Hybrid difference schemes for a singularly perturbed second order ordinary differential equation with a discontinuous convection coefficient arising in chemical reactor theory
Abstract
References
Index Terms
- Hybrid difference schemes for a singularly perturbed second order ordinary differential equation with a discontinuous convection coefficient arising in chemical reactor theory
Recommendations
Initial-Value Technique for Singularly Perturbed Boundary-Value Problems for Second-Order Ordinary Differential Equations Arising in Chemical Reactor Theory
An initial-value technique is presented for solving singularly perturbed two-point boundary-value problems for linear and semilinear second-order ordinary differential equations arising in chemical reactor theory. In this technique, the required ...
A numerical method for singularly perturbed weakly coupled system of two second order ordinary differential equations with discontinuous source term
In this paper, a numerical method based on finite difference scheme and Shishkin mesh for singularly perturbed two second order weakly coupled system of ordinary differential equations with discontinuous source term is presented. An error estimate is ...
A parameter-uniform second order numerical method for a weakly coupled system of singularly perturbed convection---diffusion equations with discontinuous convection coefficients and source terms
In this article, a parameter-uniform hybrid numerical method is presented to solve a weakly coupled system of two singularly perturbed convection---diffusion equations with discontinuous convection coefficients and source terms. Due to these ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Dynamic Publishers, Inc.
United States
Publication History
Author Tags
Qualifiers
- Article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0