[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/314500.314868acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
Article
Free access

Computing the maximum degree of minors in matrix pencils via combinatorial relaxation

Published: 01 January 1999 Publication History
First page of PDF

References

[1]
P. BUJAKIEWICZ, Maximum Weighted Matching for High Index Differential Algebraic Equations, Doctor Thesis, Delft University of Technology, 1994.
[2]
C. COMMAtmI: AND J.-M. DION, Structure at infinity of linear multivariable systems: a geometric approach, IEEE Trans. Automat. Control, AC-27 (1982), pp. 693-696.
[3]
C. COMMAULT, J.-M. DION AND A. PER.EZ, Disturbance rejection for structured systems, YEEE Trans. Automat. Control, AC-36 (1991), pp. 884- 887.
[4]
I. DUFF AND C. W. GEAR, Computing the structural index, SIAM J. Algebraic Discrete Methods, 7 (1986), pp. 594-603.
[5]
C. W. GEAR, Di#erential-algebraic equation index transformations, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 39-47.
[6]
C. W. GEAR, DiT#erential algebraic equations, indices, and integral algebraic equations, SIAM J. Numer. Anal., 27 (1990), pp. 1527-1534.
[7]
V. HOVELAQUE, C. COMMAULT, J.-M. DION, Analysis of linear structured systems using primaldual algorithm, Systems Control Lett., 27 (1996), 73-85.
[8]
F. R. GANTMACHER, The Theory of Matrices, Chelsea, New York, 1959.
[9]
S. IWATA AND K. MUROTA, Combinatorial relaxation algorithm for mixed polynomial matrices, RiMS Preprint 1113, Kyoto University, 1996.
[10]
S. IWATA, K. MUROTA AND I. SAKUTA, Primaldual combinatorial relaxation algorithms for the maximum degree of subdeterminants, SIAM J. Sci. Comput., 17 (1996), pp. 993-1012.
[11]
K. MUROTA, Systems Analysis by Graphs and Matroids -- Structural Solvability and Controllability, Springer-Verlag, Berlin, 1987.
[12]
K. MUROTA, Computing Puiseux-series solutions to determinantat equations via combinatorial relaxation, SIAM J. Comput., 19 (1990), pp. 1132-1161.
[13]
K. MUROTA, Computing the degree of determinants via combinatorial relaxation, SIAM J. Cornput., 24 (1995), pp. 765-796.
[14]
K. MUROTA, Combinatorial relaxation algorithm for the maximum degree of subdeterminants: Computing Smith-McMillan form at infinity and structural indices in Kronecker form, Appl. Algebra Engin. Comm. Comput., 6 (1995), pp. 251-273.
[15]
K. MUROTA, On the degree of mixed polynomial matrices, SIAM :I. Matrix Anal. Appl., 20 (1999), pp. 196-227.
[16]
K. MUROTA AND J. W. VAN DER WOUDE,.,-c'tr#cture at infinity of s#ructured descriptor systems and its applications, SIAM J. Control Optim., 29 (1991), pp. 878-894.
[17]
C. C. PANTELIDES, The consistent initialization o/differential-algebraic systems, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 213-231.
[18]
J. UNGAR, A. KR6NER AND W. MARQUARDT, Structural analysis of differential-algebraic equation systems --- Theory and application, Comput. Chem. Engin., 19 (1995), 867-882.
[19]
J. W. VAN DE1R WOUDE, On the structure at infinity of a structured system, Linear Algebra Appl., 148 (1991), pp. 145-169.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SODA '99: Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms
January 1999
992 pages
ISBN:0898714346

Sponsors

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 1999

Check for updates

Qualifiers

  • Article

Conference

SODA99
Sponsor:
SODA99: 1999 10th Conference on Discrete Algorithms
January 17 - 19, 1999
Maryland, Baltimore, USA

Acceptance Rates

Overall Acceptance Rate 411 of 1,322 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 34
    Total Downloads
  • Downloads (Last 12 months)22
  • Downloads (Last 6 weeks)3
Reflects downloads up to 04 Jan 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media