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Abstract
It is now well accepted that the innate immune system recognizes both damage (or danger)- and
pathogen-associated molecular patterns (DAMP and PAMP, respectively) through pattern
recognition receptors, such as Toll-like receptors (TLR) and/or Nod-like receptors (NLR). Less clear
are whether and how the response to PAMP and DAMP are differentially regulated. The answers
may reveal whether the primary goal of the immune system is to defend against infections or to alert
the host of tissue injuries. We demonstrated recently that the host response to DAMP is controlled
by a DAMP-CD24-Siglec axis. Here we propose a key role for the CD24-Siglec pathway in
discriminating between DAMPs and PAMPs.

Introduction
According to popular myth, Ilya Metchnikoff first demonstrated cell-mediated immunity by
sticking a rose thorn into starfish larvae. Though this was taught to generations of immunology
students as a response to a foreign body, it may in fact be a host response to injury. The fact
that the latter possibility was usually over-looked reflects the desire of immunologists to view
the immune system as the host’s machinery for self-nonself discrimination based on the precise
recognition of antigens by clonally distributed receptors on T and B lymphocytes.

Over 20 years ago, in his introduction to the Cold Spring Harbor Quantitative Biology
Symposium 1, Charles Janeway elegantly outlined a case against what he called the
“Landsteinian Fallacy”, namely, all antigenic variations that are recognizable by antibodies
must be equally immunogenic. He proposed pattern recognition as the basis for initiation of
an immune response against the infectious nonself, in progressively more definitive terms 1–
4. At this time, one of us (YL) was privileged to be working in the Janeway laboratory and
showed that components from microbes (including viruses, bacteria, and yeast) can induce
costimulatory activity on antigen-presenting cells (APC) 5. We further showed that induction
of the costimulatory molecule B7 (CD80) explained 6 our earlier observation 7 of
“immunological help for the cytotoxic T cell response” by activated B cells. These observations
validated the Janeway postulate that innate immunity sets the stage for adaptive immunity
through its induction of costimulatory molecules on the APC.

Correspondence: Yang Liu (yangl@umich.edu).
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Trends Immunol. Author manuscript; available in PMC 2010 December 1.

Published in final edited form as:
Trends Immunol. 2009 December ; 30(12): 557–561. doi:10.1016/j.it.2009.09.006.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Subsequently, Medzhitov assayed induction of the costimulatory molecule B7 when he cracked
the code of microbial pattern recognition by Toll-like receptors (TLR) with Janeway 8. This
study marked a paradigm shift in the concept of immune recognition. A recent account of the
exciting time and the periods that followed was recently provided by Medzhitov 9 in
commemoration of the 20 year’s anniversary of the publication of Janeway’s classic assay.
Readers are therefore referred to this review.

As a distinct repudiation of clonal receptor-based immune recognition, Matzinger proposed
what is known as the “danger theory” in 1994 10. In essence, she argued that the immune system
does not care about discriminating self- from nonself, but rather dangerous from non-dangerous
signals. She acknowledged the difficulty in defining “danger” but equated it to tissue injury
occurring in some context. While both Janeway and Matzinger attempted to invoke a nonclonal
event as the on-off switch of immunity, they predicted very different purposes of the immune
response: to combat infection or to alert the host to tissue injuries. Although tissue injury will
certainly occur during infection, those in the Janeway school of thoughts had difficulties
reconciling with the danger theory for two reasons. First, from an evolutionary perspective, it
is likely that infections impose selective pressure to shape the immune system. Second, the
“danger” of the danger theory is that it would predict that the host mounts an immune response
whenever tissue injury occurs. Nevertheless, Nature surprised us all when the molecular
mechanisms of the host response to pathogen- and danger-associated molecular patterns were
revealed over subsequent years.

Shared mechanisms in the recognition of DAMPs and PAMPs
Tissue injuries often lead to release of intracellular components that are collectively called
DAMP. Only a few selective examples are provided herein to illustrate the shared mechanisms
for recognition of DAMPs and PAMPs. Readers are referred to recent reviews among many
outstanding ones for more thorough analyses of DAMPs 11,12.

The best characterized DAMPs in the cytoplasm are the heat-shock proteins (HSPs). It has
long been recognized that HSPs can promote immune responses. In addition to their role in
promoting antigen-presentation 13,14, some HSP also promote dendritic cell (DC) maturation
and induce inflammatory cytokines which in turn recruit lymphocytes and myeloid cells into
lymph nodes 15,16 Interestingly, these two functions of the HSPs appear to be fulfilled via
distinct mechanisms. The cross-presentation of antigens is mainly achieved by interaction
between the HSP and CD91 17,18. On the other hand, accumulating evidence supports an
important role for the TLR-MyD88-NFkB pathway, which was the classic pathway for PAMP
recognition, in the recognition of HSPs in the context of DAMP recognition 19–21.

In addition to the cytoplasm components, nuclear components from damaged cells have also
been demonstrated to activate the innate immune system. High mobility group box 1 (HMGB1)
is a nuclear protein that was initially studied for its role in gene transcription 22–24.
Interestingly, HMGB1 is actively secreted from monocytes, macrophages, and DC following
its acetylation 25, 26,27. It is also rapidly released by all cell types during necrosis 28.
Extracellular HMGB1 interacts with a number of cellular receptors, such as RAGE 29,30, TLR4
31, TLR2 32, and TLR9 33 when HMGB1 is complexed with DNA, Importantly, HMGB1
activates NF-kB via a TLR-MyD88-dependent mechanism 34–36, which is also very similar to
pattern recognition associated with infection.

The third category of DAMPs is low molecular weight adjuvants highly concentrated in the
cytosol. A systemic approach by Shi et al. demonstrated uric acid as the major source of low
molecular weight adjuvant from necrotic cells for cross-priming CD8 T cells 37. Monosodium
urate forms crystal and was demonstrated to cause lysosomal damage and activation of Nalp3
38, which belongs to the family of NOD-like (NLR) receptors 39. Like TLR, prototypic NLRs,
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NOD1 and NOD2 regulate host response to microbial components 40. Therefore, although
much of the signaling pathways remain to be identified, the major categories of DAMPs studied
so far appear to use the same receptors that were characterized for PAMPs.

The unexpected convergence of molecular pathways responsible for recognition of PAMPs
and DAMPs raised the question of whether the host really treats PAMPs and DAMPs in
fundamentally the same way in terms of the intensity and quality of innate and adaptive immune
responses. Unlike those with persistent or chronic infections, those hosts that survive acute
infections are often followed by sterilizing immunity. On the other hand, tissue injuries alone
are not normally followed by devastating autoimmune diseases. For example in the context of
cancer immunity, the interaction between HMGB1 and TLR4 is essential for DC activation,
priming of antigen-specific T cells, and resistance to cancer cells 36. However, despite the fact
that tumor lysates are expected to contain a large load of self-antigens, autoimmune side effects
were not reported 36. In the case of HSPs, it has been reported that a co-injection of HSP70,
which is also released in conjunction with necrosis, induced diabetes in mice that expressed a
T cell receptor (TCR) specific for a viral antigen transgenically expressed in pancreatic islet
β-cells19. It should be noted, however, that in mice with a normal T-cell repertoire, no
autoimmune disease has been reported to be elicited by the same treatment regimen19.
Likewise, although ectopic expression of membrane-bound GP96 (another HSP)has been
demonstrated to trigger signs of autoimmune diseases, the autoimmune phenotype is relatively
modest 41.

The fortunate modesty of autoimmune diseases triggered by DAMP is not fully understood
but at least two explanations can be invoked. The first involves the well documented
mechanism of immune tolerance, such as negative selection of T, B cell receptor repertoire,
clonal anergy, activation-induced cell death of mature T cells and the action of suppressor or
regulatory cells. Although relatively under-studied, a second intriguing possibility is that the
host may have developed a mechanism to ameliorate the response to DAMPs. Our recent
studies on the CD24-Siglec G/10 pathway described below are consistent with this notion.

The CD24-Siglec G/10 pathway discriminates between DAMP vs. PAMP
CD24 is also known as the heat-stable antigen (HSA) 42. It is expressed as a glycosyl-
phosphatidyl-inositol (GPI)-anchored molecule 43 and has a wide distribution in diverse cell
lineages 44. Because of the tendency of CD24 to be expressed on immature cells, it has also
been used along with other molecules as a stem cell marker during lymphocyte differentiation.
The first function associated with CD24 is a costimulatory activity for antigen-specific T cell
responses 45–47. In vivo studies indicated that, as a costimulator for T cell activation in
lymphoid organs, CD24 is redundant but becomes essential in the absence of CD28 48,49. This
would not be the case for local target organs that are not as “costimulatory ligand rich” such
as the central nervous system. Consistent with this notion, we demonstrated that mice with a
targeted mutation of CD24 are completely resistant to induction of experimental autoimmune
encephalomyelitis (EAE) 50, 51. Polymorphisms of human CD24 are associated with risk and
progression of several autoimmune diseases 52–56.

While all the above findings can be interpreted in the context of an immune enhancing effect
of the CD24 gene, two lines of recent observations pointed to another important role for CD24
in negative regulation of the immune response. First, when wild-type T cells were transferred
into lymphopenic, CD24-deficient hosts, they underwent vigorous homeostatic proliferation
57. In fact, the transferred syngeneic wild-type T cells killed the majority of the CD24-deficient
recipients within 2 weeks, possibly due to a “cytokine storm” associated with excessive T cell
activation. Further analysis of this model system implicated a role for CD24 on recipient DC
in the suppression of excessive homeostatic proliferation 57. Second, using an acetaminophen-
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induced liver injury model, we demonstrated that germline mutation of CD24 dramatically
increased susceptibility to necrosis of liver cells 58.

To dissect the molecular basis of this negative regulatory function, we identified molecules
that co-immunoprecipitated with CD24 using mass spectrometry. An association between
CD24 and HMGB1 was confirmed by reciprocal immunoprecipitation. Likewise, both
approaches also revealed interaction between CD24 and Hsp70 or Hsp90. Furthermore, using
high affinity neutralizing anti-HMGB1 antibodies 59, we were able to demonstrate a critical
role for HMGB1 in the lethal inflammatory response in the CD24-deficient mice.

Theoretically, CD24 may repress host the response to DAMPs by two mechanisms. First, CD24
may trap DAMPs and thus prevent them from binding to their agonistic receptors such as TLR
or NLR. In addition, CD24 might actively repress the host response to DAMPs. Since CD24
is a GPI-anchored molecule that does not have an intracellular domain, we reasoned that CD24
negatively regulates responses to HMGB1 by interacting with other proteins that recognize
saccharides on CD24. We were particularly intrigued by members of the Siglec families that
have Ig-like type I transmembrane proteins with an IgV-like domain binding to a sialic acid-
containing structure 60,61. Currently, there are at least 13 Siglecs in humans and 8 in mice.
Except for Sn and Siglec H, all other known Siglecs have immunoreceptor tyrosine-based
inhibitory motifs (ITIM) or ITIM-like regions in their intracellular domains. As such, it is
expected that they have the capacity to recruit the phosphatases SHP-1, SHP2, and possibly
SHIP.

Our analysis of a panel of Siglec fusion proteins indicated that CD24 binds to Siglec G in mice
and its human homologue Siglec 10 58. The interaction between mouse Siglec G and CD24 is
confirmed by immunoprecipitation. Mice with a targeted deletion of the entire Siglec G coding
region62 phenocopy CD24-deficient mice in their susceptibility to acetaminophen-induced
liver injury 58. Further, we demonstrated that Siglec G physically associates with CD24,
through which it also associates with DAMPs, such as HMGB1, HSP 70, and HSP90 and
repressed the response to these DAMPs. The effect is reflected at the level of NF-kB activation
58. Importantly, at both cellular or organism levels, neither CD24 nor Siglec G regulate the
inflammatory response to lipopolysaccharide (LPS) or Poly I:C (TLR4 and TLR3 agonists
respectively), the two PAMPs tested so far. Based on these observations, we propose a simple
model by which the CD24-Siglec G/10 discriminate DAMP vs. PAMP by selectively
repressing the host response to DAMPs (Figure 1).

In essence, we propose CD24 as the main negatively-signaling DAMP receptor whose function
is to antagonize the stimulatory DAMP receptors. In its simplest form, we propose that DAMPs
cross-link TLR and/or NLR with the CD24-Siglec G/10 complex and thereby brings Siglec-
associated SHP-1 to the signaling complex involved in NF-kB activation. This can be achieved
by distinct binding sites on DAMPs to either CD24 or TLR/NLR. Alternatively, DAMPs may
be multimerized to allow simultaneous binding to multiple receptors even if the binding sites
overlap.

Several pieces of evidence support this model. First, CD24 might be uniquely suitable for
interacting with a large array of DAMPs because of its extensive glycosylations. In addition
to HMGB1 and HSP, CD24 is associated with other intracellular components such as nucleolin
58. Second, CD24 is the high affinity ligand for Siglec G/10 58. In contrast, CD24 may have
additional receptors as targeted mutation of Siglec G/10 only partially reduces the binding of
CD24-Fc fusion protein to spleen cells 58. It is therefore possible that additional signaling
pathways, including but not limited to members of the Siglec family, may be recruited to
discriminate large arrays of DAMPs from PAMPs. Thirdly, we have demonstrated that for the
two best studied DAMPs and two well characterized PAMPs, the CD24-Siglec G/10 pathway
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selectively represses the response to DAMP but not PAMP, even though HSP, HMGB1 and
LPS all interact with TLR4. However, it should be noted that the role of the CD24-Siglec G/
10 pathway is demonstrated mostly by genetic studies, so biochemical analyses are urgently
needed to provide mechanistic insights. Likewise, the DAMPs and PAMPs tested are fairly
limited in scope, so further studies are needed to demonstrate the general applicability of this
model.

Coda
Conceptually, identification of a pathway that selectively represses host responses to DAMPs
but not PAMPs suggests that the two inflammatory stimuli are treated very differently by the
immune system. As such, it is no longer tenable to consider PAMPs as part of a danger signal
unleashed during tissueinjury. Practically, identification of the negative regulator pathway
might provide us with novel approaches to amplify the local inflammatory response in order
to achieve optimal adaptive immunity for cancer therapy. It is of interest that CD24 is essential
for the development of EAE and genetic studies with human CD24 polymorphisms suggest its
involvement in multiple autoimmune diseases 63. If the role for CD24 in autoimmune diseases
can be generalized, then the targeting of CD24 might expand the local immune response while
conveying resistance to autoimmune diseases, which is a major issue in cancer immunotherapy
64. Conversely, enhancing CD24-signaling might provide added protection from inflammation
and/or autoimmune disease following acute tissue injury or trauma. Finally, it has not escaped
our attention that many viruses and most pathogenic bacteria express sialidase as their virulence
factors 65,66. By cleaving off sialic acid from CD24, pathogen-expressed sialidase might
abrogate the negative regulation of DAMPs. This could provide a novel explanation for the
massive inflammation associated with these pathogens.
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Figure 1.
The CD24-Siglec G (mouse) or -Siglec 10 (human) pathway discriminates between Pathogen-
Associated Molecular Patterns (PAMPs) from Danger-Associated Molecular Patterns
(DAMPs) by selective repression of the host response to DAMPs. We propose that DAMPs
(but not PAMPs) bring CD24-Siglec G/10 into the proximity of TLR/NLR, thus allowing
Siglec G/10-associated phosphatases such as SHP1 to repress the DAMP-initiated TLR/NLR
signaling. Dysfunction of this pathway might contribute to the etiology of autoimmune disease.
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