[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/2429759.2430141acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
research-article

A simulation-based approach to capturing autocorrelated demand parameter uncertainty in inventory management

Published: 09 December 2012 Publication History

Abstract

We consider a repeated newsvendor setting where the parameters of the demand distribution are unknown, and we study the problem of setting inventory targets using only a limited amount of historical demand data. We assume that the demand process is autocorrelated and represented by an Autoregressive-To-Anything time series. We represent the marginal demand distribution with the highly flexible Johnson translation system that captures a wide variety of distributional shapes. Using a simulation-based sampling algorithm, we quantify the expected cost due to parameter uncertainty as a function of the length of the historical demand data, the critical fractile, the parameters of the marginal demand distribution, and the autocorrelation of the demand process. We determine the improved inventory-target estimate accounting for this parameter uncertainty via sample-path optimization.

References

[1]
Akcay, A., B. Biller, and S. Tayur. 2011a. "Improved inventory targets in the presence of limited historical demand data". Manufacturing and Service Operations Management 13 (3): 297--309.
[2]
Akcay, A., B. Biller, and S. Tayur. 2011b. "Inventory-target estimation in the presence of finite autocorrelated demand data". Tepper Working Paper 2011-E3. Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA.
[3]
Barton, R. R., B. L. Nelson, and W. Xie. 2010, December. "A framework for input uncertainty analysis". In Proceedings of the 2010 Winter Simulation Conference, edited by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, 1189--1198. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.
[4]
Biller, B., and C. G. Corlu. 2011. "Accounting for parameter uncertainty in large-scale stochastic simulations with correlated inputs". Operations Research 59 (3): 661--673.
[5]
Cario, M. C., and B. L. Nelson. 1996. "Autoregressive to anything: Time-series input processes for simulation". Operations Research Letters 19 (2): 51--58.
[6]
Chen, H., and B. W. Schmeiser. 2001. "Stochastic root finding via retrospective approximation". IIE Transactions 33 (3): 259--275.
[7]
Chick, S. E. 2001. "Input distribution selection for simulation experiments: Accounting for input uncertainty". Operations Research 49 (5): 744--758.
[8]
Hayes, R. H. 1969. "Statistical estimation problems in inventory control". Management Science 15 (11): 686--701.
[9]
Joe, H. 1997. Multivariate Models and Dependence Concepts. London: Chapman & Hall.
[10]
Johnson, M. E. 1987. Multivariate Statistical Simulation. New York: John Wiley & Sons.
[11]
Johnson, N. L. 1949. "Systems of frequency curves generated by methods of translation". Biometrika 36 (1/2): 149--176.
[12]
Kuhl, M. E., J. S. Ivy, E. K. Lada, N. M. Steiger, M. A. F. Wagner, and J. R. Wilson. 2010. "Univariate input models for stochastic simulation". Journal of Simulation 4 (2): 81--97.
[13]
Lee, H. L., K. C. So, and C. S. Tang. 2000. "The value of information sharing in a two-level supply chain". Management Science 46 (5): 626--643.
[14]
Lewis, P. A. W., E. McKenzie, and D. K. Hugus. 1989. "Gamma processes". Stochastic Models 5 (1): 1--30.
[15]
Liyanage, L. H., and J. G. Shanthikumar. 2005. "A practical inventory policy using operational statistics". Operations Research Letters 33 (4): 341--348.
[16]
Luong, H. T. 2007. "Measure of bullwhip effect in supply chains with autoregressive demand process". European Journal of Operational Research 180 (1): 1086--1097.
[17]
Mallows, C. L. 1967. "Linear processes are nearly Gaussian". Journal of Applied Probability 4 (2): 313--329.
[18]
Ng, S. H., and S. E. Chick. 2006. "Reducing parameter uncertainty for stochastic systems". ACM Transactions on Modeling and Computer Simulation 16 (1): 26--51.
[19]
Pasupathy, R. 2010. "On choosing parameters in retrospective-approximation algorithms for stochastic root finding and simulation optimization". Operations Research 58 (4): 889--901.
[20]
Pasupathy, R., and S. Kim. 2011. "The stochastic root-finding problem: Overview, solutions, and open questions". ACM Transactions on Modeling and Computer Simulation 21 (3): 1--23.
[21]
Robert, C. P., and G. Casella. 1999. Monte Carlo Statistical Methods. New York: Springer-Verlag. Shapiro, A. 2004. "Monte Carlo sampling methods". In Handbooks in Operations Research and Management Science, Stochastic Programming, edited by A. Ruszczynski and A. Shapiro, 353--426. Amsterdam: North-Holland.
[22]
Sklar, A. 1959. "Fonctions de répartition à n dimensions et leurs marges". Publications de l'Institut de Statistique de L'Université de Paris 8 (1): 229--231.
[23]
Wei, W. W. S. 1990. Time Series Analysis: Univariate and Multivariate Methods. New York: Addison Wesley.
[24]
Zouaoui, F., and J. R. Wilson. 2003. "Accounting for parameter uncertainty in simulation input modeling". IIE Transactions 35 (9): 781--792.
[25]
Zouaoui, F., and J. R. Wilson. 2004. "Accounting for input-model and input-parameter uncertainties in simulation". IIE Transactions 36 (11): 1135--1151.

Cited By

View all
  • (2014)Empirical study of the behavior of capacitated production-inventory systemsProceedings of the 2014 Winter Simulation Conference10.5555/2693848.2694128(2251-2260)Online publication date: 7-Dec-2014

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
WSC '12: Proceedings of the Winter Simulation Conference
December 2012
4271 pages

Sponsors

Publisher

Winter Simulation Conference

Publication History

Published: 09 December 2012

Check for updates

Qualifiers

  • Research-article

Conference

WSC '12
Sponsor:
WSC '12: Winter Simulation Conference
December 9 - 12, 2012
Berlin, Germany

Acceptance Rates

WSC '12 Paper Acceptance Rate 189 of 384 submissions, 49%;
Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2014)Empirical study of the behavior of capacitated production-inventory systemsProceedings of the 2014 Winter Simulation Conference10.5555/2693848.2694128(2251-2260)Online publication date: 7-Dec-2014

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media