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Abstract

The human tRNAome consists of more than 500 interspersed tRNA genes comprising 51
anticodon families of largely unequal copy number. We examined tRNA gene copy number
variation (tgCNV) in six individuals; two kindreds of two parents and a child, using high coverage
whole genome sequence data. Such differences may be important because translation of some
MRNA s is sensitive to the relative amounts of tRNAs and because tRNA competition determines
translational efficiency vs. fidelity and production of native vs. misfolded proteins. We identified
several tRNA gene clusters with CNV, which in some cases were part of larger iterations. In
addition there was an isolated tRNALysCUU gene that was absent as a homozygous deletion in
one of the parents. When assessed by semiquantitative PCR in 98 DNA samples representing a
wide variety of ethnicities, this allele was found deleted in hetero- or homozygosity in all groups
at ~50% frequency. This is the first report of copy number variation of human tRNA genes. We
conclude that tgCNV exists at significant levels among individual humans and discuss the results
in terms of genetic diversity and prior genome wide association studies (GWAS) that suggest the
importance of the ratio of tRNALYys isoacceptors in Type-2 diabetes.
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1. Introduction

Copy number variation (CNV) of genomic segments is a source of genetic differences
among individuals, in many cases associated with complex disease phenotypes (Fanciulli et
al., 2010; Zhang et al., 2009). More than 500 tRNA genes are interspersed on all of the
human chromosomes (except Y chromosome), similar to short Alu retroposon elements but
on a smaller scale. While classical CNV usually refers to reiterations of otherwise single
copy loci, as described here the meaning for tRNA genes is somewhat different because they
are multi-gene families of near-identical copies dispersed to multiple loci on multiple
chromosomes.

A wide diversity exists in the tRNA gene contents of species (Chan and Lowe, 2009). Even
closely related species show significant differences in tRNA gene copy numbers that are

discordant with relatively minimal differences in other genomic features such as size, gene
number, gene size and intron positions (Iben and Maraia, 2012). While tRNA gene content
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is generally matched to codon use, even in higher eukaryotes (Duret, 2000; Gouy and
Gautier, 1982; Grosjean and Fiers, 1982; Ikemura, 1981; Novoa et al., 2012; Pechmann and
Frydman, 2013; Sharp et al., 1986), changes in the tRNAome that accompany speciation can
appear to offset the match in some cases (Iben and Maraia, 2012) while in others they appear
to restore balance (Higgs and Ran, 2008). In other cases variance in the fractional content of
isoacceptors among highly related species was balanced by differential amplification of
tRNA genes that can wobble to decode synonymous codons (Aldinger et al., 2012; Iben and
Maraia, 2012). These observations support the idea that match of tRNAome composition
and codon use is generally conserved, presumably to maintain fidelity and/or efficiency of
translation (Lamichhane et al., 2013).

Mismatches of codon use and tRNAs can affect translation efficiency, fidelity, and/or
protein folding via multiple mechanisms, in some cases as part of stress response programs
or cell cycle control (Bauer et al., 2012; Begley et al., 2007; Berg and Kurland, 1997; Esberg
et al., 2006; Fedyunin et al., 2012; Grosjean and Fiers, 1982; Hilterbrand et al., 2012; Jansen
et al., 2003; Kimchi-Sarfaty et al., 2007; Lamichhane et al., 2013; Letzring et al., 2010; Patil
et al., 2012; Pechmann and Frydman, 2013; Plotkin and Kudla, 2011; Xu et al., 2013; Zhou
et al., 2013). Alterations of tRNA anticodon modifications result in phenotypes attributable
to distorted translation of mMRNAS over-enriched in cognate codons, that can be reversed by
providing extra copies of the tRNA genes (Bauer et al., 2012; Begley et al., 2007; Esberg et
al., 2006; Lamichhane et al., 2013; Wei et al., 2011; Xu et al., 2013; Zhou et al., 2013).
Anticodon modification enzymes can be activated by stress, affecting dynamic control of
codon-specific translation (Chan et al., 2010; Paredes et al., 2012). Cancers have been linked
to tRNA overexpression (Pavon-Eternod et al., 2009) and anticodon hypermodification
(Kuchino and Borek, 1978; Kuchino et al., 1982). These observations support a model in
which some key mRNAs are sensitive to alterations of specific tRNA abundance or
anticodon modification, in a manner relevant to phenotype.

The cumulative observations lead to the possibility that the degree of match between tRNA
gene copy number and cognate codon use frequencies of individual genes may be a
determinant of gene expression patterns. Yet tRNA gene CNV in individual yeast strains of
the same species propagated in different laboratories does occur, in one case upon selective
pressure and in other cases with no apparent selection, detectable by analysis of Illumina/
Solexa sequence read coverage depth (Iben and Maraia, 2012; Iben et al., 2011).

We previously observed spontaneous amplification of tRNA genes in the fission yeast,
Schizosaccharomyces pombe from whole genome Illumina/Solexa sequence datasets of
sufficient read coverage (Iben and Maraia, 2012; Iben et al., 2011). The data suggest that
tRNA gene copy number variation (tgCNV) may be widespread although it has not been
examined much and not at all in humans. As alluded to above, tgCNV may affect translation
of specific mMRNAs (Brackley et al., 2011). Depending on the identity of the affected
tRNA(s) and functions of the affected MRNAs, phenotypic output might be significant in
some cases. Accordingly, tRNAome variation represents an unexamined layer of genetic
diversity among individuals. This led us to question if tgCNV could be observed in humans.
Here we evaluated available human genome-wide high coverage sequence datasets at all
predicted tRNA gene loci and indeed found multiple instances of tgCNV among six
individuals.

2. Materials and methods

All whole genome sequence data for the six individuals and their DNA (used here for PCR
verification) are freely available through the 1000 Genomes Project. The genomic DNA for
these samples are available through the Coriell Institute (12878, 12892, 119238, 19239,
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19240); in one case the DNA was not available but the fibroblasts were so we prepared the
DNA for PCR analysis (12891) (also obtained from Coriell Institute).

2.1. Sequence read depth at tRNA gene loci

Whole genome high coverage sequence datasets were identified and obtained from the 1000
Genomes Project database (Genomes Project et al., 2010). At the time of this study only 6
deposited genomes were identified as high coverage and genome-wide, comprised of two
trio families: one of European-American ethnicity and one of Nigerian origin. The locations
of all the tRNA genes were extracted for these genomes using the previously compiled data
of the Genomic tRNA Database (Chan and Lowe, 2009). Aligned sequence data in indexed
BAM format and the mapped read depth at the tRNA loci were extracted along with an
additional 1 kb to either side of each tRNA gene. Read depth for the tRNA sequences was
obtained by averaging across the tRNA region (Supplemental Table 1, columns G-L).

2.2. Overall total genome-wide read coverage

Using Samtools (Li et al., 2009), a pileup of per base coverage levels was derived for each
dataset either over all bases of the common chromosomes 1-22, or of Chr-X alone. For each
sample, a number of bases exhibiting each coverage value were summed and the resulting
profile was plotted. Average coverage is calculated as the average base coverage for the
main portion of the Gaussian curve (0-100 bp); the relative coverages among the six
individuals determined are consistent with the relative coverages reported by the 1000
Genomes Project (not shown).

2.3. Robust estimation of tRNA copy number and variation

For each dataset, the averaged depth at any given tRNA locus was normalized against the
overall whole genome average depth, tabulated for all genes (Supplemental Table 1,
columns M-R). Average normalized genomic depth along with standard deviation was
tabulated for each gene locus (Supplemental Table 1, columns S, T). Individual gene copy
number variation was predicted at loci where normalized depth across samples exceeded a
1.0x threshold. A total of 26 individual genes were seen to exceed this threshold (Table 2).
The same was done for loci that exceeded a 0.5% threshold, yielding 92 tRNA gene loci
(Supplemental Table 2).

2.4. PCR validation of tgCNV at the Chr-11 tRNALysCUU

PCR primers flanking the Chr-11 tRNALysCUU gene: “437_Lys_CTTF” 5-
GGCCACAGGAGCTTCAAGTA-3 and “437_Lys CTTR” &’-
TGTGACTCAGGGGGCATAAT-3' were used to amplify a ~400 bp product. As a control
the Chr-16 tRNALysUUU gene, which exhibited the least variable at nearly uniform 1x
genomic average coverage across the 6 datasets (Supplemental Table 1), was amplified in
the same duplex PCR reaction with primers: “C_193 Lys CTTF” &'-
CGCAGGCGCTTCTTAGTATT-3 and “C_193 Lys CTTR” 5'-
ACACACGGATCGGAGAACAC-3 to produce a ~300 bp product. Duplex PCR was
performed using Platinum Supermix (Invitrogen) in 50 pL, with template from either
purchased genomic DNA where available (12878, 12892, 119238, 19239, 19240) or
genomic DNA prepared from fibroblasts (12891) (DNA and cells obtained from Coriell
Institute). Data not shown demonstrated that under the conditions used, 27 cycles yielded
product quantities in the linear range. Thus, after 27 cycles, 5 pL aliquots of the PCRs were
run on 1% agarose gel and visualized with ethidium bromide. The relative amounts of the
~300 and ~400 bp products shown in Fig. 3 were confirmed in triplicate experiments (not
shown).
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2.5. Assessment of Chr-11 tRNALysCUU gene deletion in diverse samples

A panel of 92 ethnically diverse genomic DNA samples was obtained from HPA (Health
Protection Agency, Public Health England, product EDP-1, cat. # 07020701p). The PCR
assay described above was scaled to 20 pL and run in triplicate for the 92 samples plus 3
original samples (12878, 12891, 12892) to serve as controls for genotypes +/—, —/—, and +/+,
respectively. Analysis and quantitation of the relative amounts of ~300 and ~400 bp
products were done on a WAVE column system (Transgenomic) and summarized in Table 3
which also indicates that distribution of the three genotypes among males and females
according to the vendor provided ethnicity and gender information.

3. Results

Analysis of whole genome sequence read depth is useful for determining tgCNV in yeast
(Iben and Maraia, 2012; Iben et al., 2011). Basically, differences in the number of Illumina/
Solexa sequence reads that map to different sequence tracts can reflect copy number
differences if the overall genome read depth is uniform and of sufficiently high coverage.
Previously mapped human sequence datasets were obtained for each of the six individuals
for who existed moderately high coverage (=16-fold) in the 1000 Genomes Project database
(NA12878, NA12891, NA12892, NA19238, NA19239, NA19240) (Genomes Project et al.,
2010). These had been annotated as two kindred trios each consisting of two parents and a
daughter. One of the trio kindreds was from Utah with European ancestry (NA12891,
NA12892, NA19239) and the other was from Nigeria (NA12878, NA19238, NA19240).
These mapped sequence datasets were evaluated for read depth at the 506 human tRNA
gene loci (as well as 3 each of selenocysteine and suppressor tRNAS) previously predicted
for Build 37.1 of the human genome hg19 assembly. For this purpose we included for each
locus the tRNA sequence itself plus 1 kb of DNA on each side. The 506 tRNA genes
including five assigned to chromosome-X (Chr-X), collectively produce 51 tRNA anticodon
families for the 20 standard amino acids that decode all of the 61 amino acid codons
(Goodenbour and Pan, 2006). In the human genome, ten codons have no tRNA that match
them directly by Watson:Crick base pairing and must rely on wobble decoding. Excluding
these, the human tRNAome contains large inequalities in the gene copy numbers for its 51
tRNA anticodon families, ranging from 1 to 32, however this is not too dissimilar from some
other mammals (Chan and Lowe, 2009).

3.1. Estimation of genomic copy number of tRNA genes

We first determined the average total read depth across the entire genome for each of the six
datasets to serve as normalization for comparison and calibration so that we could derive
tRNA gene counts per genome. The average total genome read depth for Chr-1 to Chr-22
was found to range from 17 to 34 fold coverage for the six samples, each with comparable
uniform distribution around the median (Fig. 1A). We also determined the overall read depth
coverage for Chr-X which reassuringly revealed that the two males in our sample set
showed 0.5x coverage relative to the four females which centered around 1x (Fig. 1B).

Absolute copy number differences at the tRNA loci were tabulated for the six datasets
(Supplemental Table 1, columns G-L). The tRNA gene loci copy numbers were also
expressed as ratios relative to global average read depth (Supplemental Table 1, columns
M-R). The copy number averages and standard deviations were determined for each tRNA
gene locus (Supplemental Table 1, cols. S, T) which indicated that read depth across most
tRNA gene loci in each of the six genomes was largely similar, at ~1x relative to average
genomic coverage. Specifically, 87% of all the tRNA gene loci in the 6 genomes were
covered at read depths within 0.4x of the genomic average depth, suggesting a high degree
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of cross-individual reproducibility and overall constancy of their tRNAomes (Supplemental
Fig. S2).

Human tRNA genes of the same anticodon family share significant identity throughout the
tRNA sequence itself (Goodenbour and Pan, 2006). Accordingly, some tRNA sequence
reads may be distributively “mapped” to other members of the same tRNA anticodon family
in the genome assembly, which could therefore be a source of discordance with estimates
based on flanking regions in some cases. Thus, we grouped all reads within the tRNA
sequences into the 51 anticodon families (Table 1). We then plotted the read depths per
genome for the six datasets (Fig. 2A). Cursory examination of Table 1 revealed good
agreement both among the six samples and with copy numbers predicted from hg19 by
tRNA-ScanSE; for example 1-2 copies for the tRNAs for Asn AUU and Tyr AUA
anticodons, and ~30 copies for the Asn GUU and Ala AGC anticodons (Chan and Lowe,
2009). However, there was more variability among the six individuals for some tRNAs, e.g.,
Asn GUU, Cys GCA and Glu CUC anticodons, than for others. It is noteworthy that the
direction of change, i.e., increase or decrease, differed among individuals for different
tRNAs (Fig. 2A).

3.2. Copy number variation differs significantly among tRNA gene families

We more directly compared tRNA gene copy numbers derived from read depth from the six
individuals with those predicted for the hgl9 assembly (Fig. 2B). This confirmed good
general agreement for most of the tRNA gene families with an overall correlation coefficient
of R = 0.956, with few significant outliers (Fig. 2B). This analysis revealed additional
information. There was more tgCNV for some tRNA families than for other tRNA families
among the six individuals. However, this tgCNV was not uniform nor strictly correlated
with copy number since the tRNA families Glu-CUC and Gly-GCC which were each
predicted at <15 copies for hgl9, showed a high degree of CNV whereas tRNA Ala-AGC
and Cys GCA whose copy estimate of 29 and 30 compared well with the copy numbers in
hg19, showed relatively less CNV (Table 1 and Fig. 2B). We noted that for the 18 tRNA
gene families with copy numbers of <6, there was little apparent variation. For example, all
five Arg tRNA families which comprise 28 genes matched hg19 well (Table 1). The
analyses suggested that some tRNA genes were subjected to more CNV than others. The
analysis indicated that while hg19 served as a very good indicator of tRNA gene number,
there is variability for some tRNA gene families in the six individuals.

3.3. AtRNA gene cluster on Chr-1is a source of tgCNV

Of the 506 tRNA gene loci examined here, only 26 exceeded a 1x-fold difference in read
depth between any two of the six individuals (Table 2). Upon further examination, 17 of
these 26 loci mapped to a ~28 kb stretch on Chr-1 (161413094-161440995) of hg19 (Table
2, lines 10-26). These 17 tRNA gene loci are represented as four imperfect repeats of a
cluster of five tRNA genes; Glu-CTC, Gly-TCC, Asp-GTC, Leu-CAG and Gly-GCC, found
in ~7 kb reiterations in the hg19 assembly (Supplemental Fig. S1). This suggests that these
~7 kb repeats or parts thereof were subjected to different degrees of iteration in the six
individuals. These can be described in more detail and in genome-wide context by focusing
on tRNA Gly-GCC. While the total number of tRNA Gly-GCC genes in hg19 is 15, only 6
of these map to Chr-1 (Chan and Lowe, 2009) (Table 1). The six genomes harbor 14-29
tRNA Gly-GCC genes and their increases relative to hgl9 appear to be limited to imperfect
duplication of one or more of the ~7 kb repeats on Chr-1 (Table 2). The same is true for Gly-
UCC, Glu-CUC and the other members of the Chr-1 cluster but to lesser extents (bold font
in Fig. 2B).
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An additional 6 of the 26 loci in Table 1 were on Chr-1, although these were located =12 Mb
away from the nearest ~7 kb cluster. These include a pair each of Val-CAC and Asn-GTT
tRNA genes. Thus, accounting for the repeats of the tRNA genes on the ~7 kb regions and
other close proximity isodecoder copies on Chr-1, 11 of the 506 hg19 tRNA gene loci were
detected as exhibiting significant CNV in the six individuals (Table 1).

We also found 92 additional loci with significant differences of 0.5x-fold among some of
the six individual datasets, potentially reflecting a source of tgCNV attributable to haploid
states in the diploid DNA-derived sequence data samples (Supplemental Table 2).

3.4. A deletion allele of atRNALysCUU gene-containing locus on Chr-11

Of specific note was a single locus encoding tRNALysCUU (Chr-11:51359900-51359972),
which fully lacked coverage in one of the six samples (Table 2, line 29, NA12891). Two
other samples showed 1x coverage at this tRNA gene (NA12892, NA19239) and the three
other samples showed 0.5x coverage (NA12878, NA19238, NA19240) relative to their
genomic averages (Table 2). Of all the genes examined, only this one lacked coverage
entirely in an individual, suggesting deletion in NA12891 of both chromosomal copies.

The read depth coverage analysis of this Chr-11 tRNALysCUU gene locus fit with a
Mendelian pattern of inheritance in the kindred with the predicted homozygous deletion,
because the mother had twice as much read depth coverage of this tRNALysCUU locus as
the daughter while it was entirely absent for the father (Table 2, last line). We note that this
is the only tRNALysCUU gene on Chr-11; the other tRNALysCUU genes are distributed on
eight other chromosomes (Chan and Lowe, 2009). Further analysis of the sequence data for
this sample revealed the absence of flanking DNA coverage on both sides of this
tRNALysCUU totaling ~21 kb, spanning Chr-11:51341115-51363134 (not shown). Upon
literature search we found that these boundaries roughly coincide with deletions described in
earlier global CNV studies, although homozygous deletion was not noted (Ju et al., 2010;
Matsuzaki et al., 2009; Shaikh et al., 2009). No features other than this single tRNALysCUU
gene are annotated within this ~21 kb region in RefSeq or Ensembl. The next closest
annotated feature is a gene for olfactory receptor 4A5 (OR4Ab5), located ~50 kb downstream
of the deletion.

Interestingly, the tRNALysCUU from this locus is a perfect Watson: Crick decoder of the
lysine AAG codon whose altered translation in pre-proinsulin is implicated in development
of Type-2 diabetes (T2D) in mice that lack the CDKAL1 gene previously implicated as a
high quality risk indicator for T2D by genome wide association studies (GWAS) (Wei et al.,
2011). Given the potential implications of this ifnding and the possibility that it may be
useful as an independent factor, we wanted to establish a genomic PCR assay that could be
used to validate the quantitative variation of this locus in the six individuals.

3.5. Validation of copy number variation of the Chr-11 tRNALysCUU

We obtained DNA samples available through the 1000 Genomes Project for the six
individuals, and established a semiquantitative duplex PCR assay. We amplified the Chr-11
tRNALysCUU gene and an internal control tRNA gene determined to be invariant among
the six individuals, in the same PCR reactions. The PCR products were ~300 bp for the
invariant gene and ~400 bp for the tRNALysCUU gene, visualized after electrophoresis on
1% agarose gel (Fig. 3). The relative amounts of the tRNALysCUU gene PCR products fit
well with the read depth data for the six samples (Fig. 3, see under the lanes) and were
reproducible upon triplicate analyses (not shown). After quantitation it seemed clear from
lanes 1-3 of Fig. 3 that the Utah kindred daughter was heterozygous (lane 1), the father had
a homozygous deletion (lane 2), and the mother was homozygous for the presence of the
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tRNALysCUU gene (lane 3). The read depth and PCR data also fit for this tRNALysCUU
gene in the Nigerian kindred represented in lanes 4-6.

3.6. The deletion allele of the Chr-11 tRNALYysCUU is widespread

Heterozygosity for the tRNALysCUU deletion allele in the Utah residents and Nigerians
suggested that it might be widespread in the human population. We investigated this using
the duplex PCR assay in ethnically diverse samples. Ninety-two samples of genomic DNAs
were obtained as an ethnically diverse panel. The PCR assay was run in triplicate for these
samples along with 3 of the original six samples as controls for each genotype and the
products were fractionated and quantitated using a WAVE column system. We found that
the deletion allele of the Chr-11 tRNALysCUU gene occurs in members of each ethnic
group on the panel, represented in both genders, with an overall frequency of ~50%, as
summarized in Table 3.

4. Discussion

4.1. tRNA gene copy number variation is readily observable in humans

Eukaryotic tRNA genes are short, self-contained transcription units that are interspersed
throughout the genome, and dispersed among the chromosomes. As noted in the
Introduction, all of the tRNA genes evaluated here are members of one or another of the 51
multigene families.

Hg19 is a composite assembly of DNA obtained from ~13 donors (Editorial, 2010). The
tRNAscan-SE algorithm finds tRNA genes in genomes with high accuracy (Lowe and Eddy,
1997). Application of tRNAscan-SE to genome assemblies has led to the appreciation that
the tRNAome is a highly variable component of both closely related and distantly related
genomes (Chan and Lowe, 2009).

For the present work, we sought to evaluate quantitative representation of the 506 tRNA
genes in hg19 in each of six individuals. Briefly, we analyzed sequence read depth across all
tRNA gene loci normalized against whole genome coverage depth for the six persons. The
normalized tRNA gene read depth was taken to estimate copy number per genome, on the
same scale as for hg19 (Chan and Lowe, 2009) (Supplemental Table 1). This revealed
tgCNV among humans. By this approach, tgCNV reflects whether a member of any tRNA
multigene family is present or absent in heterozygous or homozygous form, or as an extra

copy(s).

While each tRNA gene locus may be considered individually, given that many copies of
identical tRNA sequences exist in the genome it was informative to consider tRNA
anticodon identities collectively. Accordingly there was good agreement with the tRNA
gene numbers in hg19 but with a few exceptions (Fig. 2B). For a majority of these
exceptions, hg19 revealed lower counts than our analysis especially for a cluster of tRNA
genes on Chr-1 that reside within larger repeat units (Supplemental Fig. S1). Such
discrepancy probably reflects the limitations of building an assembly in the vicinity of
tandem repeats. For the tRNA genes clustered on Chr-1, each of the six individuals had
higher copy numbers than represented by hg19 (e.g., GIn, Glu, GIn, Fig. 2B). These Chr-1
tRNA gene clusters appear to be subject to a significant amount of CNV among individuals.

However, we found that variation was not due only to tRNA gene clusters. An example is an
isolated tRNALyYsCUU gene on Chr-11 that completely lacked read coverage in one
individual in one of the kindreds. Our estimated copy numbers suggested a heterozygous
deletion of this tRNA gene in other individuals consistent with Mendelian inheritance in
both kindreds. Genomic PCR analysis confirmed the absence of this tRNA gene in the DNA
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of the identified individual, and further indicated its heterozygous or homozygous presence
in the others, in good agreement with read depth estimates. Using PCR we extended analysis
of the Chr-11 tRNALysCUU gene to a larger ethnically diverse group of genomes. This
revealed that a tRNALyYsCUU gene deletion allele is present in every ethnicity examined, at
an overall frequency of about 50%.

4.2.tgCNV and implications for gene expression and genetic-based disease

Relative amounts of tRNAs are important because their competition for cognate and non-
cognate codons determines translational efficiency vs. fidelity as well as propensity to
produce native vs. misfolded proteins (Reynolds et al., 2010). As the molecular mechanisms
of some diseases attributed to protein misfolding are poorly understood, tgCNV could
potentially contribute. As noted, perturbation of decoding of a Lys AAG codon in pre-
proinsulin was implicated in development of T2D in CDKAL1-deficient mice,
experimentally validating GWAS results (Wei et al., 2011). CDKALL1 is a tRNA
methylthiotransferase that modifies threonylcarbamoyl-adenosine (t6A) at position A37 in
the anticodon loop of one tRNA species, tRNALysUUU, to ms2t6A37. There are two
codons for lysine, AAG and AAA, and in humans there are near equal numbers of
tRNALysCUU and tRNALysUUU genes to decode them (Table 1). Curiously,
tRNALysUUU can decode both its cognate codon AAA and by wobble, the AAG codon,
whereas tRNALysCUU can decode only its cognate codon, AAG. Pre-proinsulin mRNA has
two lysine codons, both AAG, one in the B chain region and the other at the junction of the
C peptide and A chain, immediately adjacent to codons whose mutation cause
hyperproinsulinemia, a disease in which insulin is insufficiently processed prior to secretion
(Dhanvantari et al., 2003; Stoy et al., 2010). According to a CDKAL1 model of T2D,
hypomodification of tRNALysUUU alters its ability to compete with tRNALysCUU at its
wobble codon AAG which results in misfolding, poor processing and impaired secretion of
insulin (Wei et al., 2011). Such a model plausibly fits with the subtle genetic influences
expected to contribute to complex multigenic phenotypes such as T2D.

The prevalence of the deletion allele of the Chr-11 tRNALysUUU gene uncovered here in
combination with the importance of tRNA competition in protein folding homeostasis, and
the CDKAL1 T2D model of impaired AAG decoding, promoted us to consider more
generally variances of tRNALysCUU and tRNALysUUU gene numbers and other
isoacceptor pairs among the six individuals examined. Each row of Table 4 lists the ratios of
gene copy numbers of two tRNA isodecoders for 8 different amino acids. For each pair of
these isodecoders one of the tRNAs can waobble to the other codon, similar to that for
tRNALyYsCUU and tRNALysUUU. The last column of Table 4 compiles the range of
variance of the ratios of the two isodecoders among the six individuals. The individuals with
the least and greatest variance of tRNALysCUU and tRNALysUUU genes differ in their
ratios by 23%. For the two Arg tRNAs the range is 40%, and for the Tyr pair it is 47%. We
suggest the possibility that such differences may contribute to phenotypic differences among
individuals, especially if combined with other genetic differences in protein coding genes,
including synonymous substitutions.

It should be noted that after this study was completed, we learned that a region of mouse
distal chromosome 1 (Chr 1) that corresponds to human Chr 1g21-g23 includes quantitative
trait loci for a diverse set of traits (Mozhui et al., 2008). This region encodes a large number
of genes including ~20 aminoacyl-tRNA synthetases (aaRSs) in addition to a tRNA gene
cluster. In addition to their role in catalyzing the production of aminoacyl-tRNAs used for
protein synthesis during mRNA translation, several diverse nontranslational functions of
aaRSs have been discovered (reviewed in Guo and Schimmel, 2013). In addition, tRNAs
can feedback regulate their aaRSs (Ryckelynck et al., 2005). Therefore, tgCNV may have
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impact not only on mRNA translation directly but also indirectly, via effects on the aaRSs
(Mozhui et al., 2008).

Another perspective of the potential effects of tgCNV is with regard to classical CNV of
large genomic regions more generally (Fanciulli et al., 2010; Zhang et al., 2009). Since
tRNA genes are distributed on all chromosomes the likelihood that a duplication or other
amplification of any large genomic segment will contain a tRNA gene(s) increases with size
of the affected region. Depending on the tRNA species and the copy number of its anticodon
family, it is conceivable that it might contribute to an associated phenotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Read coverage distributions among the six individuals examined here. A) Totals for
chromosomes 1-22. Relatively high coverage, e.g., greater than 40-fold for NA19238 and
60-fold for NA19240, likely reflect repeat sequences. B) Read coverage on chromosome-X
relative to total genomic (Chr 1-22) average read depth; coverage centers at 0.5-fold for the
two males as annotated, but centers around 1-fold for the four other samples, females.
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tRNA gene copy number estimates. A)Normalized tRNA gene read depth was summed for
each of the 51 tRNA anticodon species (Table 1) and plotted for each individual according
to the color code to the right. This reflects largely reproducible gene copy numbers per
anticodon with few notable exceptions (see text). B) Estimated gene counts from (A, y-axis),
plotted against tRNA gene counts per anticodon as predicted by tRNA-ScanSE for the hg19
assembly (3). Some of the tRNA genes specifically referred to in the text are annotated.
Error bars represent standard deviation of estimated gene counts across the six individuals of

the study.
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Fig. 3.

Validation of copy number variation of the Chr-11 tRNALYSCUU gene. Duplex PCR of the
Chr-11 tRNALysCUU gene locus and an invariant control tRNA gene locus as indicated to
the right of the bands for each of the 6 individuals in the two kindreds. An ethidium bromide
stained agarose gel is shown. The kindred members are indicated below the lanes: D =
daughter, F = father, M = mother. The relative read depths at the Chr-11 tRNALysCUU
gene locus derived from Table 1 are also shown. For this locus, values above 1.0 reflect the
diploid state of the Chr-11 tRNALysCUU gene, the values 0.43-0.54 reflect the haploid
state and the value of 0 reflects a homozygous deletion.
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