[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/314613.314823acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
Article
Free access

Algorithms for the maximum subarray problem based on matrix multiplication

Published: 01 January 1998 Publication History
First page of PDF

References

[1]
A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms Addison- Wesley, 1974.
[2]
R. Agrawal, T. Imielinski and A. Swami, Mining Association Rules between Sets of Items in Large Databases, Proc. A CM SIGMOD Con/'. on Management of Data, (1993) 207-216.
[3]
N. Alon, Z. Galil, and O. Margalit, On the Exponent of the All Pairs Shortest Path Problem, Proc. 3~nd FOCS (1991), 569-575.
[4]
J. Bentley, Programming Pearls- Algorithm Design Techniques, CA CM 27-9, (1984) pp.865-871.
[5]
J. Bentley, Programming Pearls- Perspective on Performance, CA CM 27-11, (1984) pp.1087-1092.
[6]
D. Coppersmith and S. Winograd, Matrix Multiplication via Arithmetic Progression, J. Symboric Computation 9 (1990) pp.251-280.
[7]
D. Dobkin and D. Eppstein, Computing the Discrepancy, Proc. 9th A CM Syrup. Computational Geometry (1993), pp.47-52.
[8]
D. Dobkin and D. Gunopulos, Computing the Rectangle Discrepancy, Proc. 10th A CM Syrup. Computa. tional Geometry (1994) pp. 385-386.
[9]
P. Fisher, K. U. H6ffgen, H. Lefmann, and T. Luczak, Approximations with Axis Parallel Rectangles, Proc. FCT'93 Springer LNCS 710, (1993), pp.244-255.
[10]
M. L. Fredman, New Bounds on the Complexity of the Shortest Path Problem SIAM J. Comput. 5 (1976) pp. 83-89.
[11]
T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, Data Mining Using Two-Dimensional Optimized Association Rules: Scheme, Algorithms, and Visualization, Proc. A CM SIGMOD Conf. on Management of Data (1996) pp. 13-~3.
[12]
T. Fukuda, Y. Morimoto, S. Morishita and T. Tokuyaxaa, Constructing EiHcient Decision Trees by Using Optimized Association Rules, Proc. ~end VLDB Conference, (1996) pp. 146-155.
[13]
D. Kerger, D. Koller, and S. J. Phillips, Finding the Hidden Path; Time bounds for All-Pairs Shortest Path, SIAM J. Comput., 22 (1993), pp.1199-1217
[14]
L.R. Kerr, The effect of algebraic structure on the computational complezity of matri~ multiplications~ Ph. D. Thesis, Cornel University, 1970.
[15]
K. Mehlhorn and B. Pribe, On the All-Pairs Shortest- Path Algorithm of Moffat and Takaoka, Random Structures and Algorithms 10 (1997), pp. 205-220.
[16]
Y. Morimoto, T. Fukuda, S. Morishita, and T. Tokuyama, Implementation and Evaluation of Decision Trees with Range and Region Splitting, to appear in Constraints.
[17]
H. Neiderreiter, Random Number Generation and Quasi-Monte Carlo Methods, CGMS-NSF Conference Series in Appl. Math. 63, SIAM, 1992
[18]
K. Perumalla and N. Deo, Parallel algorithms for maximum subsequence and maximum subarray, Parallel Processing Letters 5-3, (1995), pp.367-73.
[19]
T. Takaoka, A new upper bound on the complexity of the all pairs shortest path problem, 1PL 43 (1992), pp. 195-199
[20]
S. Tezuka, Uniform Random Numbers; Theory and Practice, Kluwer Academic Publishers, 1995.
[21]
S. Tezuka and T. Tokuyama, A Note on Polynomial Arithmetic Analogue of Halton Sequences, Acre Trans. Modeling and Comput. Simulation 4, (1994) pp. 279- 284.
[22]
K. ~oda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, Computing Optimized Rectilinear Regions for Association Rules and Highly Accurate Decision Trees, Proc. 3rd International Conference on Knowledge Discovery and Data Mining. pp. 96-103, 1997.

Cited By

View all
  • (2018)Tight hardness for shortest cycles and paths in sparse graphsProceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3174304.3175350(1236-1252)Online publication date: 7-Jan-2018
  • (2018)Subcubic Equivalences Between Path, Matrix, and Triangle ProblemsJournal of the ACM10.1145/318689365:5(1-38)Online publication date: 29-Aug-2018
  • (2016)An efficient parallel algorithm for the maximum convex sum problemProceedings of the Australasian Computer Science Week Multiconference10.1145/2843043.2843049(1-7)Online publication date: 1-Feb-2016
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SODA '98: Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms
January 1998
704 pages
ISBN:0898714109

Sponsors

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 1998

Check for updates

Qualifiers

  • Article

Conference

SODA98
Sponsor:
SODA98: 1998 Conference on Discrete Algorithms
January 25 - 27, 1998
California, San Francisco, USA

Acceptance Rates

Overall Acceptance Rate 411 of 1,322 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)95
  • Downloads (Last 6 weeks)11
Reflects downloads up to 18 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Tight hardness for shortest cycles and paths in sparse graphsProceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3174304.3175350(1236-1252)Online publication date: 7-Jan-2018
  • (2018)Subcubic Equivalences Between Path, Matrix, and Triangle ProblemsJournal of the ACM10.1145/318689365:5(1-38)Online publication date: 29-Aug-2018
  • (2016)An efficient parallel algorithm for the maximum convex sum problemProceedings of the Australasian Computer Science Week Multiconference10.1145/2843043.2843049(1-7)Online publication date: 1-Feb-2016
  • (2016)Algorithms for Problems on Maximum Density SegmentProceedings of the Second International Conference on Algorithms and Discrete Applied Mathematics - Volume 960210.1007/978-3-319-29221-2_2(14-25)Online publication date: 18-Feb-2016
  • (2014)Efficient parallel algorithms for the maximum subarray problemProceedings of the Twelfth Australasian Symposium on Parallel and Distributed Computing - Volume 15210.5555/2667672.2667678(45-50)Online publication date: 20-Jan-2014
  • (2012)Calculational developments of new parallel algorithms for size-constrained maximum-sum segment problemsProceedings of the 11th international conference on Functional and Logic Programming10.1007/978-3-642-29822-6_18(213-227)Online publication date: 23-May-2012
  • (2010)Learning To count objects in imagesProceedings of the 24th International Conference on Neural Information Processing Systems - Volume 110.5555/2997189.2997337(1324-1332)Online publication date: 6-Dec-2010
  • (2010)Effect of corner information in simultaneous placement of K rectangles and tableauxProceedings of the 16th annual international conference on Computing and combinatorics10.5555/1886811.1886844(235-243)Online publication date: 19-Jul-2010
  • (2010)Efficient algorithms for the sum selection problem and k maximum sums problemTheoretical Computer Science10.1016/j.tcs.2009.11.005411:7-9(986-994)Online publication date: 1-Feb-2010
  • (2007)A sub-cubic time algorithm for the k-maximum subarray problemProceedings of the 18th international conference on Algorithms and computation10.5555/1781574.1781657(751-762)Online publication date: 17-Dec-2007
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media