

essential for initiation of meiosis, cumulus cell oocyte complex expansion, and follicle 

rupture (190–192). As a result, bidirectional cumulus-cell–oocyte signaling through cGMP 

(193–196) and gap junctions (197, 198) is reduced to permit the oocyte to undergo germinal 

vesicle breakdown and produce a haploid metaphase II oocyte (i.e., nuclear maturation) 

capable of cytoplasmic maturation, fertilization, and initial embryonic development (199–

202).
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Oocyte Developmental Competence

Terminally differentiated follicles of classic PCOS patients undergoing ovarian stimulation 

for IVF remain hyperandrogenic (203, 204) and contain normal appearing metaphase II 

oocytes with distinctly abnormal gene expression profiles (205) involving signal 

transduction, cell metabolism, DNA transcription, and RNA processing. These genes often 

contain promoter sequences with putative binding sites for androgen receptor, peroxisome 

proliferating receptor-γ, and/or peroxisome proliferating receptor γ-retinoid × receptor, 

linking hyperandrogenism with insulin resistance in the developmental fate of the oocyte. 

With androgen and insulin levels in the follicles of IVF patients determined by PCOS and 

BMI, respectively (203, 206), obese PCOS patients experience a high miscarriage rate after 

transfer of normal appearing embryos into a surrogate uterus (207).

Impaired oocyte developmental competence, however, is not a universal finding in PCOS, 

and it is related to many factors (207–213). For example, impaired oocyte competence has 

been linked with elevated follicle fluid levels of tumor necrosis factor-α (214) and 

interleukins (215), whereas other adipokines have a positive action on cumulus-oocyte 

functions (173, 175). This constellation of findings may involve ovarian cell lipotoxicity, as 

shown in mice fed a high-fat diet, whereby poor oocyte quality is associated with increased 

lipid content and reduced mitochondrial membrane potential, cumulus-oocyte complexes 

with increased gene expression of endoplasmic reticulum stress markers, increased 

granulosa and cumulus cell apoptosis, and abnormal embryogenesis (168, 216–220). The 

degree to which ovarian cell lipotoxicity contributes to impaired oocyte developmental 

competence in women with PCOS remains to be determined.

Ovarian Aging

Anovulatory women with PCOS can resume ovulation as serum AMH and androgen levels 

diminish with age (221–225). Despite an age-related decline in AMH, serum AMH levels 

remain twofold to threefold higher in women with PCOS compared with normal women in 

the fourth decade of life, predicting an estimated delay in menopause of about 2 years (134, 

226, 227). Whether delayed ovarian aging in PCOS is biologically relevant is unclear, 

although PCOS patients undergoing ovarian stimulation for IVF between the ages of 22 and 

41 years do not exhibit the reduced number of oocytes retrieved and live-birth rates typical 

of IVF patients of similar age with tubal factor infertility (228). Whether prolonged survival 

of PCOS follicles in vivo, despite increased primordial follicle recruitment, accounts for a 

larger follicle pool throughout reproductive life remains to be established (68).

ENDOCRINE ANTECEDENTS TO PCOS

Some evidence indicates that PCOS has been evolutionarily conserved and may have a 

genetic basis (4). In addition, infant girls born to mothers with PCOS exhibit overproduction 

of AMH, which persists into prepubertal life (229) and is variably improved, along with 

exaggerated E2 responsiveness to leuprolide administration when their mothers received 

metformin during pregnancy, particularly beginning at conception (230, 231). Increased 

ovarian volume and hyperinsulinemia also occur in the prepubertal daughters of mothers 

with PCOS, accompanied by hyperandrogenism later in puberty (232, 233).
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These data also suggest that epigenetic changes in fetal life may impact the developmental 

origins of PCOS, assuming a critical time interval of fetal susceptibility beginning in 

midgestation when developmental programming occurs (91, 234). In humans, monkeys, and 

sheep, species characterized by ovarian follicular differentiation by birth, experimentally 

induced prenatal testosterone excess programs permanent PCOS-like phenotypes, including 

multifollicular ovaries (92, 234–237). This agrees with an increased prevalence of PCOS in 

women with classic congenital adrenal hyperplasia and congenital adrenal virilizing tumors 

(2, 238, 239). Such prenatal testosterone treatment in rhesus monkeys and sheep induces 

maternal glucose intolerance, causing transient hyperinsulinemia and decreased activin A 

availability in their respective female fetuses, which could affect ovarian steroidogenesis, 

follicular proliferation, and germ cell survival in utero (240–243). Because maternal 

androgen in normal pregnancy does not usually program PCOS in offspring due to placental 

aromatization (244), a plausible hypothesis for transgenerational programing of ovarian 

function is that metabolic disorders of pregnancy, including PCOS, induce androgen 

overproduction by the midgestational human fetal ovary, which reprograms ovarian function 

after birth in susceptible female offspring (4, 91).

FUTURE DIRECTIONS

Although PCOS is the leading cause of anovulatory infertility in women (1), the endocrine 

and molecular events that control this disease remain to be fully understood. With obesity as 

one of the fastest-growing medical problems worldwide,itiscrucial to understand how PCOS 

and obesity interact to disrupt the intrafollicular environment and oocyte development. Lean 

and obese PCOS patients likely represent different ends in a continuum of reproductive 

dysfunction that requires these two types of PCOS patients to be analyzed separately.

In lean PCOS patients, LH hypersecretion and ovarian hyperandrogenism appear to be the 

primary drivers of altered folliculogenesis, with insulin enhancing gonadotropin actions on 

ovarian steroidogenesis and granulosa cell differentiation (see Fig. 2). In obese PCOS 

patients, metabolic factors such as glucose-insulin homeostasis, adipogenic dysfunction, and 

possibly lipotoxicity may be more important than LH as primary drivers of altered 

folliculogenesis (see Fig. 3). Whereas loss of weight can restore ovulation and fertility in 

many obese PCOS patients, this is not true of the lean PCOS patients, in whom ovulation 

induction is necessary.

In lean and obese PCOS patients alike, we need to identify androgen target genes in all cell 

types of the human ovary. Is the FSH receptor gene the primary androgen target or are there 

more? Does testosterone, acting as an androgen or through aromatization, promote follicle 

survival, as it does for mouse and rhesus preantral follicles in vitro (40, 245, 246)? We also 

need to know the critical insulin target genes in these same ovarian cell types, using in vitro 

models whereby physiologic and pathophysiologic rather than pharmacologic amounts of 

insulin are used. Although high insulin levels might act through IGF-I receptors in follicular 

cells to exert some effects, too many in vitro studies have used 5–10 mg/mL of insulin, 

which are levels that far exceed the physiologic limit and therefore preclude meaningful 

interpretations.
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In lean PCOS patients, we need to understand what controls the persistently elevated 

expression of intrafollicular AMH and whether it contributes to ovarian dysfunction, follicle 

survival, and impaired oocyte quality (247). Serum levels of LH and AMH are positively 

correlated in PCOS patients (144), agreeing with the ability of LH to stimulate AMH 

production by cultured PCOS granulosa cells (136). That such PCOS granulosa cells secrete 

AMH in response to LH implies the presence of LH receptors in these prematurely 

differentiated cells and further suggests that AMH overproduction may be under the 

tripartite control of LH, androgen, and insulin. However, AMH expression can also be 

regulated by BMPs (human), activin (mouse), FSH, and the FoxoBoxO transcription factors 

(77, 248), implicating SMADs and FOXOs as well as cAMP in regulating transcription of 

the AMH promoter (249). The AMH promoter contains orphan nuclear receptor (SF1 or 

LRH1) response elements and putative GATA and AP1 binding sites (249). Transcription 

factors, especially LRH1 and GATA4, are highly expressed in granulosa cells of growing 

follicles (75, 250, 251) and impact follicle development (252, 253), potentially interacting 

with FOXO1 or SMADs to regulate AMH expression. Increased phosphorylation of LRH1 

is likely, given the high levels of LH and insulin that can activate the mitogen-activated 

protein kinase (MAPK) pathway (192). Estradiol has also been implicated in controlling the 

responsiveness of the AMH promoter to FSH (254). Do potential regulatory loops between 

activin, AMH, and FSH (or LH) exist in PCOS granulosa cells, and, if so, does it reflect 

higher levels of FSH receptor (induced by androgens), predict AMH or E2 responsiveness to 

FSH in vitro (96, 136), or interact with other inflammatory, adipogenic, or other metabolic 

factors?

Equally important are the regulatory mechanisms governing bidirectional cumulus cell-

oocyte signaling. From an “oocentric” point of view, the ability of oocyte-derived factors 

such as BMP15 and GDF9 to regulate cumulus cell proliferation, differentiation, and 

steroidogenesis emphasizes the role of the oocyte in determining its own developmental fate 

and protecting itself against its own microenvironment (197, 198, 255). Oocyte-derived 

factors also appear to increase AMH in primary follicles, joined by granulosa- or theca-

derived factors during secondary follicle growth, and by cumulus cells of growing and 

preovulatory follicles. Furthermore, studies have indicated that midrange follicular fluid 

levels of AMH are optimal for maximal oocyte quality and IVF success (256), suggesting 

that oocyte-mediated, paracrine control of follicle growth may account for the heterogeneity 

in follicular development among the cohort of PCOS follicles undergoing gonadotropin 

stimulation. Conversely, a granulosa cell-cumulus cell connection is required for generating 

cGMP that passes through gap junctions to suppress the resumption of meiosis in oocytes, at 

least in antral follicles (190, 193, 195).

Finally, because experimental constraints exist on studying human oocytes, animal models 

and in vitro follicle cultures must continue to pioneer the earliest aspects of ovarian and 

oocyte physiology (20, 40, 92, 197, 198, 234, 257–261). Such models need to explore how 

developmentally relevant endocrine/paracrine factors and genes interact to promote optimal 

epigenetic and genetic expression in the oocyte for successful fertilization and 

preimplantation embryogenesis. They also need to define critical times during fetal 

development when the maternal endocrine status might permanently alter the ovarian 

physiology of the fetus and modify ovarian function after birth. With such information, new 
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clinical strategies targeting long-term correction of follicle development in PCOS could 

improve fertility, optimize follicular responsiveness to ovulation induction, and enhance 

pregnancy outcomes by IVF, while decreasing the risk of multiple gestation and its adverse 

consequences on maternal-fetal health.
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FIGURE 1. 
Transition of primordial to primary follicles. Embryonic specification of the female gonad 

and formation of primordial follicles depends on WNT4 and FOXL2. Quiescent primordial 

follicles leave the resting pool by mechanisms that involve changes in both oocyte 

(activation of the PI3K pathway) and somatic cell (levels of AMH) functions. Primary 

follicle formation is independent of gonadotropins but is associated with changes in 

granulosa cell function and morphology leading to expression of IGF-I/-II, FSHR, AMH, 

AR, and KL. Changes in oocyte functions lead to the production of the zona pellucida and 

expression of GDF9. KL and GDF9 coordinate to regulate formation of the theca cell layer. 

GDF9 also appears to enhance theca cell androgen production, which in turn can increase 

the expression of FSHR. In PCOS, high levels of insulin and LH may act on cognate 

receptors in theca cells, once organized, to further increase androgen production. Levels of 

FSHR (and AMH?) are elevated; however, some data indicate that AMH is lower (262). 

Large gray circle: oocyte; red line: zona pellucida; small blue circles: granulosa cells; dark 
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blue boxes: theca cells. Oocyte factor and GDF9 signaling is denoted by green arrows; LH 

and androgen signaling by red arrows and letters; and insulin signaling by purple arrows. 

Blue arrows indicate that these primary follicles go on to develop into secondary follicles.

Dumesic and Richards Page 30

Fertil Steril. Author manuscript; available in PMC 2015 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Transition from primary to secondary/small antral follicles. Granulosa cells proliferate and 

follicles grow in response to multiple factors including activin, IGF-I, WNT4/5a, and FSH. 

The transcription factor FOXO1 impacts both follicle growth and follicle atresia (see the text 

for details). Consequently, as the distance between the oocyte and the theca layer is 

increased, theca cell production of androgens becomes more dependent on LH and possibly 

inhibin-α. Levels of AMH increase and negatively regulate FSH action in granulosa cells to 

prevent premature maturation. In lean PCOS patients, elevated LH and insulin levels 

increase theca cell androgen production, which enhances FSHR expression and premature 

differentiation of granulosa cells via induction of aromatase (CYP19a1), LH receptor 

(LHCGR), and other genes including RUNX2 (102). WNT4/5a may contribute to the 

enhanced actions of FSH to induce CYP19a1. Enhanced FSH actions override those of 

elevated AMH. Large gray circle: oocyte; red line: zona pellucida; small blue circles: 

granulosa cells; large blue circle: normal theca cells; green circle: PCOS theca. Oocyte 

factor and GDF9 signaling is denoted by green arrows; inhibin by the orange arrow; LH 

and androgen signaling by red arrows and letters; and insulin signaling by purple arrows 

and letters. Large blue arrow indicates continued normal follicular growth.
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FIGURE 3. 
Transition from primary to secondary/small antral follicles. In obese PCOS patients, 

hyperinsulinemia from adiposity-dependent insulin resistance and altered adipogenesis 

impair follicular development by mechanisms that appear to differ from those in lean PCOS 

patients. Insulin may have a greater influence than LH on theca, granulosa, and likely oocyte 

functions. Adipokines also likely alter each cell type within the follicle. Note that insulin 

receptor (INSR) expression may be elevated in oocytes of PCOS patients compared to non-

PCOS patients (205). Cumulus cells of obese PCOS patients also express higher levels of 

INSR and specific fatty acid binding proteins (FABPs) (102). Theca cells produce elevated 

levels of androgens, especially DHEA, in response to LH and elevated expression of 

CYP17A1 and CYP11A1, which are targets of GATA6 and retinoic acid (RA) (47). The 

PCOS theca cells exhibit increased expression of enzymes controlling RA production and 

enhanced responses to RA, including steroidogenesis and the target gene TIG1. These 

responses may be related to cAMP signaling through exchange protein activated by cAMP II 

(EPAC II). Conversely, PCOS theca cells exhibit reduced expression of WNT signaling and 

cGMP signaling pathways, but the functional significance of this remains to be determined. 

Oocyte factor and GDF9 signaling is denoted by green arrows; inhibin by the orange arrow; 

LH and androgen signaling by red arrows and letters; and insulin signaling by purple 

arrows and letters.
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FIGURE 4. 
Preovulatory follicles. The hallmarks of preovulatory follicles are the induction of LH 

receptors (LHCGR) and elevated expression of aromatase (CYP19A1). In obese individuals 

with PCOS, preovulatory follicles that are selected and ovulate (either in response to weight 

reduction, exogenous hormone, and/or metformin) express high AMH and remain 

hyperandrogenic. Thus, despite lowered insulin action or improved adipogenic function to 

facilitate the growth of follicles that can be ovulated, theca androgen production is central to 

the PCOS condition. However, direct effects of insulin and/or androgens may harm oocytes 

at this late stage or earlier stages of follicular development. Oocyte factor and GDF9 

signaling is denoted by green arrows; LH and androgen signaling by red arrows and letters; 

and insulin signaling by purple arrows.
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