[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/314500.314601acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
Article
Free access

Geometric matching under noise: combinatorial bounds and algorithms

Published: 01 January 1999 Publication History
First page of PDF

References

[1]
H. Alt and L. Guibas. Discrete geometric shapes: Matching, interpolation, and approximation, a survey. Technical Report B96-11, Freie Universit#it Berlin, December 1996.
[2]
E.M. Arkin, K. Kedem, J.S.B. Mitchell, j. Sprinzak, and M. Werman. Matching points into pairwisedisjoint noise regions: Combinatorial bounds and algorithms. ORSA Journal on Computing, 4(4):375-386. 1992.
[3]
H. Alt, K. Melhorn, H. VCagener, and E. Welzl. Congruence, similiarity, and symmetries of geometric object-s. Discrete Computational Geometry, 3:237-256. 1988.
[4]
T. Akutsu, H. "}?amaki, and T. Tokuyama. Distribution of distances, and triangles in a point set and algorithms for computing the largest common point set. In Proceedings of the Thirteenth Annual A CM Symposium on Computational Geometry, 1997.
[5]
D.H. Ballard. Generalizing the Hough Transform to detect arbitrary shapes. Pattern Recognition, 13(2):111-122. 1981.
[6]
L. Boxer. Point set pattern matching in 3-d. Pattern Recognition Letters. 17(12):1293-1297, 1996.
[7]
L. P. Chew, D. Dor, A. Efrat, and K. Kedem. Geometric pattern matching in d-dimensional space. In Proc. 2nd Annu. European Sympos. Algorithms, volume 979 of Lecture Notes Comput. Sci., pages 264-279. Springer-Verlag, 1995.
[8]
K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir. and E. Welzl. Combinatorial complexity bounds for arrangements of curves and spheres. Discrete Computational Geometry, 5:99-160. 1990.
[9]
L. Chew. M.T. Goodrich. D.P. Huttenlocher, K. Kedem, J.M. Kleinberg, and D. Kravets. Geometric pattern matching under euclidean motion. In Proceedings of the Filth Canadian Conference on Computational Geometry, pages 151-156. 1993.
[10]
R. Cole and R. Hariharan. Tree pattern matching and subset matching in randomi:ied O(n log# m) time. In Proceedings of the 29th Annual A CM Symposium on Theory of Computing, 1997.
[11]
R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset matching in deterministic O(n logz m) Time. In This proceedings, 1999.
[12]
P.J. de Rezende and D.T. Lee. Point set pattern matching in d-dimensions. Algorithmica, 13:387-404, 1995.
[13]
A. Efrat. Finding approximate matching of points and segments under translation. Unpublished manuscript, 1995.
[14]
A. Efrat and A. Itai. Improvements on bottleneck matching and related problems using geometry, in Proceedings of the Twelfth Annual A CM Symposium on Computational Geometry, 1996.
[15]
P. ErdSs, E. Makai, J. Pach, and J. Spencer. Gaps in difference sets, and the graph of nearly equal distances. Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift (P. Gritzmann and B. Sturmfels, eds.), 4:265-273, 1991.
[16]
P. ErdSs. On sets of distances of n points. American Mathematical Monthly, 53:248-250. 1946.
[17]
H. Edelsbmmner, P. Valtr. and E. Welzl. Cutting dense point sets in half. In Proceedings of the Tenth Annual A CM Symposium on Computational Geometry, pages 203-210, I994.
[18]
P. Firm, D. Halperin, L. E. Kavraki, J. C. Latombe, R. Motwani, C. Shelton, and S. Venkatasul>- ramanian. Geometric manipulation of flexible ligands. LNCS Series- 1996 ACM Workshop on Applied Computational Geometry, 1148:67-78. I996.
[19]
P. Firm. L. E. Kavraki. J. C. Latombe, R. Motwani, C. Shelton, S. Venkatasubramanian, and A. Yao. Rapid: Randomized pharmacophore identification for drug design. In Proceedings of the Thirteenth Annual A CM Symposium on Computational Geometry, 1997.
[20]
M.T. Goodrich, 3.B. Mitchell. and M.W. Orletsky. Practical methods for approximate geometric pattern matching under rigid motions. In Proceedings of the Tenth Annual A CM Symposium on Computational Geometry, pages 103-113, 1994.
[21]
D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg. On dynamic Voronoi diagrams and the minimum Hausdorff distance for points sets under Euclidean motion in the plane. In Proceedings of the Eighth Annual A CM Symposium on Computational Geometry, pages 110-120, 1992.
[22]
P. J. Heffernan and S. Schirra. Approximate decision algorithms for point set congruence. Computational Geometry: Theory and Applications, 4(3):137- 156, 1994.
[23]
P. indyk. Deterministic superimposed coding with applications to matching. In Proceedings of the Thirty Eight IEEE Symposium on Foundations of Computer Science, pages 127-136, 1997.
[24]
National Cancer Institute.2D and 3D Structural data from the Developmental Therapeutics Program, DCTDC, NCI. ht=p: //epnws 1. nc if crf. gov : 2345/ctis3d/3dctatabase/pub s1:ruc, h#tal
[25]
S. Irani and P. Raghavan. Combinatorial and experimental results for randomized point matching algorithms. In Proceedings of the Twelfth Annual A C# Symposium on Computational Geometry, pages 68-77, 1996.
[26]
D. Mount, N. Netanyahu, and J. LeMoigne. Improved algorithms for robust point pattern matching and applications to image registration. In Fourteenth A CM Symposium on Computational Geometry, June 1998.
[27]
S. Muthukrishnan. New results and open problems related to non-standard stringology. In Proceedings of the Symposium on Combinatorial Pattern Matching, pages 298-317, 1995.
[28]
R. Norel, D. Fischer, H. J. Wolfson, and R. Nussinov. Molecular surface recognition by a computer vision-based technique. Protein Engineering, 7(1) :39-46, 1994.
[29]
F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York., 1985.
[30]
W.T. Rucklidge. Lower bounds for the complexity of the Hausdorf{ distance. In Proceedings of the Fifth Canadian Conference on Computational Geometry, pages 145-150, 1992.
[31]
L. Schulman and D. Cardoze. Pattern matching for spatial point sets. In Thirty-ninth Annual Symposium on the Foundations of Computer Science. IEEE, November 1998.
[32]
E. Szemeredi and W. T. Trotter. Extremal problems in discrete geometry. Combinatorica, 3:381--392. 1983.
[33]
L. Sz4kely. Crossing numbers and hard ErdSs problems in discrete geometry. Combinatorics, Probability and Computing (to appear), 1997.
[34]
P. Valtr. Lines, hne-point incidences and crossing families in dense sets. Combinatorica, 16:269-294, 1996.

Cited By

View all
  • (2016)The exact complexity of projective image matchingJournal of Computer and System Sciences10.1016/j.jcss.2016.06.00282:8(1360-1387)Online publication date: 1-Dec-2016
  • (2013)Improved Algorithms for Matching r-Separated Sets with Applications to Protein Structure AlignmentIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2012.13510:1(226-229)Online publication date: 1-Jan-2013
  • (2012)A near-linear time ε-approximation algorithm for geometric bipartite matchingProceedings of the forty-fourth annual ACM symposium on Theory of computing10.1145/2213977.2214014(385-394)Online publication date: 19-May-2012
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SODA '99: Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms
January 1999
992 pages
ISBN:0898714346

Sponsors

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 1999

Check for updates

Qualifiers

  • Article

Conference

SODA99
Sponsor:
SODA99: 1999 10th Conference on Discrete Algorithms
January 17 - 19, 1999
Maryland, Baltimore, USA

Acceptance Rates

Overall Acceptance Rate 411 of 1,322 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)31
  • Downloads (Last 6 weeks)4
Reflects downloads up to 04 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2016)The exact complexity of projective image matchingJournal of Computer and System Sciences10.1016/j.jcss.2016.06.00282:8(1360-1387)Online publication date: 1-Dec-2016
  • (2013)Improved Algorithms for Matching r-Separated Sets with Applications to Protein Structure AlignmentIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2012.13510:1(226-229)Online publication date: 1-Jan-2013
  • (2012)A near-linear time ε-approximation algorithm for geometric bipartite matchingProceedings of the forty-fourth annual ACM symposium on Theory of computing10.1145/2213977.2214014(385-394)Online publication date: 19-May-2012
  • (2010)Constant time approximation scheme for largest well predicted subsetProceedings of the 16th annual international conference on Computing and combinatorics10.5555/1886811.1886866(429-438)Online publication date: 19-Jul-2010
  • (2010)Hausdorff distance under translation for points and ballsACM Transactions on Algorithms10.1145/1824777.18247916:4(1-26)Online publication date: 3-Sep-2010
  • (2010)A simple algorithm for approximate partial point set pattern matching under rigid motionProceedings of the 4th international conference on Algorithms and Computation10.1007/978-3-642-11440-3_10(102-112)Online publication date: 10-Feb-2010
  • (2009)New Complexity Bounds for Image Matching under Rotation and ScalingProceedings of the 20th Annual Symposium on Combinatorial Pattern Matching - Volume 557710.5555/3127091.3127103(127-141)Online publication date: 22-Jun-2009
  • (2009)Exact algorithms for partial curve matching via the Fréchet distanceProceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms10.5555/1496770.1496841(645-654)Online publication date: 4-Jan-2009
  • (2009)A combinatorial geometrical approach to two-dimensional robust pattern matching with scaling and rotationTheoretical Computer Science10.1016/j.tcs.2009.09.009410:51(5317-5333)Online publication date: 1-Nov-2009
  • (2008)4-points congruent sets for robust pairwise surface registrationACM SIGGRAPH 2008 papers10.1145/1399504.1360684(1-10)Online publication date: 11-Aug-2008
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media