Computing the maximum degree of minors in matrix pencils via combinatorial relaxation
References
Index Terms
- Computing the maximum degree of minors in matrix pencils via combinatorial relaxation
Recommendations
Computing the Maximum Degree of Minors in Matrix Pencils via Combinatorial Relaxation
This paper presents a new algorithm for computing the maximum degree k (A) of a minor of order k in a matrix pencil A(s) . The problem is of practical significance in the field of numerical analysis and systems control.
The algorithm adopts a general ...
Combinatorial relaxation algorithm for the maximum degree of subdeterminants: Computing Smith-Mcmillan form at infinity and structural indices in Kronecker form
LetA(x)=(Aij(x)) be a matrix withAij(x) being a polynomial or rational function inx. This paper proposes a "combinatorial relaxation" type algorithm for computing the highest degree?k(A) of a minor ofA(x) of a specified orderk. Such an algorithm can be ...
Balancing Regular Matrix Pencils
We present a new diagonal balancing technique for regular matrix pencils $\lambda B-A$, which aims at reducing the sensitivity of the corresponding generalized eigenvalues. It is inspired by the balancing technique of a square matrix A and has a ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Sponsors
- SIGACT: ACM Special Interest Group on Algorithms and Computation Theory
- SIAM: Society for Industrial and Applied Mathematics
Publisher
Society for Industrial and Applied Mathematics
United States
Publication History
Check for updates
Qualifiers
- Article
Conference
- SIGACT
- SIAM
Acceptance Rates
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 34Total Downloads
- Downloads (Last 12 months)22
- Downloads (Last 6 weeks)3
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in