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Abstract. In this paper, a new class of space-time block codes achieving
full-rate and full spatial diversity for QAM is proposed when using any
odd transmit antennas over quasi-static Rayleigh fading channels. Like
the conventional A-ST-CR codes [10], the proposed codes are constructed
by serially concatenating the constellation-rotating precoders [7]-[9] with
the Alamouti scheme [3]. Computer simulations show that for the case
of QPSK, the best code in this class achieves approximately 1.5dB larger
coding gain than the existing ST-CR code [8], [9] for both 3 and 5 trans-
mit antennas at average SER=10"" and for the case of 16-QAM, 3dB
for 3 transmit antennas. The codes possessing quasi-orthogonal charac-
teristic are also included in this class, allowing simple ML decoding with
virtually no performance loss compared to the best code in the class.

1 Introduction

Recently, the space-time coding technique [1] using multiple transmit anten-
nas has received considerable attention as a promising technique to enhance
the capacity and quality of mobile wireless systems. Tarokh et al. in [2] devel-
oped orthogonal space-time block codes (O-STBCs) based on orthogonal designs
achieving full diversity and allowing simple maximum likelihood (ML) decoding.
Unfortunately, full-rate O-STBCs for general complex modulation such as PSK
and QAM do not exist when the number of transmit antennas is larger than two
(2], [3]- Yan et al. in [8], [9] proposed so called space-time constellation-rotating
(ST-CR) codes achieving both full-rate and full spatial diversity for general QAM
when using any number of transmit antennas. This is done by transmitting the
precoded symbols generated by multiplying a vector of QAM symbols via linear
constellation-rotating precoders. By serially concatenating these linear precoders
with the Alamouti scheme [3], Jung et al. in [10] presented so called Alamouti
ST-CR (A-ST-CR) codes enjoying larger coding gains than the ST-CR codes
without any loss of code rate. However, these codes were only designed for an
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even number of transmit antennas. Also, these two classes of codes based on the
linear precoders have a great deficiency of not satisfying the Tarokh’s orthogonal
designs [2], resulting in a greatly higher ML decoding complexity compared to
the O-STBCs.

Hence, based on the design idea in the A-ST-CR codes, we will present a new
class of STBCs achieving full rate and full diversity for QAM and quasi-static
Rayleigh fading channels when using any odd number of transmit antennas.
These codes are designed by serially concatenating the constellation-rotating
precoders with the Alamouti scheme like the conventional A-ST-CR codes. Com-
puter simulations show that for the case of QPSK, the best code in this class
achieves approximately 1.5dB larger coding gain than the existing ST-CR code
for both 3 and 5 transmit antennas at average SER=10"° and for the case of
16-QAM, 3dB for 3 transmit antennas. Specifically, new codes satisfying quasi-
orthogonal characteristic [4]-[6] are also included in this class, exhibiting almost
same error performance as the best code in the class. The quasi-orthogonal prop-
erty allows a ML decoder at the receiver to decode two groups of modulated
symbols separately, resulting in greatly simplified ML decoding at the receiver.
The simple ML decoding algorithm based on the quasi-orthogonal characteristic
will be presented in Section IV in detail.

This paper is organized as follows. In Section II, system model considered in
this paper is described and in Section III, some important characteristics of the
conventional ST-CR and A-ST-CR codes are briefly reviewed. Then we design
the new full-rate STBCs with full diversity for odd transmit antennas in Section
ITT and present the simulation results for these codes in Section IV. Finally,
conclusions are drawn in Section V.

2 System Model

The basic system model considered in this paper is identical to that of STBC
with IV transmit and one receive antennas under quasi-static Rayleigh fading
channels [10], which is depicted in Fig. 1.

The transmitter first groups the QAM symbols with unit energy to form
vectors of length L, x = [x1,---,21]7 where z7 denotes the transpose vector
of z. This vector is then input to the space-time encoder to form a codeword
matrix S(x) = {s;;} of size Ty x N. The codeword symbol s;; is then transmitted
on antenna j at time i. Here, we focus on STBCs achieving full rate by setting
To = L. We also normalize the codeword matrix S(x) with energy constraint
E{||S(x)||?} = L where E{-} and || - || denote the expectation operator and
Frobenius norm, respectively.

The symbols transmitted from different transmit antennas are assumed to
experience independent Rayleigh fading. The channel is also assumed to be quasi-
static in the sense that the channel do not vary significantly during the trans-
mission of the code matrix. Hence, a received vector y = [yi,---,yz]T with a
matched filter output y; at time 7 is given as

y = VE,S(x)h+n (1)
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Fig. 1. System model for STBC with N transmit and one receive antennas.

where E, and h = [hy, -, hy]T denote the average received symbol energy and
the channel gain vector, respectively, where h,, represents the complex channel
gain between the nth transmit antenna and the receive antenna with zero mean
and unit variance. Also, n = [ny,---,nz]7 denotes the received noise vector of
length L where n; represents a sample of the i.i.d. complex Gaussian random
variable at time 7 with zero mean and variance Ng.

It is assumed that the channel gain vector is perfectly known at the receiver.
Using this assumption, ML decoding is performed at the receiver by choosing %
such that S(X)h is closest to y in terms of Euclidean distance given as

X =argmin|ly — S(x)h|. (2)

3 Conventional ST-CR and A-ST-CR Codes

Both the conventional ST-CR [8], [9] and A-ST-CR [10] encoders with even N
transmit antennas first generate a precoded vector r = [ry,---,7x]7 of length N
by multiplying an /N dimensional input vector x of length N by a constellation-
rotating precoder ® of size N x N, i.e., r = Ox. The ST-CR encoder transmits
r; at time ¢ using a subgroup of the N transmit antennas so as to guarantee
that the symbol r; experiences independent fading. But, the A-ST-CR encoder
groups the N rotated symbols into N/2 symbol pairs which are then encoded
by the Alamouti encoder [3] and transmitted on N/2 antenna pairs in a time-
multiplexed fashion. Examples of the such codes are

Ldiag (Sa (r1,72) -+, Sa (rn-1,7x)) , A-ST-CR ®)

S(r) {diag(rl, ---,rn), ST-CR
V2

where Sy (a,b) = [_ab* aq denotes the Alamouti codeword [3]. For both codes,

the determinants of the N x N matrices A = S(r — r')*S(r — r’) for distinct
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input vectors x, x’, can be easily calculated as [8]-[10]

[1%, |d;f*, ST-CR
det (A) = N/2 1

2 4
| (‘d2i71\2 + |d2i|2) , A-ST-CR (4)

with d; = r; — r} where r; and r; denote the ith entries of r and r’, respectively.
Also, r and r’ are the precoded vectors corresponding to x and x’, respectively.

It is noted that the linear precoders ® used in the ST-CR and the A-ST-
CR codes [8]-[10] are always designed so that d; # 0 (or r; # rl), Vi, for any
two distinct input vectors x, x’, referred to as the rotation property [10]. Hence,
we can easily observe that the determinants of (4) are always positive due to
the rotation property of ® and thus, both the ST-CR and the A-ST-CR codes
of (3) satisfy the Tarokh’s rank criterion [1], guaranteeing full spatial diversity.
Even though these two codes have a same diversity order N, the A-ST-CR code
outperforms the ST-CR code due to its improved coding gain [10].

In [7]-[9], the unitary precoders ® optimized in a sense of the Tarokh’s de-
terminant criterion [1] were investigated and presented by using algebraic design
tools and also an exhaustive search method. Note that unitary (or orthogo-
nal) precoders have a preferable feature of guaranteeing no performance loss in
nonfading AWGN channels. This is because unitarity of precoders preserves Eu-
clidean distance between any two constellation points. In particular, the unitary
precoders ® based on algebraic design theory are given as [8], [9]

1 —o9n
e — WYDM(QO70[17"J§’_C;N*1)7 N=2 (5)
Fydiag(l,a, -+, 71), N £ 2"

where VDM and Fy denote the Vandermonde and the N-point inverse FFT
matrices, respectively. Also, o; = exp(j2n(i + 1/4)/N), i = 0,---,N — 1 and
a = exp(j2m/P) where P is a positive integer. For the specific case of N = 3,
an optimal @ different from (5) is presented in [8], [9]

0.687 0.513 — 0.1135 —0.428 + 0.264;
® = | —0.358 — 0.3085 0.696 — 0.1725 —0.011 — 0.5135 | . (6)
0.190 + 0.5205 0.243 — 0.389j 0.696

4 Design of New Concatenated STBCs

In Section III, we briefly review the characteristics of the conventional A-ST-
CR code in (3) designed by serially concatenated the linear precoders with the
Alamouti scheme for even N transmit antennas. In this Section, based on the
design structure of this A-ST-CR code, we will present new several concatenated
STBCs which can be used in systems with odd N — 1 transmit antennas.
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4.1 New STBCs using ® of N x N

One of conventional methods for a STBC with N transmit antennas to be used in
systems with N — 1 transmit antennas is simply to delete one of column vectors
of the code [2]. Thus, by simply deleting the last column vector of the A-ST-CR,
code in (3), we may easily construct a new STBC for N — 1 transmit antennas
given as

Sa(ri,rg) -+ 02 02x1
N : ) : :
S(r) = 2(N — 1) 02 - Sa(rv—3,7N-2) 02x1 (7)
T T
02Tx1 0%><1 N-1
051 - 0551 —TrN

where 05 and 051 denote a zero matrix of size 2 x 2 and a zero column vector
of length two, respectively. Also, \/N/(2(N — 1)) is a normalizing factor with
the total transmitted power constraint E{||S(r)||?} = N. For this code, the
determinant of A matrix of size (N — 1) x (N — 1) for any two distinct input
vectors x, x’ is computed as

det (A) = (2(NN_1)>N_1

N
N

TT (idaisl® +1dail?) " | (1wl + laxl®) ®)

i=1

where d; = r; — r; is defined in (4). Hence, due to the rotation property of ©,
i.e., d; # 0, i, we can easily know that the determinant of (8) is always positive
and thus, the code of (7) achieves full spatial diversity like the conventional ST-
CR and A-ST-CR codes. The new code is also full rate because N modulated
symbols are transmitted for N symbol time epochs.

It is noted that even though both the A-ST-CR and ST-CR codes achieve
same diversity order N with a given ®, the A-ST-CR code enjoys larger coding
gain than the ST-CR code [10]. This is mainly due to the fact that the A-ST-CR,
code can transmit the precoded symbols r; through the Alamouti encoder more
reliably than the ST-CR code. From a this point of view, the new code of (7)
has still room for increasing coding gain because the last precoded symbol pair
(ry—1,7n) is transmitted on only an (N — 1)th transmit antenna, not through
the Alamouti encoder. Hence, by intuition, we may design a new code different
from (7) where the second column vector of S (ry_1,7n) is transmitted on the
(N — 2)th antenna as follow:

[Sa(ri,m2) <++ Oax1 0O2x1 Oaxq |
) ; : : :
Sr)=—| 01 - 7"N3 N2 O (9)
V2 02Tx1 o —TN_2Th_g 0
ngl 0 N TN-1
L 02Tx1 o 00y TN
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where 1/4/2 is a normalizing factor with the power constraint of E{||S(r)|?} =
N. For example, when using three transmit antennas, the code of (9) is given as

T T2 0
1 | =r5ri O
S = — 271 . 10
®=— |30 (10)
0 r3—r}

Clearly, the code of (9) is full rate because Ty = L to be N. This code is also
guaranteed to achieve full spatial diversity like the new code of (7) because for
any two distinct input vectors x, x’,

N_2

N3 2 2\? 2 2
det (A) = (2) H (|d2i71| + |da| ) (|dN73| + [dy—2] ) X

i=1
(I3 + ldy > + ldn 1 [* + lan]*)(Jdn 1 * + dn[*) > 0.(11)

Even though both the proposed codes of (7) and (9) achieve full spatial
diversity N — 1 with a given ©, the code of (9) outperforms the one of (7) for
all SNR values, which will be shown by computer simulations in Section IV.

4.2 New STBC using © of N/2 x N/2

As commented in the previous subsection, both the new codes of (7) and (9)
using © of size N x N have some advantages of achieving full rate and full
diversity for general QAM. However, these codes have a great drawback of not
satisfying the Tarokh’s orthogonal designs [2], leading to a much higher increase
in ML decoding complexity at the receiver than the O-STBCs. Hence, in this
subsection, by using a linear precoder © of size N/2 x N/2, a new full rate and
full diversity STBC possessing quasi-orthogonal property will be presented for
any odd N — 1 transmit antennas.

The proposed encoder first divides an input vector x of length N into two in-
put sub-vectors x; = [x;1, - ,mi’N/g]T, i =1,2of length N/2,i.e., x = [x1,%x2]T.
Each of these sub-vectors, x; is then multiplied separately by a same linear pre-
coder ®© of size N/2 x N/2, resulting in two precoded sub-vectors of length
N/2, r; = [riq, - rins2]T = ©x;, @ = 1,2. Then, by serially grouping the
ith elements in both r; and rg, total N/2 precoded symbol pairs (r1;,72;),
i=1,---,N/2 are generated. These pairs (r1,;,72,;) are then encoded indepen-
dently by the Alamouti encoder [3] and transmitted on N — 1 transmit antennas
like the new code of (9)

[Sa(r1,1,72,1) -+ 02y O2x1 Oaxi |

T
S(r) = 1 0251 TNy TN 0 (12)
- T * *
\/§ 02><1 Ty N TN 0
T )2 )72
0 0 s N T1 N

7 27 be

i 0551 0 rl% 77*2% |
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It is clear that this code is full-rate because Ty = L to be N as the code of (9).
For the code of (12), we can easily calculate the determinant of the A matrix
for any distinct input vectors x, x’ as

- (1))

2 2 2 2 2 2
(’dl,g’l‘ +’d27%71’ +’d17%‘ Jr’dQ,%’ ) (‘dl_’z;f’ +‘d2’gf’> (13)

vz
\

? ) N2 2 2
(|d1,i| +|d2,z‘|) ’d1,%71’ +‘d2%71‘ X

with di,j =Tij — T‘g
respectively.

Indeed, for any two distinct vectors x, x’, there exists at least one sub-vector
pair (x;,x’;) satisfying x; # x;. This implies r; ; # 77 ; (or d; ; # 0), Vi, for a
given index i because of the rotation property of ®. Hence, the determinant of
(13) is always positive and thus, the code of (12) enjoys full spatial diversity of
order N —1 like the new codes of (7) and (9). This code also satisfies the quasi-
orthogonal property like the conventional quasi-orthogonal STBCs (QO-STBCs)
[4]-[6], allowing a ML decoder at the receiver to decode the two sub-vectors x1,
X2, independently, which will be derived in the following.

First, by complex-conjugating the all elements of even indices in y, denoted
as y’, we can easily rearrange the ML metric given in (2) for the code of (12) as
follow:

j where 7; j and r; ; represent the jth elements of r; and r},

ly =S()h[ = (14)

S C
y - 0y © X

with
h1,%+1 (hla h2)

>

1 :
H= — : (15)
V2 hy 4y (hn—3,hn_2)

hy y(hn-1,hn—2)

where h; ; (a,b) denotes an 2 x N matrix whose ith and jth column vectors
are [a,b*]" and [b, —a*]", respectively, and all other column vectors with zero
elements. The equality of (14) uses the fact that the conjugating of any number
of elements in a vector preserves the magnitude of the vector. At this point of
time, we will define an unitary matrix B generated by appropriately normalizing
the elements in H of (15), given as

hy w oy (R, ha) /p(ha, ha)

1>

B :
hy vy (An-s,hn-2)/p(hn-3,hN—2)

hy y(hn-1,hn-2)/p(hn-1,hN_2)
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where p(a,b) 2 |a|? + |b|2. Note that the matrix B of (16) satisfies the unitar-
ity, i.e., B*B = Iy where Iy represents an identity matrix of size N x N.

Then by using the complex conjugate of B of (16), the ML metric in the
right side of (14) can be decomposed into two functions composed of x; and xa,
respectively, as follows:

u| 2% By —BH| O OF 17
Y=oy e [ MT7Y 0y © |* (17)
AOx]|[© 0x
o VAl . N N X1
_| |:Z2] 0% A2 0% é] |:x2:| | (18)
2
= |lzi — AOx]| (19)

where [z1,22]7 = B*y’ with N/2 dimensional vectors z, zz and

A
A= \ﬁdlag (p(hi,h2), - p(hn=s3,hn—2),p(hn—1,hN_2)).

The equality of (17) uses the unitarity of the matrix B preserving the energy of
a vector. Hence, we can easily know that the minimization of the ML metric in
the left of (17) is equivalent to the minimization of the two equations of x; and
X2 in (19), separately. Thus, the ML receiver for the code of (12) can decode the
input sub-vectors x;, independently, by choosing X; such that

X; = argmin||z; — AOx;||, i=1,2. (20)
Xi

5 Simulation Results

All of STBCs considered in this Section are assumed to be ones with V; transmit
and one receive antennas over quasi-static Rayleigh fading channels. Also, it is
assumed that the fading channel gains are perfectly known at the receiver. With
these assumptions, we provide the simulation results of the three proposed codes
of (7), (9) and (12) with N; = 3,5 for QPSK and N; = 3 for 16-QAM. The codes
of (7) and (9) use the same unitary precoders © of (5) of size 4 x4 for N; = 3 and
of size 6 x 6 with P = 36 for N; = 5, respectively. Also, the quasi-orthogonal code
of (12) uses © of size 2 x 2 constructed using (5) for Ny = 3 and © given in (6)
for N; = 5. For the comparison of performances, the results of the ST-CR code
[9], [10] in (3) using © of (5) and the Alamouti scheme [3] are also included.
Furthermore, we include the results of the maximal ratio receiver combining
(MRRC) scheme using appropriately normalized one transmit and N; receive
antennas [3].

Figs. 2 and 3 show the average symbol error rate (SER) curves versus E /Ny
for QPSK and 16-QAM, respectively. From these results, we see that all of the
proposed codes achieve full spatial diversity and also, larger coding gains than
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Fig. 2. Average SER versus F,/Ny [dB] for QPSK.

the existing ST-CR code [8], [9] for all SNR values. This is because the proposed
codes can transmit the precoded symbols 7; more reliably than the conventional
ST-CR code by using the Alamouti encoder with two transmit antennas. In
particular, the code of (9) is shown to achieve the best performance among the
three proposed codes for all considered modulations and transmit antennas. For
the case of QPSK, this code enjoys approximately 1.5dB larger coding gain than
the existing ST-CR code for N; = 3,5 at average SER=10"° and for the case
of 16-QAM, 3dB for N; = 3. Also, we notice that the best code exhibits error
performance within only about 1dB of the MRRC scheme.

We also know from these results that the proposed quasi-orthogonal code of
(12) exhibits approximately same error performance as the best code of (9) for all
SNR values for considered modulations and transmit antennas. It is noted that
this code satisfies the quasi-orthogonal characteristic like the conventional QO-
STBCs [4]-[6], leading to greatly simplified ML decoding at the receiver. Hence,
considering both the performance results and the decoding complexity, this code
may be a promising solution for the next generation mobile communications.

6 Conclusions

In this paper, we proposed new STBCs achieving full rate and full diversity for
QAM and quasi-static Rayleigh fading channels when using any odd number
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Fig. 3. Average SER versus E;/Ny [dB] for 16-QAM and three transmit antennas.

of transmit antennas. These codes are designed by serially concatenating the
constellation-rotating precoders with the Alamouti scheme like the conventional
A-ST-CR code. We showed by computer simulations that all of proposed codes
outperform the existing ST-CR codes for any considered modulations and trans-
mit antennas. Particularly, the codes possessing quasi-orthogonal characteristic
are also included in this class, allowing simple ML decoding with virtually no
performance loss compared to the best code in the class.
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